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Abstract ─ The method of moments (MOM) with 
surface equivalence principle is used to numerically 
solve the problem of electromagnetic scattering from and 
transmission through an arbitrarily shaped 3D cavity in 
a thick conducting plane is considered. The conducting 
walls of the cavity inside the ground plane are of 
arbitrary shape. The apertures at both ends of the cavity 
are also of arbitrary shape. An equivalent surface 
magnetic current placed on the top aperture produces the 
scattered field in the region where the impressed sources 
are. The total field inside the cavity is produced by two 
surface equivalent magnetic currents on the apertures 
and an equivalent surface electric current residing on the 
walls of the cavity as well as on both apertures. The 
transmitted field on the opposite side of the impressed 
sources is computed by an equivalent surface magnetic 
current residing on the bottom aperture. Computed 
results are compared with results in the literature 
obtained by using other methods. Very good agreement 
is observed. 
 
Index Terms ─ Apertures, equivalence principle, moment 
methods. 
 

I. INTRODUCTION 
The coupling of electromagnetic energy through 

apertures is an important problem in electromagnetic 
engineering. Bethe [1] offered solutions for coupling 
through a small circular aperture in a conducting plane 
wall of zero thickness, utilizing electric and magnetic 

dipole moments. His solution, the so-called aperture 
polarizability method, has been used extensively as a 
basis for future research on aperture coupled systems. 
Arvas [2] computed polarizabilities of arbitrary shaped 
small apertures. 

A major breakthrough in dealing with aperture 
problems came in 1976 when Harrington and Mautz [3] 
expressed aperture characteristics as admittance matrices, 
which depend only on the region being considered, being 
independent of the other region. The aperture coupling is 
then expressible as the sum of the two independent 
aperture admittance matrices. The numeric solution is 
carried out with the method of moments formulated by 
Harrington [4]. Auckland solved the problem of 
electromagnetic transmission through a slit in a thick 
conducting plane, when the cross-section of the slit is 
rectangular [5] and when it is arbitrarily shaped [6]. Park 
and Eom published a paper in which they use the 
aforementioned method to solve for the electromagnetic 
transmission through circular apertures in a thick 
conducting plane [7]. Imeci computed transmission 
through an arbitrary shaped aperture in a conducting 
plane separating air and a chiral medium [8]. A similar 
problem was solved by Jin and Volakis [9] using the 
finite element method. The purpose of this work is to 
solve this problem using MOM and surface equivalence 
principle. For homogeneous structures of arbitrary 
shape, surface meshing is usually simpler than volume 
meshing. In such cases the method of moments with 
surface equivalence principle can be simpler than finite 
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element method. To the best of our knowledge the 
present work is the first that solves the problem using the 
method of moments and surface equivalence principle. 
 

II. DEFINITION OF THE PROBLEM 
The general problem considered here is shown in 

Fig. 1. The ground plane of thickness d is assumed to be 
a perfect electric conductor (PEC) of infinite size in x and 
y directions. Arbitrarily shaped apertures exist on each 
side of the thick ground plane. These apertures are 
connected with an arbitrarily shaped cavity. The regions 
above and below the ground plane as well as inside the 
cavity are linear, homogeneous, isotropic dielectric 
mediums. These regions are named regions a, b, and c 
from the top to the bottom. In general, each region has a 
different electric permittivity (ε) and magnetic permeability 
(μ) than the others. The top region, region a, also contains 
impressed sources ( ) far away. These sources excite 
a time harmonic plane wave which illuminates the 
ground plane on the top side. The electric and magnetic 
fields in each region are unknown and they are going to 
be calculated by applying the equivalence principle, 
image theory and the method of moments. 

 

 
 
Fig. 1. Cross section view of the problem. 
 

