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Abstract ─ In this paper, we propose two 
beamforming algorithms which impose sparse 
constraint on beampattern to suppress the sidelobe 
level and enhance robustness of the beamformer 
against steering vector error. The sparse constraint 
is given by an lp-norm, where ≤ 2 holds. It is 
shown that the proposed algorithms can be solved 
using iterative algorithm. Computer simulations 
show that the proposed algorithms not only yield 
lower sidelobe level than that of the conventional 
beamformer, but also show better robustness 
against steering vector error than the conventional 
beamformers. 
  
Index Terms ─ Beamforming, robust, sidelobe, 
sparse, steering vector error. 
 

I. INTRODUCTION 
Adaptive beamforming is an important 

research topic in array signal processing. It is to 
enhance the source from the desired direction, 
while suppressing the background noise and all the 
interference from other directions. A 
representative beamformer is the minimum 
variance and distortionless response (MVDR) 
beamformer [1] which casts deep nulls in the 
directions of strong interferences and at the 
meantime guarantees the desired signal 
distortionless. One of the disadvantages of the 
MVDR beamformer is its high sidelobe level 

which results in significant performance 
degradation in case of unexpected interference or 
increase of the noise power [2]. In practice, look 
direction mismatch due to imperfect array occurs. 
In such case, the signal of interest (SOI) will be 
mistaken as interference and the performance of 
the MVDR beamformer is known to degrade 
dramatically [3]. 

There has been much effort dedicated to 
design robust beamforming algorithms against 
imperfect array [4]. To address the uncertainty of 
the steering vector and the direction-of-arrival 
(DOA) of SOI, a set of unity-gain constraints for 
neighboring directions of the nominal look 
direction can be imposed [5]. Besides, the 
derivative of the array output can be imposed to 
zero at the desired look angle, which is called the 
derivative mainbeam constraints [6-8]. Some 
regularization methods [9, 10] are also proposed to 
enhance the robustness of the MVDR beamformer 
against steering vector error [11]. Beamformers 
using eigenvalue thresholding methods to achieve 
robustness have also been discussed [12]. 

In this paper, we propose two new 
beamforming algorithms which are robust against 
look direction mismatch and steering vector error. 
Besides, the achieved beampatterns have lower 
sidelobe level compared with the MVDR 
beamformer. Sidelobe suppression is realized via 
imposing a sparse constraint on beampattern with 
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respect to potential interference directions. Due to 
imperfect knowledge of the array, the presumed 
directions of SOI maybe vary from the real ones, 
thereby causes cancelation of SOI. To solve this 
problem, mainlobe control is considered. Instead 
of maintaining distortionless response on one look 
direction, the proposed algorithm attempts to 
maintain distortionless response on a wide angular 
range so that sources impinging on the array from 
nearby directions of look direction can be retained. 
The two algorithms may be solved iteratively. The 
validity and advantages of the new algorithms are 
verified via computer simulations. 
 

II. ALGORITHM I: SIDELOBE 
SUPPRESSION WITH SPARSE 

CONSTRAINT ON BEAMPATTERN 
The mathematical formulation of the MVDR 

beamformer is given by min ,                     (1a) subject to (θ ) = 1,          (1b) 
where  is the covariance matrix of data, and w 
denotes the beamforming vector. From the 
perspective of beampattern, it is observed from 
(1b) that there is only an explicit constraint on the 
look direction, i.e. θ , while no constraint is 
imposed on the directions of interference. To 
repair this drawback, we propose the following 
optimization problem with an additional constraint 
on the sparsity of the beampattern with respect to 
potential interference directions: min /2 ,                   (2a) subject to (θ ) = 1 ,         (2b) ‖ ‖ < ,               (2c) 
where  is an ×  matrix which consists of 
steering vectors in the angular range which 
contains all the possible interference directions, L 
is the number of sensors, and N denotes the 
number of spatial samplings over the angular 
range with respect to the interference. It is noticed 
that we have imposed (2c) to the original 
formulation of the MVDR beamformer (1). 

