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Abstract – Many design optimization problems have
problems that seek fast, efficient and reliable based
solutions. In such cases, artificial intelligence-based
modeling is used to solve costly and complex problems.
This study is based on the modeling of a multiband
helical antenna using the Latin hypercube sampling
(LHS) method using a reduced data enhanced multilayer
perceptron (eMLP). The proposed helical antenna is
dual-band and has resonance frequencies of 2.4 GHz
and 2.75 GHz. The enhanced structure of the artificial
neural network (ANN) was tested using 4 different
training algorithms and a maximum of 10 different MLP
architectures to determine the most suitable model in a
simple and quick way. Then, performance comparison
with other ANN networks was made to confirm the
success of the model. Considering the high cost of
antenna simulations, it is clear that the proposed model
will save a lot of time. In addition, thanks to the selected
sampling model, a wide range of modeling can be done
with minimum data. When the target and prediction data
are compared, it is seen that these data overlap to a large
extent. As a result of the study, it was seen that the ANN
modeling and the 125 samples used, were as accurate
as an electromagnetic (EM) simulator for other input
parameters in a wide range selected.

Index Terms – ANN, design modeling, dual-band,
enhanced algorithm, helical antenna.

I. INTRODUCTION
An antenna is the name given to a metal device or

converter manufactured to receive radio waves [1]. There
are many types such as dipole, monopole, microstrip,
satellite, periodic and array antenna. Helical antennas
consist of a coil with a constant pitch of turns placed
on a cylindrical surface, fed by a special cable and
connected to a conductive plane [2]. A result of this
structure is that the antenna size can decrease. Today,
mobile stations count for a large share among the
places where helical antennas are widely used. The

performance of the mobile station is directly dependent
on the performance of the helical antenna. Helical
antennas are often preferred in portable devices such
as mobile phones because they occupy less space and
have broadband. The helical antenna, originally designed
by Kraus, was used to detect radiation [3]. Due to its
broadband advantage, it has also been popular in satellite
systems for a while. Helical antennas are available
in various designs according to their usage areas [4–
7]. In addition, studies on underwater communication
are substantial [8–10]. Just like in mobile phones, 2.4
GHz radio frequency is used in underwater applications
[11–13]. In recent years, artificial intelligence (AI)
algorithms have been used in many high-performance
circuit designs. They have been frequently used in many
different microwave circuit designs [14], such as unit cell
models [15–16] for large-scale reflective array antenna
designs and modeling of microstrip transmission lines
[17–18]. In a few recent studies, there are AI-based
models of antennas [19–20]. The first of these studies
was carried out for the capacitive feed antenna [19].
The total number of samples in the study is 51,300.
In the other study, modeling of microstrip antenna was
discussed [20]. However, in this study, basing the gap
width and number of steps on user preference increased
the total number of samples used, causing it to be
18,450. Normally, the desired features of antenna design
are obtained by experimentation. However, this method
is quite costly when the antenna simulation time is
taken into account. In the study, the solution of the
design optimization problem of a dual-band helical
antenna with an elliptical geometric structure, which has
pioneered many design problems, is proposed using a
fast, efficient, accurate and reliable based model with
a low cost. MATLAB 2021a program was used for
antenna electromagnetic (EM) simulations. An artificial
neural network (ANN) model is designed to predict
the variation of the S11 (dB) parameter of a helical
antenna with resonance frequencies of 2.4 GHz and
2.75 GHz along the frequency band determined in
different sizes.
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In section II of the study, the parameters for the
design of the helical antenna will be analyzed. In section
III the data reduction with the Latin hypercube sampling
(LHS) method and the details of the proposed network
model will be discussed. In section IV the results of the
study will be presented and the performance comparison
with different ANN networks will be given. In section
V, the paper will be concluded with evaluations and
suggestions on the overall study.

II. DESIGN PROCESS OF HELICAL
ANTENNA

Helical antennas have a circular polarization feature
preferred in broadband VHF and UHF bands. In short, it
can be defined as the practical configuration of the EM
radiator. It consists of a coil of pipe or a thick copper
wire wound like the thread of a screw. Most of the time
the helix is resting on a base as shown in Fig. 1. The
parameters used to define the helical antenna geometry
are given in Table 1 along with their definitions and
design used values.

Fig. 1. Physical parameters of helical antenna.

