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Abstract � A microwave tomography imaging 
system, which uses a hybrid binary-real genetic 
algorithm (GA) is described in this work. This 
method utilizes global optimization for solving the 
inverse scattering problem based on hybrid version 
of GA, which is the combination of both real and 
binary-coded GA. This method is principally 
aimed at breast imaging for the detection of 
malignant tumors. The proposed technique is 
based on a time-domain inverse solver, which uses 
the multi-illumination technique and includes the 
dispersive and heterogeneous characteristic of the 
breast tissues. In this algorithm, real-coded GA 
acts as a regularizer for binary-coded GA and 
rejects the non-true solutions. The proposed 
technique is validated using a numerical breast 
phantom created based on magnetic resonance 
imaging (MRI) of actual patients. The results are 
compared with non-hybrid binary and real GAs 
and the superior efficiency of the proposed method 
over the methods that solely employ real or binary 
GA is illustrated. 

Index Terms - Breast cancer imaging, 
heterogeneous and dispersive breast tissue, hybrid 
binary-real GA optimization, inverse scattering 
problem, and microwave tomography. 

 
I. INTRODUCTION

Traditional inverse scattering methods usually 
remove the ill-posed solutions by assuming a 
smooth profile [1]. This often causes the removal 
of the correct solution because in many 
applications, such as breast imaging, the dielectric 
profile being imaged is not smooth. In this paper, a 
new approach for treating the ill-posedness is 
proposed that uses a-priori information for 
regularization. It involves incorporating realistic 
assumptions about the breast, based on the 
measurements of breast dielectric properties. The 
authors developed the numerical simulation 
method based on the frequency dependence finite-
difference time-domain ((FD)2TD) and binary-
coded genetic algorithm for detecting breast 
cancer [2]. The contribution of this paper is to 
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demonstrate the ability of microwave tomography 
(MWT) technique, based on numerical methods 
for solving partial differential equations (PDEs) 
such as (FD)2TD and global optimization methods 
such as real and binary coded genetic algorithm 
(GA). To the best of our knowledge, this is the 
first attempt in using the combination of (FD)2TD 
and hybrid GA to reconstruct the location, shape, 
and dielectric properties of heterogeneous and 
dispersive media.  

The previous technique presented in [2] uses 
(FD)2TD and binary GA for reconstructing the 
image and it works for simple structures of tissue 
composition. The RGA in the hybrid GA 
technique presented in [3] was based on 
optimizing two variables (permittivity and 
conductivity values) for each cell within the search 
space, while in the current paper the RGA is based 
on optimizing only one parameter (water content). 
In this paper the proposed technique is extended to 
objects with large distribution of dielectric 
properties, which includes the water dependency 
of dielectric properties of breast tissues using 
(FD)2TD/hybrid-GA. Furthermore, the examples 
in previous paper were only hypothetical cases, 
while in this paper the proposed technique is 
evaluated using model driven from magnetic 
resonance imaging (MRI) data. In [4] the authors 
evaluated the real and binary GA with respect to 
the speed of convergence for limited number of 
generations for microwave imaging. The study of 
noise effects on (FD)2TD/GA algorithm for 
solving the inverse scattering problem for 
heterogeneous and dispersive object is presented 
in [5].  

The paper is organized as follows: in section 
II, we provide the notation and methodology. In 
section III, we cast the MWT problem as an 
optimization problem, where in an appropriate 
cost-function is to be minimized. Within this 
framework, we explain the use of hybrid GA as an 
optimization method in details. Section IV shows 
inversion results from synthetic data, followed by 
conclusion in section V. 

 
II. METHODOLOGY 

The problem's geometry is depicted in Fig. 1 
where � is the imaging domain (or search space 
domain), which is occupied by single or multiple 
scatterers and V is the problem domain where the 
scattered field is collected. The Object of Interest 

(OI) is surrounded by measurement probes that 
areable to acquire samples of the scattered field 
outside the imaging domain at the observation 
points. 

 

 
 
Fig. 1.Geometry of the MWT. 
 