In (2c), ‖ ‖ = (∑ | | ) /  is the lp-norm of 
the vector x. When p < 2, the lp-norm can be 
defined as "dispersion" of the super-Gaussian 
distributions. When p≤1, the lp-norm can be 
interpreted as the diversity measurement [13]. The 
smaller the value of ‖ ‖ , the sparser the x is, 
which means the number of trivial entries in x is 
larger. For beamforming, the smaller the value of 

‖ ‖ , the lower the sidelobe level, since most 
of the entries in  are forced to some trivial 
values. For our sparse constraint, we require the 
value of p to be smaller than 2. 

To derive the solution of (2), the Lagrange 
multiplier technique is used: J( ) = + λ‖ ‖ + γ( (θ ) − 1),(3) 

where λ and γ are Lagrange multipliers. 
Define = [ | ( )], = [ | ], where = / . (3) is equivalent to J( ) = + λ‖ − ∗‖ ,      (4) 

where * denotes complex conjugate. 
Calculating the gradient of J( ) with respect 

to w, we have ∇ J( ) = + λ ( )( − ∗),   (5) 
where λ = λp, and ( ) is given by ( ) =diag |( − ∗) | , … , |( − ∗) | . 

Equating (5) to zero, and using the gradient 
factorization approach [13], the update formula of 
w is given by ( + 1) =      λ + λ ( ( )) ( ( )) ∗,   (6) 
where  denotes the iteration index. 

 
III. ALGORITHM II: SIDELOBE 

SUPPRESSION WITH ROBUSTNESS 
CONSIDERATION 

Notice that the above formulation is proposed 
under the assumption that the real steering vector 
is known. When the presumed steering vector is 
used instead of the real steering vector, the above 
formulation may break down when A contains the 
real steering vector of SOI. This happens when the 
presumed look direction is erroneous. 

To amend this drawback, we generalize the 
above formulation by mainlobe control. The 
direction of SOI is assumed to be contained within 
a spatial sector instead of a particular direction. 
Let  denote the spatial sector where the 
directions of SOI is assumed to be contained. The 
extension of the optimization problem (2) is given 
as follows: min /2 ,                   (7a) subject to = 1 ,         (7b) ‖ ‖ < ,               (7c) 

where = θ , , … , θ ,  consists of 
possible steering vectors of SOI within the spatial 
sector . 
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The solution to the above optimization can be 
derived in a similar way as the derivation 
presented in Section II. Firstly, we combine the 
constraints (7b) and (7c): min /2                     (8a) subject to ‖ − ∗‖  ,         (8b) 
where = [ | ]. Next, we formulate the 
Lagrange function and equate its gradient to zero. 
Finally, the weight vector update equation is 
obtained as follows: ( + 1)= λ + λ ( )  ( ) ∗,   (9) 
where ( ) is given by ( ) = diag |( −∗) | , … , |( − ∗) | . 

It is worth mentioning that the matrix  can be 
implemented by considering only a few directions 
representing the directions of the SOI within the 
spatial sector . In fact, the number of directions 
within  can be as small as two, i.e. Ns = 2. To do 
so, the first direction θ ,  is taken at the left 
boundary while the other θ ,  is taken at the right 
boundary. It is demonstrated by computer 
simulations that the optimization problem (7), 
compared to optimization problem (2), has several 
advantages: 1) better robustness against look 
direction mismatch; 2) smaller value of N to 
generate A with respect to interference directions; 
3) better performance when the real interference 
directions are not precisely located at the sampling 
directions of A. 
 

IV. IMPLEMENTATION OF THE 
PROPOSED ALGORITHMS 

From (7) and (10), it is observed that there are 
three parameters: p, λ, and γ, impacting the 
performance of the proposed beamformers. The 
parameter p determines the sparsity of the 
beampattern. The smaller the value of p, the 
sparser the derived beampattern (or equivalently, 
the lower the sidelobe level). The parameter λ 
determines the effectiveness of the sparse 
constraint. Using a large λ emphasizes the impact 
of the sparse constraint and will result in a trivial 
solution w (w = 0 gives the smallest value of ‖ ‖  ), since the constraint on distortionless 
response in (2b) and (7b) will be neglected in this 
situation. Similarly, using a large γ emphasizes the 
impact of the distortionless response constraint 
and will attenuate the effect of the sparse 

constraint. Therefore, these parameters should be 
chosen properly in order to have good compromise 
between suppression of interferences and 
maintenance of the desired source. 