Table 1: Helix design parameters
Parameter Value Definition

Radius - Radius of turns
Width - Strip width
Turns - Number of turns of

helix
Spacing 35 (mm) Spacing between

turns
Winding Direction CW Direction of helix

turns (windings)
Ground Plane

Radius
75 (mm) Ground plane radius

Feed Stub Height 1.0000e-03 (m) Feeding stub height
from ground

Conductor PEC Type of metal
material

III. PROPOSED METHOD
A. Dataset reduction using the Latin hypercube
sampling method

ANNs can be trained due to their structure. They
keep the data obtained during training as the connection
weight between nerve cells. This process can also be
defined as the determination of connection weights.
These weights store the information that will be needed
during the calculation of the test data of the network
[21]. It is ensured that the training cost is very low in
order for the network to determine the most optimal
connection weights. Here, the low rate of error in
the test result is directly proportional to the training
error. Therefore, the training error should be kept
low as a priority. Here, the data set selection is of
great importance. Input parameter ranges to be used
to determine the optimum results of the network in
the desired frequency band range have been determined
based on the optimization study carried out in the case
studies [22–23]. In these studies, the design of the helical
antenna with optimization algorithms was discussed
[22–23]. However, as it is well known, optimization
processes are both costly and long-term processes.
Therefore, in many studies, the modeling process with
the optimum data set gives results in a short time as
well as its low cost. Here, data reduction is among
the methods frequently used in such applications to
further reduce the cost. For this reason, using a sampling
technique called LHS, the widest range of data set was
extracted. LHS is a popular stratified sampling technique
first proposed by MacKay [24] and further developed
by Iman and Conover [25]. It is a sampling method
of random designs that try to be evenly distributed
in the design space. With the LHS, one must first
decide how many sample points to use, and remember
in which row and column the sample point is taken
for each sample point. This configuration is similar to
having N rooks on a chessboard without threatening
each other [24–25]. Training models in deep learning
can be divided into 3 classes in general. These are
named as underfit model, overfit model and good fit
model. Of these, the overfit model that learns the
training dataset very well, performs well in the training
dataset, but cannot perform well in the test sample. This
common overfitting issue was overcome by choosing the
LHS model.

Here, 3 different design parameters of a dual band
helical antenna are extracted in the intervals and number
of samples indicated in Table 2. In addition, a total
of 100 frequency samples with equal step spacing in
the 1.5-3.5 GHz band range were selected. All these
processes were performed by a computer with 8th
generation Intel Core i7 CPU, 3.20 GHz processor and
8 GB RAM.
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Table 2: Test and training data sets
Parameter Range Sampling

Method
Number of

Samples
Radius (r)

(mm)
20–30 Latin hypercube 5

Width (w)
(mm)

1– 4 Latin hypercube 5

Turns (t) 1– 4 Latin hypercube 5
Frequency

(GHz)
1.5–3.5 Linear 100

Total Sample
(number of
samples X
frequency)

- - 125x100

B. eMLP model
ANNs are frequently encountered in design

problems because of their successful performance.
Multilayer perceptron (MLP) neural network is one of
the most popular among ANNs. The choice of training
algorithm type (trainlm, trainbr etc. [27–30]) and
architecture (number of hidden layers and neurons) used
in the problems solved using this network model is one
of the most important points. It is very difficult to predict
which of these choices will be closer to the target.
There are various studies on this subject [31–35]. A new
trained constructive model has been proposed to obtain
the minimum mean error value with optimum cost by
training ANNs [36]. Here, this suggestion is further
developed, using a small number of models and a certain
number of hidden layers and neurons. In the study,
mean error values are recorded throughout the learning
process. When this value does not catch a new decrease
during the training period, it is concluded that the
network has reached saturation. At the same time, other
architectural results are recorded and the threshold value
is determined. According to this threshold value, the
model determines how many MLP architectures it will
create in total for each training algorithm. In addition,
the maximum value for the architecture experiment
is determined by the user. For each architecture, the
number of hidden layers and neurons is automatically
adjusted according to the average error value of the
algorithm. This enhanced multilayer perceptron (eMLP)
model provides great convenience for the user compared
to the standard architecture [31–32], [36–37].

In this designed eMLP model, first the model
parameters are set. These are the training algorithm
types to be used: trainbr, trainlm etc. [26–30]. MLP
architecture consists of parameters such as the number
of hidden layers, the number of neurons to be used in the
hidden layers, and the maximum number of architectural
trials. In the next process, the modeling process is started
for the determined training algorithms and architectures.

Mean absolute error (MAE)/Mean squared error
(MSE)’s generated as a result of each modeling process
are recorded. The system compares the MSE ratio with
the previous result and decides whether to continue with
the new architecture. In short, it is expected to reach
saturation. This process is repeated separately for each
training algorithm set at the beginning. As a result of all
these processes, the training algorithm/architecture with
the minimum MSE is accepted as the best model. All these
steps are presented in Fig. 2 as a flow chart. In addition,
the black box model of the ANN is shown in Fig. 3.