The region � is illuminated by a set of 
transverse magnetic (TM) fields (incident fields), 

denoted by inc
iE , i=1,2,3,...,N (N is the maximum 

number of illumination angles). The scattered field 
is measured around the object. The value of the 
scattered field is denoted by )(rE scat

ij , j=1,2,...,M, 

and i=1,2,3,...,N where the index j denotes the jth 
measurement point (observation point), located at 
different angles around the object. Since there are 
M measurement points and N incident angles, the 
scattered field can be stored in a matrix of size 
N×M. In this paper, we consider the OI to be 
infinitely long in the z-direction (this creates a 2D 
problem). This approximation is made for 
efficiency in terms of runtime and memory. In 
fact, the behavior of the electric field within a 2D 
environment can be repeatedly evaluated very 
quickly, while this evaluation is much slower for 
3D problems. This allows the iterative imaging 
algorithm to converge to a solution in a reasonable 
amount of time. In the framework of 2D inversion 
algorithms, we consider the TM polarization for 
illumination. In particular, we consider TM to z 
(TMz). This polarization is often used for 2D 
MWT [6, 7]. It should be noted that there is recent 
evidence that TE (transverse electric) polarization 
might provide better imaging results [8], however 
to the best of the author’s knowledge, there is 
currently no TE MWT system capable of 
collecting all three components of the field. 
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III. MWT METHOD USING (FD)2TD
AND GA 

MWT is based on solving an inverse scattering 
problem. The most common way to solve the 
inverse scattering problems is to formulate it as a 
minimization problem. The cost-function is 
evaluated using the difference between the 
measured and predicted scattered fields for a 
particular choice of the material parameters 
(equation (1)). We propose to calculate the 
simulated scattered field at the observation points 
using ((FD)2TD). This method has been selected 
due to the fact that the dispersive characteristic of 
material can be easily taken into account [9-12]. 
The GA is chosen for global optimization methods 
for optimizing the cost-function. The reason stems 
from the fact that the GA is able to deal with 
discrete cost-functions with multiple minima and it 
is possible to parallelize it so it reduces the 
computational time barrier in using global 
optimization. Equation (1) shows the proposed 
cost-function, 
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where .
,,

meas
ifmE is the measured scattered electric 

fields, .
,,

simu
ifmE  is the simulated scattered fields 

corresponding to the estimated dielectric 
properties of the imaging domain obtained by 
performing a forward simulation, M is the total 
number of observation points, and N is the total 
number of transmitters. In equation (1), f refers to 
different frequencies within f1 to f2 sampling 
frequency band. Increasing the number of 
observation points increases the possibility of 
convergence; however, there is a practical limit on 
the number of observation points. This is due to 
the limited space and mutual coupling between 
antennas. To mitigate the ill-posedness of the 
problem, a multi-illumination system is adopted to 
collect sufficient amount of data. This approach is 
based on the use of illuminating electromagnetic 
source at multiple angles around the observation 
domain where the scattered electromagnetic field 
is measured. Mainly, by illuminating the OI with a 
source at multiple angles, different values of the 
scattered field are measured. 

 
 

A. Hybrid genetic algorithm 
In inverse problem we propose to find the 

solution by minimizing the cost-function by using 
hybrid GA. Hybrid GA combines two different 
GAs: binary-coded GA (BGA) and real-coded GA 
(RGA). The BGA and RGA will be discussed 
separately in the following sections and then we 
will introduce the hybrid GA, which is the 
combination of BGA and RGA. 

 
1) Binary-coded GA (BGA):  
In BGA optimization, the region is discretized 

into a number of cells (n). One gene is the type of 
the specific material and it is distinguished by the 
Debye parameters. We designed a BGA that 
considers only limited material types taken from a 
look-up table, instead of randomly selecting the 
dielectric properties. The look-up table is created 
based on a-priori information and can be modified 
for different applications. Since the optimization 
variables are discrete with integer values, a coding 
procedure is needed. Each tissue type is 
represented by a string of q bits, where q=log2(L) 
and L is the total number of different tissue types. 
For example, if we assume four tissue types (fatty, 
transitional, fibro-glandular, and malignant 
tumour) then L=4 and q=2. After the 
discretization of the investigation domain (Fig. 2), 
the number of cells (n) multiplied by the number 
of bits (q) (that is assigned to each material) will 
be the size of one chromosome (q×n). Therefore, 
if the OI is divided into n cells and in the look-up 
table for each material, two bits are assigned, then 
the size of the chromosome will be 2n bits. The 
number of unknowns for optimization depends on 
the number of cells in the investigation domain. 
Generally, in BGA, as the number of parameters 
increases, the convergence rate decreases and the 
memory requirement increases. 
 