In order to appropriately choose λ, we 
compute the gradient of (3) with respect to λ, and 
equating it to zero yields ‖ − ∗‖ = 0.               (10) 
Left multiplying (5) with  yields  + λ ( )( − ∗) = 0.   (11)    
With the definition of  and , we may 
equivalently express (10) as ‖ ‖ + α | (θ ) − 1| = 0.    (12) 
Also, (11) is equivalent to   + ‖ ‖ + α (θ ) | (θ ) − 1| ( (θ ) − 1) = 0, (13) 
which can be written as  + ‖ ‖ + α | (θ ) − 1| + α | (θ ) − 1| ( (θ ) − 1) = 0.  (14) 
With (12), (14) can be simplified as 

  + α | (θ ) − 1|  ( (θ ) − 1) = 0.           (15) 
Solving (15) gives the solution of  λ as λ = γ  | (θ ) − 1| ( (θ ) − 1) . 

(16) 
When implementing the algorithm, we may 

alternatively update ( ) and λ( ) or γ( ) using 
(6) and (16), respectively. For the second 
algorithm, the relationship between λ and γ is the 
same as (16) by replacing  with , and setting the 
denominator as ‖ − ‖ . 

Because we have deduced the relationship 
between λ and γ, we may properly determine one 
of them and compute the other one using (16). 
Based on the existing literature, when p is fixed, 
some principles of choosing a proper λ, such as the 
L-curve [13], have been introduced. Therefore, 
when implementing the algorithm, we may firstly 
choose a proper value of p. Then, we use existing 
principles to determine λ. When λ is derived, we 
use (16) to compute γ. It should be emphasized 
that how to precisely choose λ is still an open 
issue. Current algorithms do not guarantee the 
optimal results. Fortunately, from our computer 
simulations, we see that the proposed algorithms 
are not sensitive to the choice of λ and γ. 
Therefore, they can be chosen empirically. When 
doing so, we should keep in mind that if a large λ 
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or a small p is used, the value of γ should not be 
too small so that a trivial w can be avoided. 

We summarize the proposed algorithms in 
Table 1.  

 
Table 1: Summary of the proposed algorithms 

Step 1: Parameter setting: 
1) Set up p, λ and γ (λ and γ can be chosen 
empirically); 
2) Generate  according to the presumed look 
direction and sidelobe sector; 
Step 2: Initialize: i=0, w(0); 
Step 3: Iterations: 
1) Compute (i) ; 
2) Update (i) using (6) or (9); 
3) If  is not chosen empirically, using the L-curve principle to determine ; 4) Compute γ using (16); 5) i=i+1; 
Step 4: Terminate the algorithm if the stopping 
criterion is satisfied, otherwise go to Step 3. 

 
The stopping criterion can be chosen as i>Niter, 

where Niter is a preset number. The other usually 
adopted stopping rule is to evaluate the value of ‖ ( + 1) − ( )‖ /‖ ( )‖ . If it is smaller 
than a preset threshold, terminate the algorithm. 
 

V. COMPUTER SIMULATIONS 
In this section, computer simulations are 

conducted to verify validity and advantages of the 
proposed algorithms. In all the simulations, the 
beampattern is computed by 20 log | ( )| 
for ∈ [−90 , 90 ]. 

 
A. Implementation of algorithm I to array 
synthesis 

It is observed that the proposed algorithms can 
also be applied to the array synthesis algorithm 
[14] with R=I in (2). The sparse constraint (2c) 
plays a role to suppress the assigned sidelobe 
sector. To verify this, we conduct the following 
simulations. A uniform linear array (ULA) with 32 
half-wavelength spaced sensors is assumed. 