The equivalent problem for the top region is shown 
in Fig. 2. The impressed sources ( ) and the material 
( ) are kept the same as those in the original 
problem. The top aperture surface of Fig. 1 is now 
covered by a patch of PEC in Fig. 2. Hence, the whole 

 plane in Fig. 2 is a PEC. Below this plane, the 
fields are set to be null fields. The tangential electric field 
in region a of Fig. 1 is zero just above the  plane 
except over the top aperture region. The electric field in 
the top aperture region is  in Fig. 1. By 

placing an equivalent magnetic surface current: 
 , (1) 

over this newly placed patch of PEC in Fig. 2, we 
guarantee that the tangential electric field just above this 
current in Fig. 2 is the same as the tangential electric field 
at the same points of Fig. 1. In (1),  is the unit vector 
in the z-direction and  indicates the limit as z 
approaches zero from the above. Then the fields in Fig. 2, 
produced by the impressed sources  and the 
equivalent magnetic surface current  (residing just 

above the PEC patch), are identical to ( ) in Fig. 1. 
That is, 
 , (2) 

 . (3) 
The problem in Fig. 2 is a radiation problem of current 
sources over an infinite ground plane in a half-space 
filled with homogeneous dielectric medium. This type of 
problem can be solved by using image theory [10]. The 
ground plane is removed and the equivalent magnetic 
surface current is doubled. Impressed sources also have 
their images taken. The fields produced by these five 
sources, as they radiate in an unbounded homogeneous 
medium ( ) are the same as the fields of region a in 
Fig. 1. That is, 
 , (4) 

 . (5) 
Equivalence for region b is shown in Fig. 3. 

Lastly, the equivalent problem for the bottom region 
is set up. This is very similar to the top region equivalent 
problem with the major difference being not having 
impressed sources in the bottom region problem. The 
final form of the integral equations is obtained: 
  

 across top aperture, 
  

 across bottom aperture, 
  on Sc, (6) 
where Hinc is the magnetic field of (Ji, Mi) in unbounded 
homogeneous medium. These three equations are going 
to be used to solve for the three unknowns, 

 by the help of the method of moments. 
 

 
 
Fig. 2. The equivalent problem for region a. 

,  i iJ Mi iJ Mi

 z= -d 

,  i iJ Mi iJ Mi

,a a� �

0z �

0z �

0 0

a a

z z �� �
�E Ea aE Ea �

1 0 0

a a
az z� �� �

� � � �M E n E zaM E n E za� � � ��a �� aa�� a zz

zz
0z ��

( ,  )i iJ M )i i

1MM

,a aE Ha aE Ha

1( ) ( )a a i i aE = E J ,M +E M( )a a i i a( ))E = E ( ) () (a a ( )))

1( ) ( )a a i i aH = H J ,M + H M( )a a i i a( ))H = H ( ) (a a ( )))

,a a� �

,img ,img
1( , ) ( , ) (2 )a a i i a i i a� � �E E J M E J M E Mi i (2 )a a i i a i i aimg img( ) ( )) ( )img imgE (2(2a a ( ) ( )) ( )) ( )img img� ( ) ( )( )) ( , g , ga ( ) ( )) (( )) ( ,img ,img

,img ,img
1( , ) ( , ) (2 )a a i i a i i a� � �H H J M H J M H Mi i (2 )a a i i a i i aimg img( ) ( )) ( )img img (2(2Ha a ( ) ( )) ( )) ( )img img� ( ) ( )( )) ( , g , ga ( ) ( )) (( )) ( ,img ,img

inc
tan 1 tan 1 tan 2 tan tan2 ( ) ( ) ( ) ( ) 2a b b b� � � � �H M H M H M H J Hinc( ) ( ) ( ) ( ) 2a b b b( ) ( ) ( )( ) ( ) ( ) H( ) ( ) ( ) ( ) 2( ) ( ) ( ) (( ) ( ) ( )( (( ) ( ) ( ) ( )( ) ( ) (( ) ( ) ( ) (( ) ( ) ( )( ) ( ) ( )) ( ) ( )

tan 1 tan 2 tan 2 tan( ) ( ) 2 ( ) ( ) 0b b c b� � � � �H M H M H M H J( ) 0b b c b( ) ( ) 2 ( )( ) 2 ( )H (b ( ) ( ) 2 ( )( ) 2 () ( ) 2 (( ) ( ) 2 ( ) (( ) 2 ( )) ( ) 2 ( ) (b ( ) ( ) 2 ( )( ) 2 () ( ) 2 (

tan 1 tan 2 tan( ) ( ) ( ) 0b b b� � �E M E M E J( ) 0b b b( ) ( )( ) )E ( ) ( ) () ( ) (b ( ) ( )( )) ( )( ) (( )( ) (( )( )( )

1 2,   and M M JdM M Jand

1138 ACES JOURNAL, Vol. 30, No. 11, November 2015



 
 
Fig. 3. The equivalence for cavity region. 
 

