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Abstract ─ In all hyperthermia schemes with left-

handed metamaterial (LHM) lens applicator, water bolus 

are used to prevent skin from being overheated during 

the hyperthermia treatment. Owing to water’s high 

refraction index, high reflection usually occurs at the 

interface between low-index LHM lens and water 

bolus, and between water and skin, which will lead to 

the low efficiency of hyperthermia. In this paper,  

we propose a new LHM lens applicator with built-in 

cooling feature for superficial tumor hyperthermia. 

Both simulation and experiment demonstrated that 

microwave hyperthermia with the proposed applicator 

may concentrate more microwave energy into deeper 

tissue if compared to hyperthermia with normal LHM 

lens. 

 

Index Terms ─ Hyperthermia, metamaterial lens, 

microwave, tumor, water bolus. 
 

I. INTRODUCTION 
Left-handed metamaterials (LHM) lens provide 

new prospects for hyperthermia treatment of superficial 

tumors. Superficial tumors generally occur at depth no 

more than several centimeters beneath the skin [1], 

which is within the near-field focusing depth of LHM 

lens.  

Although losses of LHM will destroy Pendry’s 

perfect lens [2], applicators with LHM lens are still 

very attractive to superficial tumor hyperthermia for 

two reasons. First, super-resolved focus of LHM lens 

characterized by half-power beam-width has been 

demonstrated in several experiments [3-6] with low-

loss LHM slabs. It is the microwave power within  

half-power beam-width, not within the beam-width 

charactering the LHM lens resolution defined in [2], 

which makes dominant contribution to hyperthermia  

of tumor. Second, a focusing spot of moderate size in 

tissue is preferred for heating a large or diffusive 

superficial tumor. Tiny focal spots of LHM applicator, 

if acquired, will find application in tumor ablation or 

hyperthermia of early small size tumors.  

Potentials of LHM lens applicator for tumor 

hyperthermia have been demonstrated both numerically 

and experimentally [7-9]. Furthermore, potential of 

conformal hyperthermia with LHM applicator was also 

demonstrated [10]. Due to flexibility of focal point 

adjustment in both lateral and depth directions of a flat 

LHM lens, it is reasonable that a relatively large heating 

zone in tissue can be readily generated if we deploy 

several microwave sources (antennas) behind a flat 

LHM lens applicator, and a tilted heating zone in tissue, 

viz.; a heating zone in tissue with different depth of 

penetration across the array, can be obtained by 

properly adjusting the distance between the lens and 

sources. In [11], it is further demonstrated that conformal 

hyperthermia with low-loss LHM lens applicator can be 

realized by generating a tilted heating zone in tissue.  

In addition to adjusting the source-to-lens distance, we 

find that adjusting the phase of microwave sources may 

also control the inclination of heating zone. 

All these hyperthermia with low-loss LHM lens 

applicators use water bolus to prevent skin from being 

overheated during the hyperthermia treatment. As is 

well-known, water has a refraction index higher than 
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skin, and it is generally hard to build LHM lens with 

high effective refraction index. Therefore, high reflection 

usually occurs at the interface between low-index LHM 

lens and water bolus, and between water and skin, 

which will lead to the low efficiency of hyperthermia 

(i.e., to heat a certain tumor, the more time and higher 

source power are needed). 

In this paper, we propose a new LHM lens 

applicator with built-in cooling feature, i.e., cooling 

water is filled into partial structures of LHM lens,  

for superficial tumor hyperthermia. In Section II, 

hyperthermia with proposed applicator is demonstrated. 

In Dection III, the design of LHM lens applicator with 

built-in cooling feature is illustrated. In Section IV,  

the performance of proposed lens is confirmed by 

experimental researches. 

 

II. HYPERTHERMIA WITH LHM LENS 

APPLICATOR WITH BUILT-IN COOLING 

FEATURE 
Figure 1 shows the scheme of conformal 

hyperthermia with LHM lens applicator proposed  

in [11]. In this scheme, several microwave sources 

1 2( , , ,nS S S  representing antenna phase centers in 

practice) may be set behind a flat LHM lens applicator. 

The LHM lens will focus microwave emitted from 

source  ( 1,2,..., )iS i n  at a corresponding focal point 

 ( 1,2,..., )iF i n  in tissue. Therefore, different heating 

zones enclosing focal point  ( 1,2,..., )iF i n  can be 

generated. According to LHM lens’ focusing theory, 

the focusing depth dFi, lens thickness D=4 cm, source-

lens distance dSi and water bolus thickness h=0.5 cm 

satisfy the equation: 

 i id dF D S K h  （ ） , (1) 

where K is usually greater than 1, which indicates the 

influence of the random inhomogeneity of biological 

tissue and microwave attenuation on focusing position. 

