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Abstract ─ In this paper, an efficient approach for 
calculating the far field pattern of one-dimensional 
(1-D) and two-dimensional (2-D) finite patch 
arrays is proposed. Based on the active element 
factor (AEF) defined specifically for scattering 
problems, this proposed method takes into account 
the effects of mutual couplings and array edges. 
From the induced current distribution on an array 
with odd or even elements, the array is divided 
into different parts and neglects the weak mutual 
coupling affected by far elements for each part. 
Thus, the element-varying AEF method changes a 
large array problem into a superposition of various 
simplified subarray problems. Three examples 
verify the accuracy and efficiency of the proposed 
method. Furthermore, the results show that the 
proposed method with the element-varying AEF 
technique has the ability to solve the scattering 
problems of rather large arrays whereas other 
methods become incapable due to computer 
hardware limitations. 
  
Index Terms ─ Active element factor, far field 
pattern, mutual coupling, subarray.   
 

I. INTRODUCTION 
      Numerical methods, such as the method of 
moments (MoM) [1], finite element method 
(FEM) [2], finite-difference time-domain (FDTD) 
method [3], multilevel fast multipole algorithm 
(MLFMA) [4], characteristic basis function 
method (CBFM) [5], and hybrid methods [6] are 
employed to calculate the electromagnetic 
scattering. Direct numerical simulations for a 
small array mounted on an arbitrary platform 
result in an accurate and effective solution. For an 
infinite periodic array, only an element is required 
to be extracted for calculation with the Floquet’s 

theorem or periodic Green function [7-8]. The 
numerical methods, however, become inefficient 
or even infeasible for rather large finite arrays 
when considering the mutual coupling effects in 
the whole array environment because of the 
computer hardware limitations. In this case, 
approximate methods are needed to reduce the 
large memory and time requirement for the array 
calculation and analysis.  

Over the past years, an active element pattern 
(AEP) technique was used for prediction of the 
performance of large array antennas [9-11]. With 
the pattern taken with a feed at a single element in 
the array and all other elements terminated in 
matched loads, the AEP technique considers 
mutual coupling effects between array elements 
and expresses the radiated pattern effectively and 
efficiently. From the AEP theorem, the active 
element factor (AEF) defined as the current 
distribution induced on a particular aperture is 
intended for scattering problems [12-13]. In [13], 
an average AEF with the reduced window array 
(RWA) approximation is introduced to analyze the 
scattering characteristics of finite arrays in an 
infinite ground plane. 

In this paper, the scattering performance of 
finite patch arrays in a finite ground plane is 
studied with an element-varying AEF method. 
Due to the finite grounds in this study, the induced 
current distribution on an array with odd elements 
is quite different from that with even elements. 
Based on the element-varying AEF method, this 
paper presents how an array is divided into various 
subarrays according to the induced current 
distribution. The whole array elements are divided 
into edge elements, interior elements, and adjacent 
edge elements. The AEFs of edge elements can be 
approximated by a small subarray when neglecting 
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the weak mutual coupling affected by far 
elements. The similar subarrays are also applied to 
AEFs of interior elements and adjacent edge 
elements. Thus, the far field pattern of a rather 
large finite array can be calculated by a 
superposition of these three types of the element-
varying AEF from a subarray. After the current 
distribution of a small array is quickly gotten with 
the commercial software FEKO [14], the varied 
AEFs of each element in a subarray can easily be 
obtained to calculate the far field scattering pattern 
of a rather large array. The element-varying AEF 
method can greatly reduce the computing time and 
simplify the operational procedure. The one-
dimensional (1-D) and two-dimensional (2-D) 
examples show that the results are actually quite 
good over a broad angular range and only 
deteriorate for angles that approach grazing. 
 

II. THEORIES 
 
A. Far electric field pattern of a finite array 

The far electric field scattered by an array can 
be expressed as 
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where nE  is the far electric field scattered by the 
nth element aperture with an entire array 
illuminated by an incident wave source. Induced 
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the incident wave and contain all the effects of the 
mutual coupling and the array environment. Using 
the equivalence principle, nE  can be written as 

'

( , )
4

1
4 j

1
4

jk

n s

jk

s

jk

s

j e ds

e ds

e ds

ωµ
π

π ωε

π

′− −

′− −

′− −

′= −
′−

′+ ∇ ∇ ⋅
′−

′− ∇×
′−

∫

∫

∫

r r

r r

r r

E J M J
r r

J
r r

M
r r

,      (2)                        

where r  and ′r  are the position vectors of the 
observation and source points with respect to a 
global coordinate, the electric current J  consists 
of cJ  and dJ  which are the equivalent surface 
electric currents induced on the conducting and 
dielectric surfaces of the nth element aperture, and 
the magnetic current M  is the equivalent surface 
magnetic current induced on the dielectric surface 
of the nth element aperture.  