MSE and MAE can be counted among the
main performance indicators used in the performance
evaluations of ANN and machine learning (ML) methods
[20], [35]. MSE gives an absolute number of how much
the predicted results differ from the actual number. Not
much insight can be interpreted from a single result,
but it gives a real number to compare with other model
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results and helps with the choice of the best regression
model. The MAE sums the absolute error value, a more
direct representation of the sum of the error terms.
It is more suitable for comparing the results of other
studies with or without normalization. In the study, both
performance evaluation results are given as a table.

For the proposed model for each mean error value
the training depends on two parameters: algorithm
type and architecture (hidden layer counts and neuron
counts). The purpose of this model is to find the result
with the best mean error simply and quickly.

IV. CASE STUDY
The study consists of three main parts. The

first stage includes the study results for the training
algorithms/architectures determined for the proposed
eMLP model. Here, the most successful training
algorithm/architecture is determined, and the second step
is to compare the performance of the proposed model
with other ANN models. As a final step, in order to reveal
that the study is applicable in real life, a design was made
with a selected model using the 3D EM simulation tool
CST program.

A. Experimental work for eMLP
In this part of the study, a multi-band helical antenna

design with 3 different design parameters based on eMLP,
and modeling in the 1.5-3.5 GHz band will be studied.
The proposed antenna has dual bands with resonance
frequencies of 2.4 GHz and 2.75 GHz. Based on the
helical antenna ANN model in Fig. 2, there are 3 input
variables that will directly affect the output parameter
S11 (dB). When frequency is added to these, there are
a total of 4 input parameters specified in Table 2. In the
study, firstly, the ranges for the design parameters are
determined. Then, the input data set is created with the
LHS method. S11 results for the selected input data set
are determined with the help of an EM simulator. By
combining all these data, half of the input/output data set
is separated as training data and the other half as test data,
and the modeling process is started using eMLP. As a
result of all these operations, the model with the minimum
average error is considered the optimal result. All this is
presented as a flowchart in Fig. 4.

The MSE and MAE values for the training and test,
which are the result of the study performed in line with
the steps given in order as the flow chart in Fig. 4, are
given numerically in Table 3. According to the results
indicated in Table 3, it is seen that the increase in the
number of hidden layers and neurons in the architecture
increases the modeling time. When we compare the
training algorithms with the same architecture in terms
of modeling time, it is seen that the fastest training
algorithm is ‘trainrp’. However, in architecture, it is
seen that increasing the number of hidden layers and
neurons does not always cause a decrease in the error
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Fig. 4. Flow chart of modeling process of LHS and eMLP
based helical antenna.

Table 3: General comparison of MAE and MSE based
eMLP models

Training
Algorithm

Architecture Train
Error
(MSE)

Test
Error
(MSE)

Train
Error

(MAE)

Test
Error

(MAE)

Time
(sec.)

trainbr

5 10 6.08 7.77 1.37 1.40 11.2
10 15 6.08 7.77 1.37 1.40 21.7
15 20 6.08 7.77 1.37 1.40 45.7

5 10 15 0.12 97.6 0.24 0.66 26.7
5 15 20 0.03 0.46 0.11 0.15 53.7

10 15 20 0.02 1.34 0.09 0.18 72.4
5 10 15 20 0.03 0.32 0.11 0.15 83.4
10 10 15 20 0.02 0.21 0.09 0.13 101.7
10 15 15 20 0.01 0.22 0.08 0.14 135.9

trainlm

5 10 0.69 1.18 0.51 0.55 9.6
10 15 0.16 0.39 0.26 0.29 21.4
15 20 0.03 0.22 0.12 0.16 41.5

5 10 15 0.14 0.70 0.25 0.31 25.0
5 10 15 20 0.02 0.44 0.09 0.16 47.2
10 10 15 20 0.02 0.37 0.10 0.18 5.0
10 15 15 20 0.01 0.84 0.08 0.16 13.9

trainrp

5 10 6.12 7.99 1.37 1.44 2.7
10 15 6.05 7.76 1.36 1.38 3.4
15 20 5.68 7.39 1.36 1.40 4.1

5 10 15 6.00 7.68 1.35 1.38 4.0
5 15 20 6.08 8.61 1.37 1.60 4.8

10 15 20 2.80 4.10 0.91 0.96 5.2

trainscg

5 10 6.07 7.77 1.37 1.40 4.6
10 15 6.06 7.77 1.37 1.41 6.0
15 20 6.00 7.71 1.36 1.42 7.6