2)  Real-coded GA (RGA) 
In RGA optimization, the chromosome is a 

floating point number. In the proposed RGA the 
enclosed imaging domain is discretized into the 
same number of cells as BGA. Each cell 
corresponds to a tissue type. Tissue types are 
differentiated based on their dielectric properties 
using Debye model [13, 14] (see Table I). 
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Fig. 2. Discretized the imaging domain for MWT. 
 

Therefore each cell has a set of Debye parameter 
(Djj=1,2,..n). j is the index to the cell location 
(Fig. 2). In conventional RGA, each element is 
initialized with parameters within the desired 
range. Depending on the application, the boundary 
of the permittivity and conductivity is determined. 
Each gene is a random number picked from a 
uniform distribution: (�1<�j<�2) and (�1<�j<�2), 
where �1 and �2 are the minimum and maximum 
possible values of the relative permittivity and �1 
and �2 are minimum and maximum values for 
conductivity. It should be noted that this maximum 
and minimum number can be defined at a single-
frequency, which will not work for a dispersive 
object. Each gene represents a variable of the 
problem without any coding or decoding 
procedure. An array of genes that shows the 
dielectric properties distribution for an entire 
imaging domain makes a chromosome. Therefore, 
for n cells each chromosome has n floating point 
numbers. Increasing n means that the resolution of 
imaging domain, and therefore, the search space is 
increased. 
 

3)  Hybrid GA (HGA):  
The RGA-based procedure is very slow to 

converge, and the BGA-based procedure is not 
able to “fine-tune” the optimum solution. Each of 
them has some advantages and disadvantages. In 
fact, the RGA alone might be able to converge to 
the solution, but it is a laborious and time 
consuming process. On the contrary, the proposed 
BGA requires a limited number of possible 
dielectric properties that may not be realistic in 
some applications. To overcome these problems, a 

hybrid method (HGA) combining the BGA and 
RGA is introduced. 

Figure 3 shows the block diagram of our 
proposed HGA optimization method. Since the 
inverse scattering is an ill-posed problem, the 
solution is non-unique. Therefore, to reduce the 
search space and regularize the problem, we 
combined BGA and RGA. First, we start with a 
BGA procedure until a given stop condition is 
reached, and then the best candidate solutions 
found by BGA are chosen as an initial estimate in 
the first generation of RGA. One of the most 
critical points for accuracy in image reconstruction 
is the ability to accurately measure the field at the 
observation points. Moreover, measurement is 
always under the influence of external 
electromagnetic artifacts, which might change the 
measured scattered field. As well, due to the 
instability of the inverse problem, the image 
accuracy might decrease and non-real solution 
might be resulted by the reconstruction methods. 
However, the fine-tune capability of RGA in 
hybrid BGA/RGA improves the image accuracy in 
the presence of noise in the measurements. We 
recommend the HGA inverse solver for those 
applications that deal with complex and large 
distribution of dielectric properties. 

 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
Fig. 3. Block diagram of HGA optimization 
method. 
 

IV. INVERSION RESULTS 
While the ultimate test of any inversion 

algorithm must involve experimentally collected 
scattered fields, for validation purpose it is very 
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useful to have a synthetic data set where the true 
image is known. We have created synthetic 
scattered data from a breast model that include a 
tumour. This application has been chosen due to 
the heterogeneous structure and dispersive 
characteristics of the breast. However, the 
proposed technique can be applied to many other 
applications. In the MWT imaging technique for 
breast cancer detection, the patient lies in prone 
position and the transmitter and receiver antennas 
are located on a circle around the uncompressed 
breast (Fig. 4). One antenna transmits a short, low-
power microwave pulse and the receiver antennas 
collect the scattered field around the breast. The 
scattered signals are then processed to create a 
two-dimensional image. While a realistic model of 
the numerical breast phantom should be three-
dimensional, two-dimensional models are quite 
prevalent mainly due to their simplicity [6, 7]. 
Also, a three-dimension image can be generated 
using a set of two-dimension images.  

 

 
 

Fig. 4.Clinical imaging system configuration for 
MWT. 