III. NUMERICAL RESULTS 
The problem that is going to be analyzed is a thick 

conductor with square apertures on the top and the 
bottom. This problem is previously solved in [9] using 
the finite element method. The sides of the apertures are 
l=w=0.4λ and the conductor thickness is d=0.25λ. The 
triangular meshing is done in such a way that the 
triangles are more refined on the edges and on x and y 
axes on apertures. The top aperture is excited with a 
plane wave on normal incidence with polarization given 
as . The electric fields on the apertures 
computed in [9] are in very good agreement with the 
electric fields in Fig. 4 calculated using the MoM 
formulation in this research. 

Next, the backscattering cross section (RCS) and the 
transmission coefficient T of the structure are compared. 
The backscattering cross section is defined as [9]: 

 , (7) 

where  is the far zone scattered field, which is the 
scattered field in the backward direction minus the field 
scattered that would exist if the entire  plane was 
perfectly conducting. The transmission coefficient is 
defined as: 

 , (8) 

where  is the time average incident power that would 
be intercepted by the top aperture if all space was free 
space,  is the time average power transmitted to 
region c through the bottom aperture,  is the 
impedance of region a, and  is the area of the top 
aperture. RCS and transmission coefficient plots computed 
by [9] and those in Fig. 5 computed by the MoM 

formulation are very close to each other for square 
apertures on top and bottom in a thick conductor. 
 

 

 
 
Fig. 4. (a) Electric field at the upper (solid line) and lower 
(dashed line) apertures, along x-axis, and (b) electric 
field at the upper (solid line) and lower (dashed line) 
apertures, along y-axis. 
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Fig. 5. (a) Backscatter RCS, and (b) transmission coefficient. 
 
A. Cross aperture 

A cross aperture on top and bottom is analyzed next. 
The cavity walls inside the conductor are the sides of a 
0.5λ by 0.5λ square prism and the top and bottom walls 
are cross-shaped apertures. The geometry of mesh is 
shown in Fig. 6. 

RCS and transmission coefficient plots given in Fig. 7 
and Fig. 8 are very close to those given by [9]. 
 

 
 
Fig. 6. Meshing of the cross aperture problem. 
 

 

 
 
Fig. 7. Backscatter RCS as a function of incidence angle in 
the plane; . 
 

 
 
Fig. 8. Transmission coefficient plots of the structure in 
Fig. 6 as a function of incidence angle in the  

plane; . 
 
B. Circular aperture 

A cylindrical cavity with small circular apertures 
whose centers are on the -axis is analyzed. The 
geometry of meshing is shown in Fig. 9. The radii of the 
small apertures are r=0.05λ. The radius of the cylindrical 
cavity is R=0.5λ. The thickness of the conductor is 
d=0.6λ. The flanges covering the cylindrical cavity and 
forming small circular apertures on top and bottom have 
a thickness of 0.01λ. All regions are filled with . 

The incident field is . The magnetic currents 
on the top and bottom apertures along x and y axes are in 
Fig. 10 and Fig. 11. 
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Fig. 9. The geometry of meshing of circular shape 
aperture. 
 

 
 
Fig. 10. Magnetic current on top aperture (solid line) and 
on bottom aperture (dashed line) along the x-axis for the 
problem. 
 

 

 
 
Fig. 11. Magnetic current on top aperture (solid line) and 
on bottom aperture (dashed line) along the y-axis for the 
problem. 
 