5 10 15 6.07 7.77 1.37 1.40 7.3
10 15 20 5.99 7.75 1.35 1.38 9.8

5 10 15 20 6.08 7.78 1.37 1.40 11.2
10 10 15 20 6.07 7.79 1.38 1.42 11.9
10 15 15 20 3.02 5.15 0.97 1.16 12.9

rate. This situation varies according to the selected
training algorithm. In addition, the importance of the
eMLP model in finding the optimal architecture is
clearly seen. In the study, a maximum of 10 different
MLP architecture experiments were made for 4 different
training algorithms. Here, it is appropriate to select 10
as the maximum value, since the modeling is terminated
before reaching 10 different trials for each training
algorithm. As a result of the study, values with a lower
error were obtained as a result of modeling with the
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‘trainbr’ training algorithm. In the ‘trainbr’ training
algorithm, which has the most successful results, it is
seen that it has a 4 hidden layer MLP architecture with
‘10-10-15-20’ neurons. The results obtained as a result
of this most successful model are given graphically in
Figs. 5 (a), (b) and (c) as the variation of S11 (dB)

(a)

(b)

(c)

Fig. 5. eMLP model performance parameter of return
loss (S11) for antenna: (a) r=27 (mm), w=1.5 (mm),
t=2.6, (b) r=27 (mm), w=2 (mm), t=2.6, and (c) r=27
(mm), w=2.5 (mm), t=3.3.

with frequency as target and prediction data. As can be
seen from the graphics, a high success rate has been
achieved.

B. Performance comparison with other ANN
models

Of course, these very low error rates obtained from
the study do not directly confirm the success of the
study. In order to support the success of the proposed
model, performance comparisons were made with other
widely used ANNs. Here, modeling studies were carried
out with 3 different neural networks apart from eMLP.
Since the radial basis (RB) model does not take any
input parameters, it is used directly. In the radial basis
function (RBF) and general regression neural network
(GRNN) models, experiments were made for different
spread parameters, and the result with the lowest error
was selected. The most successful results obtained are
graphically presented as the variation of S11 (dB) with
frequency in Figs. 6 (a), (b) and (c) for 4 different ANNs.
In addition, error rates and time are given numerically
in Table 4. As can be seen from the results, the closest
results to the target line were obtained with the eMLP
model. Although GRNN is lower in time cost, this
situation can be ignored since it is in the order of
seconds.

Table 4: Performance comparison of ANN models based
on MEA/MSE

ANN Train
Error
(MSE)

Test
Error
(MSE)

Train
Error

(MAE)

Test
Error

(MAE)

Time
(sec.)

GRNN 1.16 1.77 0.67 0.70 94.2
RBE 1.80 3.85 0.79 1.00 168.7
RB 3.40 4.66 1.04 1.10 192.4

eMLP 0.02 0.21 0.09 0.13 101.7

(a)

Fig. 6. Continued
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(b)

(c)

Fig. 6. Comparison of different ANN model performance
parameter of the return loss (S11) of the antenna: (a) r=27
(mm), w=1 (mm), t=2.95, (b) r=27 (mm), w=2.5 (mm),
t=2.6, and (c) r=27 (mm), w=3 (mm), t=2.60.

C. Simulation verification with 3D design
program

One of the most successful results was selected and
modeled in the 3D EM simulation tool CST microwave
studio program. The results from the EM program show
that the gain is 11.9 dB for 2.4 GHz and 9.81 dB for 2.75
GHz. Also, the far field gain for 2.4 GHz and 2.75 GHz is
shown in Figs. 7 (a) and (b), respectively. The similarity
of the simulation results revealed that this antenna is
applicable to the real error. In addition, the antenna
simulation time takes an average of 45-50 seconds for
1 sample. If it is calculated that the modeling process
is done for 62 samples, this time is approximately 50
minutes. In the eMLP model, this process can be done
in about 102 seconds.

(a)

(b)

Fig. 7. Farfield gain of helical antenna for (a) 2.4 GHz
and (b) 2.75 GHz.
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V. CONCLUSIONS
Here, a fast, accurate and reliable solution to

the design problem, which is very costly for antenna
designers, is provided by using the proposed eMLP
model for multi-band helical antenna design. Return loss
(S11) of less than -10 dB was observed throughout the
process at approximately 2.4 and 2.75 GHz resonance
frequencies. Data reduction was made by using the
LHS method in the selection of the data set. Thus,
the total number of samples was kept to a minimum.
Successful results were obtained with the proposed
eMLP model using this data set. To confirm this success,
performance comparisons of different ANN types were
made. With this method, the very costly trial-and-error
method, used in antenna design, is obsolete. In addition,
instead of starting the design with a standard geometry,
starting with optimized value ranges from a previous
study enabled the problem to achieve clearer results. In
addition, the design created in the CST program was
used to compare the MATLAB results with another 3D
EM simulation tool which revealed that it is applicable
in real life. Therefore, as a result of the study, it
has been seen that the proposed model is both more
economical in terms of calculation and as accurate and
safe as the EM simulator in the design of the dual
band helical antenna. In addition, the proposed model
is not limited to the helical antenna, the model can
also be successfully applied to other design optimization
problems by changing the network model.
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