 
For simulations in this paper, the following 

parameters have been used. The mesh used for 
(FD)2TD simulations consists of 600 × 600 pixels 
chosen based on the size of the breast. The cell 
size (for inversion) is � = 0.5 mm, which is �/10 
(where � is the effective wavelength in the breast 
tissues at f=10GHz), and the time step is �t=0.8ps. 
Increasing the resolution for the inversion will 
increase the size of the search space, and 
consequently, the computational cost. We utilized 
multiple-frequencies in our techniques for the 
frequency band between 3 GHz�10GHz, in 1 GHz 
steps. To enhance the accuracy of the image and 
reduce the ill-posedness of the problem, four 
different incident angles (0o, 90o, 180o, and 270o) 

have been used (the plane wave rotates 90o for 
each measurement). With respect to the number of 
the receivers, increasing the number of receivers 
provides more information about the object at 
almost no computational cost. In these simulations 
there are 100 observation points located in the far-
field zone, and the time domain scattered field is 
measured on a circle around the numerical breast 
phantom with uniform spacing in the step of 3.6o. 
From a practical point of view, using 100 probe 
positions at the observation points around the 
breast may not be possible in reality due to the size 
of antenna and mutual coupling between them. We 
chose this number for the proof of concept. Since 
we are interested in creating an image of the inner 
structure of objects,we limit our search space to 
only the interior of the object. In order to do this, 
information about the position, dimension, 
orientation, and surface of the object is required. 
This information can be found using surface 
detection methods [16, 17]. This information will 
be used in the inverse program in order to 
discretize only inside the object. 

The dielectric properties of different tissue 
types, including normal, malignant, and benign 
breast tissues were obtained from reduction and 
cancer surgeries, in the frequency range of 0.5 
GHz�20GHz, performed by Lazebniket al. [13, 
14]. Figure 5 shows the dielectric properties of 
different breast tissues created based on Debye 
model having different levels of water content for 
3 GHz�10GHz. As can be seen in this figure, 
breast tissues may exhibit very low to very high 
loss at microwave frequencies. These variations 
depend on the tissue type, and more precisely, on 
the water content. The water dependency of 
dielectric properties of breast tissues can be 
efficiently described in (FD)2TD numerical 
method by using the single-pole Debye model 
[15], 

0
0 0

( )
1

s sj
j
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�� ��

	
	

�
� 
 �


                
(2)  

where �0 is the permittivity of the free space, �s 
and �� are the dielectric constants at zero (static) 
and infinite frequencies, respectively. �s is the 
conductivity at low frequency, � is the angular 
frequency, and 	0 is the relaxation time constant. 
In order to simplify the problem, the breast tissues 
are divided into seven groups: three different 
groups of fibro-glandular tissues, three different 
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groups of fatty tissues, and one transitional group 
(Fig. 5). Each group has an upper bound and a 
lower bound value of dielectric properties, 
depending on the amount of water content and the 
frequency. The dielectric properties can be given 
by, 

( ) ( ) (1 ) ( )u lp p� � � � � �� 
 �
             

(3) 

( ) ( ) (1 ) ( ),u lp p� � � � �� 
 �             (4) 

where the parameter p is a coefficient showing the 
percentage of water content and it can vary 
between [0-1], �u and �u are the relative 
permittivity and conductivity at the upper bound, 
respectively, and �l and �l are the relative 
permittivity and conductivity at the lower bound 
of the corresponding group at a specific frequency, 
respectively.  

Therefore, by substituting equations (3) and 
(4) into the first-order Debye formula the 
parameters of the Debye model become functions 
of both water content and the dielectric properties 
of the lower and upper bounds of each group, can 
be defined as,  

 

s us sl slp p� � � �� 
 �

                

(5) 

,u l lp p� � � �	 	 	 	� 
 �                 (6) 

,s us sl slp p� � � �� 
 �                   (7) 

where �su and �sl are conductivity at the upper and 
lower bounds of the corresponding group, 
respectively, ��u and ��l are permittivity at infinite 
frequency for the upper and lower bounds of the 
corresponding group, and �su and �sl are relative 
permittivity at zero frequency for the upper and 
lower bounds of the corresponding group, 
respectively. The single-pole Debye parameters 
for the breast tissues are based on the results 
described by Zastrowet al. [18, 19]. At this point, 
by substituting the new parameters of the Debye 
model, the water content dependency has been 
included in (FD)2TD program.  

In the following example, we examined the 
HGA for solving the inverse scattering problem 
for breast cancer imaging. The HGA is divided 
into two steps of optimization. At the first step, the 
BGA is employed in order to determine the type of 
the tissue for each cell of search space. In the 
second step, by using RGA, percentages of water 
content is found. In the BGA, the look-up table 
consists of first-order Debye parameters for four 
different tissue types: fibro-glandular, fatty, 
transitional, and malignant tissues with the water 

content percentage of 50 %, given in Table I. Note 
that in this table we combined all three groups of 
fibro-glandular tissues into one group of fibro-
glandular tissue and all three groups of fatty 
tissues into one group of fatty tissue and we chose 
the Debye parameters of the corresponding tissue 
with 50 % water content. 