Obviously, as the water bolus between tissue and lens is 

applied, not only the high reflection is generated, but 

also the focus depth is directly decreased.  
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Fig. 1. Conformal hyperthermia scheme with LHM lens 

applicator proposed in [11]. 

So we consider a new conformal hyperthermia 

scheme with LHM lens applicator with built-in cooling 

feature as shown in Fig. 2. It is observed that in this 

scheme cooling water with height of h is filled into 

partial structures of LHM lens. The Equation (1) should 

be modified to: 

 
i id d wF D S k h K  （ ） , (2) 

where kw is generally less than 1, which indicates the 

influence of cooling water filled in lens structures on 

focus depth. Obviously, by applying this new applicator 

the focus depth can be increased, as the high reflections 

are prevented. By integral optimization of the water 

bolus and lens structures, the hyperthermia efficiency 

should be improved. 
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Fig. 2. Conformal hyperthermia scheme with LHM lens 

applicator with build-in cooling feature. 

 

III. DESIGN OF LHM LENS APPLICATOR 

WITH BUILT-IN COOLING FEATURE 
To facilitate filling water in LHM lens structures, 

we consider designing the lens based on a volumetric 

negative refractive-index transmission-line (NRI-TL) 

metamaterial structure, which is capable of building 

three-dimensional LHM lens by stacking planar NRI-

TL metamaterials in a multilayer manner [12]. Figure  

3 depicts the three-dimensional sketch of conformal 

hyperthermia scheme as NRI-TL metamaterial lens with 

built-in cooling feature applied. And the electromagnetic 

simulation software HFSS is used to design the 

proposed lens. 

In simulation, in order to reduce computational 

costs, the model of partial device including antennas and 

lens is simplified as shown in Fig. 4. Figure 5 illustrates 

the model of practical hyperthermia scheme as the 

proposed LHM lens is applied. It is observed that, to 

emulate infinite periodicity in the y direction, a single 

NRI-TL metamaterial lens composed of a pair of PCB 

layers is deployed between two metal plates (simulated 

by perfect E walls in HFSS model), spaced 1.3 cm apart. 

And the side walls except the one meets the tissue are 

set as absorbing boundary (simulated by perfect H walls) 

to avoid to avoid leak of radiation. A coaxial connector 

with inner/outer diameter of 1.27 mm/4.1 mm located at  
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2 cm away from lens is used as the antenna. 

The LHM lens is four 4 thick (z direction) and 15 

cells width (x direction). And the initial cell is designed 

based on the structure presented in [12] and has refractive 

index of neff = −3.68 + 0.61i at 2.45 GHz without built-

in cooling water, which means the lens has a size of 

415 cm. The water with a thick of 0.5 cm, which is  

the same as the water bolus applied in hyperthermia 

scheme proposed in [11], is filled in the cell close to 

tissue. 

And then the parameters of lens cell can be 

optimized by using the automatic optimization function 

of HFSS. And the electric field distribution can be 

calculated by using the field calculator of HFSS. Figure 

6 (a) shows the electric field distribution in tissue 

obtained by the hyperthermia scheme with optimized 

LHM lens. Owing to cavity effects, a hot zone is 

obtained adjacent to skin. And the maximum electric 

field amplitude in this zone is measured to be 71.2 V/m. 

Meanwhile, it is observed that another hot spot is 

located at the position of 1 cm below skin. And the 

maximum electric field amplitude in this spot is 41.2 V/m 

measured at (z=0.96 cm, x=0). 
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Fig. 3. Three-dimensional sketch of conformal 

hyperthermia scheme as NRI-TL metamaterial lens with 

built-in cooling feature applied. 
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Fig. 4. Simplified model of partial device including 

antenna and lens. 

 

In order to evaluate the performance of the 

proposed lens applicator, the electric field distribution 

obtained in the scheme with conventional LHM lens  

is also presented in Fig. 6 (b). A light spot is observed 

at the location of 0.5 cm below skin. The maximum 

electric field amplitude of 39.7 V/m is measured at 

(z=0.56 cm, x=0.05 cm). And the field amplitude 

measured at (z=0.96 cm, x=0) is 11.6 V/m, which is 

just 28.2% of that measured at the same position as the 

proposed LHM lens is applied. 