Firstly, we assume sidelobe suppression sector 
as[−90 , −1 ] ∪ [1 , 90 ]. The array beampattern 
obtained using the proposed algorithm is shown in 
Fig. 1. 

One can see from Fig. 1 that the proposed 
algorithm reduces the sidelobe level several 

decibels from the original beampattern. Also, it is 
noticed that the smaller the value of p, the greater 
the sidelobe suppression. This coincides with our 
previous analysis that p controls the sparsity of the 
beampattern. 

 
Fig. 1. Array beampatterns for a 32-sensor ULA 
with sidelobe suppression sector [−90 , −1 ] ∪[1 , 90 ]. 

 
Fig. 2. Array beampatterns for a 32-sensor ULA 
with sidelobe suppression sector [−90 , −5 ] ∪[5 , 90 ]. 
 

In certain applications, one may like to 
maintain the mainlobe of the array response at a 
certain width to ensure that the signal coming from 
the desired look direction will be received by the 
array with sufficient array gain. In Fig. 2, the 
proposed algorithm is used in the design of array 
pattern under this situation. The sidelobe 
suppression sector is chosen to be [−90 , −5 ] ∪[5 , 90 ]. 
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It is seen that compared with the original 
beampattern, the beamwidth is increased slightly, 
while the sidelobe level is improved by the order 
of tens of decibels. The sidelobes beside the 
mainlobe is significantly improved by more than 5 
dB. 

 
B. Evaluation of algorithm I on narrowband 
beamforming 

In this section, a ULA with eight half-
wavelength inter-element spaced sensors is used. 
The DOA of the desired signal is supposed to be 
0o, and the DOAs of three interferences are set to -
-30o, 30o and 70o. The signal-to-noise ratio (SNR) 
is set to 10 dB, and the signal-to-interference ratio 
(SIR) is -20 dB. 100 snapshots are used to 
compute the covariance matrix R. The 
regularization parameter  is set to 0.2 in all the 
simulations. The matrix A consists of array 
steering vectors in the angular range from [−90 , −1 ] ∪ [1 , 90 ] with 1o sampling 
interval. In this case, all the potential interferences 
are contained in A and the sidelobe level of the 
whole angular range is under control. 

In the first simulation, we assume mismatch 
does not occur. The proposed method is compared 
with the MVDR beamformer. With different p and 
α, the derived beampatterns are shown in Fig. 3. 

 
Fig. 3. Array beampatterns for SNR=10 dB in the 
no mismatch case  (Algorithm I). 
 

It is observed that all of the beamformers cast 
deep nulls in directions of interference and 
generate distortionless response at the look 
direction. However, the sidelobe level of the 
MVDR beamformer is much higher than that of 
the proposed algorithm. For the proposed 

beamformer, the sidelobe level decreases as p 
decreases. This is because the smaller the p, the 
smaller the values of the beampattern are. This 
simulation result coincides with our previous 
analysis.  

Figure 4 shows the plots of output SINR 
versus SNR with 1000 independent trials. The 
output signal to interference plus noise ratio 
(SINR) is calculated via 

= ( ) ( )∑ + , 
 (17) 

where J denotes the number of interferences. 
 

 
Fig. 4. Plots of output SINR versus SNR in the no 
mismatch case  (Algorithm I). 
 

It is noted that the proposed beamformer can 
achieve an output SINR approximately 6 dB larger 
than that of MVDR beamformer for all of the SNRs. 
For different p and α, the proposed algorithm 
shows similar performance results. 

In the second simulation, we assume there is a 
3o mismatch in the look direction. The desired 
signal impinges the array from broadside, while 
the look direction of the beamformer is assumed to 
be 3o. Figure 5 shows the obtained beampatterns of 
different algorithms. 

It is observed from Fig. 5 that the MVDR 
beamformer introduced a deep null at 0o, which 
means the desired source is suppressed due to 
imprecise knowledge of the look direction. In 
contrast, the proposed beamformer only slightly 
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shifts its maximum point of the beampattern, and 
is still capable of generating a distortionless 
response at the direction of SOI. At interference 
directions, all the algorithms are able to cast deep 
nulls. 