 

 
(a) 

 
(b) 

 
Fig. 5. Debye model of breast tissues dielectric 
properties (a) conductivity and (b) permittivity. 

 
Table I. Look-up table of the Debye parameters 
for the BGA.  
Medium Fat Transitional Fibro- 

glandular 
Malignant 

�� 4.33 22.46 52.02 76.17 
�s 2.98 8.48 14.00 25.52 
�s(S/m) 0.02 0.23 0.78 1.20 
�0 13.0 13.0 13.0 13.0 

 
The BGA optimization stops when the fitness 

value does not improve after some number of 
generations. Then, the best individuals of the last 
generation in terms of fitness value are passed to 
the second stage of the optimization, which is 
RGA. After the process of BGA, the behavior of 
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the best fitness values at different generations for 
each individual are studied to choose those 
individuals that show an increase in the fitness 
value consistently, and they were passed to RGA. 
This selection can decrease the chances of getting 
stuck in a local minimum and can increase the 
chance of finding the global optimum solution. For 
the RGA, the look-up table consists of first-order 
Debye parameters from the upper to lower end of 
the range for four different types of breast tissue 
(Table II).  

 
Table II. Look-up table of the Debye parameters 
for the RGA. 

Medium Fat Transitional Fibro- 
glandular 

Malignant 

��u 3.987 12.990 23.200 9.058 
�su 7.535 37.190 69.250 60.360 
�su(S/m) 0.080 0.397 1.306 0.899 

��l 2.309 3.987 12.990 23.200 
�sl 2.401 7.535 37.190 69.250 
�sl(S/m) 0.005 0.080 0.397 1.306 

�0(ps) 13.0 13.0 13.0 13.0 

 
In this stage, for those individuals that are 

chosen by BGA, the tissue types remain constant, 
but the percentage of water content (p) can vary 
between 0% and 100%. RGA uses pii=1,2,...n as 
genes. A combination of n gene gives a 
chromosome, where p is a floating point number 
between 0 and 1. Then equations (3), (4), and 
Table II are used to find tissue properties.  Figure 
6 shows a sub-sampled version of a cross-section 
of an MRI in the numerical breast phantoms 
repository of [20]. The measurement scattered 
field values are replaced by simulated data 
(hypothetical measured data) obtained by the 
Richmond method [21] to avoid the inverse crime. 
A 2D cross-section of a breast is divided into 18 
equal regions.  

In the first stage of the optimization process, 
typical Debye parameters are assigned to each 
category of the tissue type (fatty, transitional, 
fibro-glandular) assuming 50 % water content 
(Table I). Then, the BGA is used to find the tissue 
type. The best 4 solutions are then passed to the 
second stage where the RGA is used to find the 
water content. In this stage, the search space is 
limited to the range of the dielectric properties of 
each tissue type. After 200 generations of the 
RGA, the best candidate is chosen for further 
calibration and the other three candidates are 

removed from the optimization process. For the 
winning candidates, the GA runs for 300 more 
generations to obtain the final result. Parallel 
programming is used in RGA [22, 23].  

 
(a) 

 
(b) 

 

Fig. 6. (a) Relative permittivity and (b) 
conductivity of the numerical breast phantom 
obtained by sub-sampled breast MRI at f = 6 GHz. 

 
Figure 7 (a) shows the average fitness value of 

the solutions of the BGA over 200 generations. 
Figure 7 (b) shows the improvement of the 4 
candidates after 300 generations. The fitness value 
of one of the candidates significantly improves 
while for the other 3 do not show a significant 
improvement. This implies that for those 
candidates, the tissue type was not predicted 
correctly in the first stage. Figure 8 shows the 
reconstructed dielectric properties of the phantom 
shown in Fig. 6. It shows that the hybrid technique 
was able to correctly recognized the tissue types 
but the amount of water content was slightly 
different from the original image. This is due to 
the limited number of generations that we 
considered in this example.  
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(a) 

 
(b) 

 

Fig. 7. (a) Trajectory of the fitness value of the 
best individual in the BGA and (b) trajectory of 
the fitness value of the 4 candidate solutions 
passed to RGA.  
 