C. Effect of conductor thickness 

Square apertures with varying conductor 
thicknesses are analyzed to understand the effect of 
thickness on transmission of the plane wave through the 
cavity. The problem geometries and corresponding 
magnetic current plots for the top and bottom apertures 
are given in Fig. 12 through Fig. 17. 
 

 
 
Fig. 12. Triangular meshing of the problem with square 
apertures (0.4λ-by-0.4λ) on top and bottom; conductor 
thickness d=0.062λ,  , 
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Fig. 13. Magnetic current on top aperture (solid line) and 
on bottom aperture (dashed line) along the x-axis for the 
problem in Fig. 12. 
 

 
 
Fig. 14. Magnetic current on top aperture (solid line) and 
on bottom aperture (dashed line) along the y-axis for the 
problem in Fig. 12. 
 

 
 
Fig. 15. Triangular meshing of the problem with square 
apertures (0.4λ-by-0.4λ) on top and bottom; conductor 
thickness d=0.75λ,  ,

 

 
 
Fig. 16. Magnetic current on top aperture (solid line) and 
on bottom aperture (dashed line) along the x-axis for the 
problem in Fig. 15. 
 

 
 
Fig. 17. Magnetic current on top aperture (solid line) and 
on bottom aperture (dashed line) along the y-axis for the 
problem in Fig. 15. 
 

As seen from the magnetic current plots, increasing 
the conductor thickness reduces the magnetic current on 
the bottom aperture and therefore reduces the tangential 
electric field on the bottom aperture. Reduction of the 
tangential electric field on bottom aperture is generally 
accompanied by reduction of the transmission 
coefficient. 

The effect of meshing on convergence and many 
more numerical results are available in [11]. 
 
D. Results for circular aperture with a conic cavity 

To prove the versatility of the method, a conic cavity 
in a thick conductor (d=0.5λ) with circular apertures on 
top and bottom with radii of R=0.25λ and r=0.125λ 
respectively is analyzed. The problem geometry is 
shown in Fig. 18. The top and bottom magnetic currents 
along x and y axes are given in Fig. 19 and Fig. 20. RCS 
and transmission coefficients plots are shown in Fig. 21 
and Fig. 22. 
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Fig. 18. Circular apertures with a conic cavity,  
 

 
 
Fig. 19. Magnetic current on top aperture (solid line) and 
on bottom aperture (dashed line) along the x-axis for the 
problem in Fig. 18. 
 

 
 
Fig. 20. Magnetic current on top aperture (solid line) and 
on bottom aperture (dashed line) along the y-axis for the 
problem in Fig. 18. 

 
 
Fig. 21. Backscatter RCS of the structure in Fig. 18 as a 
function of incidence angle in the  plane; solid line:

 is phi polarized; dashed line:  is theta polarized. 
 

 
 
Fig. 22. Transmission coefficient plots of the structure in 
Fig. 18 as a function of incidence angle in the  
plane; solid line:  is phi polarized; dashed line:  
is theta polarized. 
 

IV. CONCLUSION 
A simple moment solution is given to numerically 

analyze the problem of electromagnetic scattering from 
and transmission through an arbitrarily shaped aperture 
in a thick perfectly conducting ground plane. Computed 
results for square, cross and circular apertures are 
presented. Results for circular aperture with a conic 
cavity are also presented. The above computed results 
cannot be predicted by a simple theory. However, the 
results show that the fields on the shadow side of the 
aperture are much smaller than those on the lit side even 
when the thickness of the ground plane is small. 
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The method of moments formulation introduced in 
this paper can give the same results as the numerical 
methods that use volumetric meshing such as FEM. 
Since for homogeneous bodies MoM with only surface 
meshing is possible, it can give results faster than FEM, 
especially when problems with large volumes are to be 
solved. 

It is known that, numerical results obtained by 
MOM and surface equivalence formulation may give 
erroneous results due to some spurious internal 
resonances [12]. Such spurious results were avoided by 
monitoring the condition number of the moment matrix 
and the stability of the computed results as the size, 
frequency or the number of triangular patches were 
changed slightly. 
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