Figure 6 plots the output SINR versus SNR 
with 1000 independent trials. From the figure, we 
see that the performance of MVDR beamformer 
and the proposed one differ a lot. It is observed 
that the proposed algorithm gives an output SINR 
about 10 dB, while the MVDR beamformer fails 
to work in all the cases. Similar to Figure 4, for 
different p and α, the proposed algorithm has very 
similar performance. 

 
Fig. 5. Array beampatterns for SNR=10 dB with 3o 
mismatch  (Algorithm I). 

 
Fig. 6. Plots of output SINR versus SNR with 3o 
mismatch (Algorithm I). 

 
 
 

C. Evaluation of algorithm II on narrowband 
beamforming 

In this section, we evaluate the performance of 
the proposed Algorithm II when directions of 
interferences and the SOI are not precisely known. 
An ULA with ten half-wavelength inter-element 
spaced sensors is used. The actual source DOA is 
supposed to be 0o, and the DOAs of four 
interference signals are set to -30o, -10o, 20o and 
45o. The SIR is assumed to be -20 dB, and the 
SNR is assumed to be 10 dB. The matrix A 
consists of array steering vectors in the DOA 
range [−90 , −4 ) ∪ (4 , 90 ]with 10o sampling 
interval, while the matrix As consists of only two 
array steering vectors that is defined at -3o and 3o.  

 
Fig. 7. Array beampatterns for SNR=10 dB with 3o 
mismatch (Algorithm II). 

 
Fig. 8. Plots of output SINR versus SNR with 3o 
mismatch (Algorithm II). 
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Note that unlike the simulation settings in the 
previous section, we greatly relax our 
interferences constraints by using a 10o sampling 
interval. Also, the interference from 45o is not 
located on the spatial sampling grid. 

In the first simulation, we assume a 3o look 
mismatch, i.e., the SOI impinges the array from 
broadside direction, while we assume it comes 
from 3o. Figure 7 shows the derived beampatterns 
using different algorithms. 

It is observed from Fig. 7 that the MVDR 
castsa deep null at 0o, while the proposed 
algorithm still performs satisfactorily in this case. 
For interference directions, the algorithm casts 
deep nulls. 

Figure 8 plots the output SINR versus SNR for 
1000 independent trials. We see that the proposed 
algorithm outperforms the MVDR beamformer. 
The MVDR beamformer almost fails to work in all 
the cases. The proposed algorithms with different 
values of p again achieve similar performance to 
each other. 

 
Fig. 9. Array beampatterns for SNR=10 dB 

with 3o mismatch and sensor position error 
(Algorithm II).  

 
In the second simulation, besides the look 

direction mismatch, we further assume sensor 
position error which is a Gaussian variable with 
zero mean and standard deviation 0.1 times the 
sensor spacing appears in the steering vector. 
Figure 9 depicts the obtained beampatterns using 
different algorithms. Figure 10 shows the output 
SINR versus SNR for 1000 independent trials. 

From Fig. 9, we see that the proposed 
algorithm is capable of maintaining distortionless 

response at the direction of the SOI, while the 
MVDR beamformer suppresses the SOI about 25 
dB in order to yield a distortionless response at the 
look direction. Figure 10 clearly demonstrates that 
the proposed algorithm is robust against look 
direction error and sensor position error, while the 
MVDR beamformer is very sensitive to these 
errors. 
 

 
Fig. 10. Plots of output SINR versus SNR with 3o 
mismatch and sensor position error (Algorithm II). 

 
 

VI. CONCLUSIONS 
In this paper, we propose two beamforming 

algorithms which use sparse constraint to suppress  
a sidelobe level of beampattern. Taking imperfect 
array into account, we also add robust constraint 
on the new beamformers. All these algorithms are 
easy to implement. Computer simulations 
demonstrate that these algorithms work 
satisfactorily in the presence of steering vector 
error. Furthermore, the proposed algorithms are 
not very sensitive to the values of parameters used 
in the algorithms. 
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