In this study, cJ , dJ  and M  can be gotten with 
the commercial software FEKO, which is a 
powerful and convenient tool. The current 
information is stored in *.os file and mesh 
information in *.stl file after the MoM-based 
simulation of FEKO. Thus, nE  can be easily 
calculated by applying the corresponding current 
and mesh data to equation (2). 

 
B. Element-varying AEF method  

Figure 1 plots a 1-D homogeneous finite 
periodic array illuminated by a plane wave source. 
Currents are induced on the structure. Besides the 
mutual couple effects, there are edge effects 
introduced by the bounded nature of the finite 
array [15-16]. Since the currents induced on each 
element are varied, all nE  are needed to be 
calculated from (2) to complete the superposition 
of all elements’ scattering patterns in (1).  

......

Edge Adjacent edge Interior  
Fig. 1. 1-D finite periodic array and its elements. 
 

Considering the element-varying AEF scheme, 
a fast approximation is proposed to obtain the 
accurate scattering performance in this paper. 
Once knowing the currents induced on a small 
array with the numerical simulation, the far field 
pattern of a rather large finite array can be easily 
calculated.  

Generally, all elements of an array are divided 
into edge elements, interior elements, and adjacent 
edge elements, as shown in Figure 1. Equation (1) 
can therefore be rewritten as [16] 
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where EE , IE  and AEE  are the superposition of 
AEP of all edge elements, all interior elements and 
all adjacent edge elements, respectively. eN , iN  

( ) ( ) ( )total E I AE, , ,θ ϕ θ ϕ θ ϕ= + +E E E E
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and aN  are the numbers of all edge elements, all 
interior elements and all adjacent edge elements, 
respectively. ( )e ,θ ϕE , ( )i ,θ ϕE  and ( )a ,θ ϕE  are 
obtained from the local subarrays, respectively. 

ejke
∧

•r r  is the spatial phase factor, where 
∧

r  is the unit 
radius vector from the origin to the observation, and 

nr  (n=e, i, a) is a position vector from the origin to 
the center of the nth element. 
 
C. Arrays with odd and even elements 

In the light of boundary condition and 
symmetry influence, the induced current 
distribution on an array with odd elements is quite 
different from that with even elements. In order to 
calculate AEFs of a rather large array from those 
of a small array accurately, it is required to 
calculate the two cases of odd elements and even 
elements, separately.    

 

      

y
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(a) 1-D 5-element array 

 

  
(b) 1-D 6-element array 

Fig. 2. Current density on odd-element and even-
element arrays. (Arrows denote current densities.) 
 
       For example, Fig. 2 shows the induced current 
density on two finite patch arrays with five (odd) 
elements and six (even) elements from the FEKO 
simulation. The elements of the 1-D patch array are 
uniformly placed along the y-axis. And the two 
arrays are respectively illuminated by a vertical 
incident plane wave with y polarization. For the two 
cases, the symmetrical structure and the vertical 
plane wave source result in a symmetrical induced 
current distribution. However, the symmetry line 
along the y-direction of the odd-element array 
passes through one patch, but it is between two 
patches for the even-element array. The two 
different boundary conditions lead to the separate 
analysis of the odd-element array and even-element 
array. From Fig. 2, it can be seen that the current 
density on the array with odd elements is quite 
different from that with even elements. 
 

III. EXAMPLES AND DISCUSSIONS 
 
A. Far field calculation for 1-D arrays 

In this section, various results are obtained by 
using the formulation presented in Section Ⅱ. A 
10-element period structure illuminated by a plane 
wave with 0 0θ =  and 0 =90ϕ  is shown in Fig. 3. 
Each patch dimension is chosen to be w × l 
(w=55.5mm, l=60.6mm). The thickness of the 
substrate h=0.762mm and relative permittivity is 
chosen as rε =1.0 for simplicity. Each element is 
uniformly spaced from its neighbors by a distance 
of d=0.51 0λ  in the y-direction. The central 
operating frequency is 1.42GHz.  

 

 
(a) Side view 

 

 
(b) Top view 

Fig. 3. A 1-D 10-element array.   
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Fig. 4. Patterns calculated with isolated element 
and AEFs.  
 