In summary, for the same hyperthermia scheme, 

while the proposed LHM lens applicator is applied,  

the focusing depth is increased and more microwave 

energy is concentrated in tissue.  
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Fig. 5. The simulation model of practical hyperthermia 

scheme as the LHM lens applicator with built-in cooling 

feature applied.  
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Fig. 6. Electric field distribution in tissue acquired with 

hyperthermia scheme with: (a) LHM lens applicator with 

built-in cooling feature, and (b) traditional LHM lens. 

 

To explore whether the proposed lens is suitable 

for conformal hyperthermia, the performance of this 

lens is compared with ideal LHM lens applied in [11], 

as depicted in Table1 1.  

In previous works, it is found that the temperature 

distribution depends on specific absorption rate (SAR) 

distribution (or power distribution), and SAR over 10% 

(power over -10 dB) have contribution to heat tumor. In 

[11], it is indicated that 50% SAR zone (-3 dB power 

zone) of single source should not be too small to realize 
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conformal hyperthermia. It is found that the -3 dB width 

obtained with the proposed lens is more than twice  

of that acquired by ideal lens. Meanwhile, it is also 

observed the -3 dB depth decreases greatly owing to 

cavity effects. But considering the heat generated in 

skin will be dissipated quickly by circulated cooling 

water, and the -5 dB depth is close to that acquired by 

ideal lens, it is concluded the -3 dB depth decreasing 

could not cause too much deterioration to heat depth. In 

conclusion, the proposed lens is suitable for conformal 

hyperthermia.  

 

Table 1: Comparison on the performance of the proposed 

LHM lens applicator with the ideal LHM lens used in 

[11] 

 
Maximum 

-3 dB Width 

-3 dB 

Depth 

-5 dB 

Depth 

-10 dB 

Depth 

Proposed 

LHM lens 
1.81 cm 0.32 cm 1.1 cm 1.32 cm 

Ideal 

LHM lens 
0.72 cm 1.05 cm 1.23 cm 2.01 cm 

 

IV. EXPERIMENT WITH LHM LENS 

APPLICATOR OF BUILT-IN COOLING 

FEATURE 
Experimental setup for testing the performance of 

LHM lens applicator with built-in cooling feature is 

depicted in Fig. 7. Coaxial connectors are used as probe 

and antenna to provide the fixed-point excitations 

inside the metal plate. And in all experiments, the 

distance between antenna and lens is fixed to 2 cm.  

As pictured in Fig. 8, coaxial connectors are connected 

with two ports of vector network analyzer (VNA) 

respectively. It is observed that the metal plate with 

antenna is fixed on a vertical graduated holder, as the 

other plate with probe is fixed on electric displacement 

platform (EDP). So just by operating the holder and 

electric displacement platform, the probe can be moved 

in the whole focusing zone to measure the transmission 

coefficient S21 between antenna (port 1) and probe (port 

2). And then the normalized focusing field can be 

calculated. 

Figure 9 shows the focusing field distribution 

obtained by LHM lens applicator with 0.3 cm and  

0.5 cm built-in cooling feature. Obviously, the thinner 

the water filled in lens, the more and the deeper the 

microwave energy can be concentrated in focusing 

region. Analogously, as depicted in Fig. 10, the thicker 

the water deployed behind the common LHM lens, the 

less and the shallower the microwave energy can be 

focused. And it is found that, at the same thickness of 

water, the new LHM lens with built-in water acquire 

higher focusing depth and concentrate more energy in 

focus region, which mean the focusing performance is  

improved. 
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Fig. 7. Diagram of experimental setup including antenna 

and lens: (a) LHM lens with built-in cooling feature, 

and (b) common LHM lens. 

 

 
 
Fig. 8. Picture of the experimental setup. 
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Fig. 9. Electric field distribution in focusing region 

acquired by applying proposed lens with: (a) 0.3 cm 

water filled, and (b) 0.5 cm water filled. 
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Fig. 10. Electric field distribution in focusing region 

acquired by applying traditional lens with: (a) 0.3 cm 

water bolus, and (b) 0.5 cm water bolus behind. 

 

V. CONCLUSION 
To avoid the high reflection introduced by cooling 

water bolus used for preventing skin being overheated 

during the hyperthermia treatment, we present a new 

LHM lens applicator with built-in cooling feature. The 

simulation results indicate that as the normal LHM lens 

and water bolus are replaced by this new applicator, 

more microwave energy can be concentrated in tissue 

and the focus depth is increased, which is supported by 

further experimental studies. 
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