Two other optimization methods using BGA 
only and RGA only are implemented for 
comparison purposes. The hybrid method overall 
performs (4 (angle) × 30 (individual) × 200 (BGA 
generation) + ( 4(angle) × (individual) × 300 
(RGA generation) = 60,000 function evaluations. 
In order to be comparable with the hybrid method, 
the BGA and the RGA should run for 500 
generations with 30 individuals in each iteration. 
This results in 60,000 function evaluations. In this 
case, we used Table I for BGA and for the RGA, 
we considered the reconstructed relative complex 
permittivity within physical ranges 1.0 
 �r 
 80.0 
and 0.0 
 � 
 15.0 S/m, with one decimal point 
accuracy. Figure 9 shows the result of the BGA 
and the RGA after 500 generations. Neither of 
these methods (RGA alone or BGA alone) was 
able to converge to the right solution within 500 
iterations. In addition, because four cases are 
optimized in parallel by RGA, the hybrid method 
is faster than both BGA and RGA alone. The 

convergence of the examples provided in this 
paper by using 64 nodes and 64G RAM took 
around four hours and thirty minutes. 

 

 
(a) 

 
(b) 

 
Fig. 8. Result of the HGA method for the 
numerical phantom of Fig. 6 (a) permittivity and 
(b) conductivity at f = 6 GHz. 
 

In breast imaging, the typical range of the 
dielectric properties is limited and is determined 
by a-priori knowledge about the tissues existing in 
the breast. By limiting the search space to first 
finding the tissue type and then finding the water 
content for a specific tissue type, the proposed 
method decreases the possibility of the non-
physical solutions from the search space. This is 
an advantage over many of the local optimization 
methods used in inverse scattering, and those that 
use a regularization terms with smoothing effects. 
Additionally, the proposed method is potentially 
able to reconstruct sharp profiles, which occur 
frequently in breast imaging. 
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From a practical point of view, the use of the 
2D-TM approximation for what is really a 3D 
problem will introduce modeling error into the 
utilized inversion algorithm. Therefore, the 
modeling calibration is required to reduce the 
error. While reducing the model error is feasible, it 
needs substantial additional work that is beyond 
the scope of this paper. In this section, we propose 
ways to do the modeling calibration. Modeling 
calibration is the process of adjusting the raw 3D 
scattered field data such that it can be effectively 
employed by the approximate 2D models upon 
which the inversion algorithms are based. To 
reduce this modeling error, effort needs to be 
placed on calibrating the 3D model into 2D 
approximation. We need to introduce a calibration 
step (modeling calibration) in order to eliminate 
some of the experimental errors affecting field 
measurements, such as antennas, mutual coupling 
between co-resident non-active antennas, and the 
effects of boundaries on antenna characteristics. In 
order to calculate the calibration factor, we should 
have modeled the entire setup including the 
antennas and boundary using a more accurate (but 
much slower) 3D numerical technique for a given 
chamber configuration and the calibration factors 
should be provided as an input to the inversion 
algorithms without slowing them down. This 
procedure of simulating the 3D of the entire 
imaging chamber can be expedited using 
symmetric algorithm [24]. The modeling 
calibration is made for efficiency, because the 
behavior of electric fields within a 2D 
environment can be easily described with 2D 
FDTD and it can be repeatedly evaluated very 
quickly (when compared to a much slower 3D 
techniques) allowing the iterative imaging 
algorithms to converge to a solution in a 
reasonable amount of time. 

 
V. CONCLUSION 

In breast imaging, the typical range of the 
dielectric properties is limited and are determined 
by a-priori knowledge about the tissues existing in 
breast. By limiting the search space to first finding 
the tissue type and then finding the water content 
inside the range of the dielectric properties of that 
tissue type, the proposed method enables non-
physical solutions to be removed from the search 
space. This is in contrast with many of the local 
optimization methods that are used in inverse 

scattering, which use a regularization term with 
smoothing effects. Hence, the proposed method is 
potentially able to reconstruct sharp profiles that 
occur frequently in breast imaging. 

In conclusion, the proposed hybrid binary-real 
genetic algorithm increases the convergence speed 
in the application of microwave imaging for breast 
cancer. This method uses a-priori knowledge of 
the dielectric properties of the breast tissue and 
inherent advantage of binary GAs in discrete 
search spaces and real GAs in continuous search 
spaces.  

 

 
(a) 

 
(b) 

 
Fig. 9. Result of the (a) RGA and (b) BGA 
methods for relative permittivity at f = 6 GHz. 
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