Figure 4 shows the isolated element pattern 
and varied AEFs involving all elements. It is clear 
that the isolated element pattern is different from 
the pattern of the AEFs because of the mutual-
coupling effects. 

The following is to determine the number of 
elements in a subarray involved to calculate AEFs 
of edge elements, adjacent edge elements and 
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interior elements. Firstly, the far field pattern of 
left edge element is investigated. Figure 5 shows 
the far field pattern in the E-plane of left edge 
element in the subarray. The left edge pattern of 
the 4-element subarray is almost coinciding with 
that of the 6-element subarray. Therefore, the left 
edge element pattern can be determined by a 4-
element subarray. Secondly, the far field pattern of 
the left adjacent element can be determined by a 6-
element subarray from Fig. 6. Thirdly, the far field 
pattern of the odd interior element can be obtained 
by a 6-element subarray from Fig. 7. The elements 
on the right side can be treated in a similar way. 

Therefore, only a 6-element subarray is 
involved to obtain all three kinds of AEF for the 
even-element arrays no matter how large the total 
element number is.  
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Fig. 5. AEFs of the left edge element by using 
different subarrays. 
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 Fig. 6. AEFs of the left adjacent element by using 
different subarrays. 
 

Based on the 6-element subarray, Fig. 8 plots 
the far field patterns of a 1-D 10-element patch 
array using the element-varying AEF method and 

the whole-array simulation with FEKO, 
respectively.  
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Fig. 7. AEFs of the odd interior element by using 
different subarrays. 
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Fig. 8. Far-field pattern for the 1-D 10-element 
array.  

 
The same analysis applies to an array with odd 

elements. Only a 5-element subarray is required to 
calculate the far field scattering of rather large 
odd-element arrays. Figure 9 plots the far field 
patterns of a 1-D 51-element patch array. The 
results show that the pattern with the element-
varying AEFs method closely matches that with 
the whole-array simulation. 

Table 1 presents the computing time 
comparison between the proposed method and the 
whole-array simulation with FEKO for the studied 
arrays. The proposed method shows a significant 
improvement in computational efficiency. All 
calculations are performed with an Intel Pentium 
Dual-Core 2.93GHz computer having 2.0GB of 
RAM.  
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Fig. 9. Far-field pattern for the 1-D 51-element 
array by FEKO’s simulation and the element-
varying AEFs method. 
 
Table 1: A comparison of the computing time 
between our method and the 1-D whole-array 
simulation with FEKO  

10-element array Our 
method FEKO 

Subarray simulation (s) 1.78 —— 
AEP superposition (s) 0.07×10-2 —— 
Total time (s) 1.78 4.45 

51-element array Our 
method FEKO 

Subarray simulation (s) 1.22 —— 
AEP superposition (s) 0.01 —— 
Total time (s) 1.23 153.75 

 
C. Far field calculation of 2-D finite array 

The geometry of a 2-D 5× 5 array illuminated 
by a plane wave with 0 0θ =  and 0 =90ϕ  is shown 
in Figure 10. The materials and patch sizes are the 
same as the 1-D cases. Similar to a 1-D array, the 
array elements can be divided into corner 
elements, edge elements and interior elements. 
The analysis procedure is the same as that for a 1-
D array. Thus, only a 5 × 5-element subarray is 
required to calculate a 2-D rather large odd-
element array. Figure 11 illustrates the far field 
patterns for a 2-D 11× 11-element array using the 
element-varying AEF method and the whole-array 
simulation with FEKO. 

 
Table 2 shows that the proposed method for 

the 2-D 11 × 11-element array gets a significant 
improvement in computational efficiency 
compared to the whole-array simulation.  

Corner Edge Interior  
Fig. 10. Geometry of a 2-D 5× 5-element array 
and its elements. 
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Fig. 11. Far-field pattern for an 11 × 11-element 
array.  
 
Table 2: A comparison of the computing time 
between our method and the whole-array 
simulation with FEKO  
 Our 

method FEKO 

Subarray simulation (s) 39.14 —— 
AEP superposition (s) 0.15 —— 
Total time (s) 39.29 10254.05 

 
VI. CONCLUSION 

In this paper, we introduce a convenient and 
efficient method for calculating the far field 
pattern of finite periodic arrays. The element-
varying AEF method, considering the effects of 
mutual coupling and edge surroundings, involves 
the edge, adjacent and interior element factor 
patterns. Thus, it merely needs to simulate a small 
subarray to obtain the scattering pattern of rather 
large arrays. The numerical examples show that 
the proposed method is valid and efficient for 
calculating the far field scattering pattern.  
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