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Abstract—Phase-gradient metasurfaces enable designers to 

tailor the behavior of electromagnetic waves at surfaces by 

exploiting the generalized form of Snell’s law. This ability has 

led to the investigation of metalenses which have the potential 

to significantly reduce the size, weight, and power (SWaP) of 

conventional optical systems. While traditional lenses are made 

from individual glasses, metalenses are comprised of patterned 

meta-atom unit cells which are arranged in such a way so as to give 

the metalens its desired behavior. Therefore, any metalens’s 

performance is ultimately determined by that of its underlying 

unit cell components. However, designing meta-atoms that 

simultaneously achieve high performance over wide frequency 

bandwidths and fields-of-view is an extremely challenging 

problem that is best addressed with powerful optimization and 

inverse-design techniques.  
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I. INTRODUCTION 

Metasurfaces have garnered lots of attention in recent 
years for their potential ability to disrupt conventional optical 
systems. By exploiting the more general form of Snell’s law 
[1] metasurfaces can achieve relatively arbitrary optical
performance by manipulating a spatially-varying reflection
and/or transmission phase profile along a surface. When used in
imaging systems, metasurfaces are known as “metalenses” and
have been investigated at a number of frequency bands including
the visible [2], mid IR [3], and terahertz [4] regimes. One of the
most promising aspects of metalenses is their ability to achieve
optical power comparable to traditional spherical glass lenses
albeit in a thin planar geometry [5]. Moreover, due to their
unique dispersion behaviors, metalenses can be paired with
conventional optical elements to provide color correction while
significantly reducing the number of lenses required compared
to conventional optical systems [6]. Regardless of their targeted
frequency regime or application of interest, all metalenses can
benefit from optimization. To this end, there exist a number
of optimization techniques for meta-devices [7], such as
metalenses, that include local, global, and multi-objective [8],
[9] algorithms and new approaches such as surrogate-modeling,
topology-optimization [10], and deep learning [7]. All of these
techniques have seen success in the design of meta-atom unit
cells and supercells for a variety of beam-steering and focusing
applications. These meta-atoms are the building blocks used to

synthesize large diameter metalenses and finding high 
performance meta-atoms is paramount to realizing metalenses 
with imaging performance comparable to conventional optical 
elements. With respect to performance, metalenses are typically 
judged by their focusing efficiency over a specified frequency 
bandwidth and field-of-view. This efficiency is ultimately 
determined by the available phase options and transmission 
magnitudes of the meta-atom building blocks. For this reason, 
dielectric-based meta-atoms have seen tremendous interest in 
the optical regime due to their low intrinsic losses [11]. This 
paper presents a brief introduction to the optimization of meta-
atom unit cells for high-performance metalens synthesis.  

II. METALENS OPTIMIZATION

Nearly all meta-atom and metalens optimization strategies 
follow the same basic design flow which is summarized is Fig. 
1. With the optimizer selected, an initial set of design parameters
are generated which are then used to construct the unit cell
geometry. At this stage, any and all fabrication constraints are
applied to the geometry to ensure its manufacturability. Note,
this may require constraints being applied both before and after
the unit cell is generated, depending on the complexity of
the geometry generation techniques being employed. Next, a
suitable full-wave forward solver (e.g., Finite-Element Method,
Finite-Difference Time Domain, or Discontinuous Galerkin
Time Domain) is used to simulate the meta-atom(s) under plane-
wave illumination across a pre-determined range of frequencies
and incidence angles. When the simulation is complete,
reflection and/or transmission (i.e., S-parameter) data is
extracted and used to evaluate one or more user-defined cost
functions which are constructed in order to find meta-atom
geometries that achieve the desired performance(s). After this
stage, the optimizer generally checks if it has converged to the
optimal solution(s); if not, it uses feedback gained from the most
recent evaluations to choose another set of design parameters
and the process repeats until convergence or a stopping criterion
has been met. When the optimization is complete, the user is
presented with a finalized design or set of designs depending on
whether a single- [12], [13] or multi-objective [14] optimization
algorithm, respectively, is employed.

The optimized meta-atoms can then be used to pattern a 
metalens to achieve a desired optical functionality. Fig. 2 depicts 
an optimized metalens that has perfect focusing at a desired 
focal plane. The metalens is comprised of square unit cells that 
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provide the requisite transmission phase at their individual 
locations. In addition to optimizing the meta-atoms themselves, 
the phase-profile of the metalens itself can be optimized to best 
exploit the properties of the available meta-atoms. For example, 
optical systems comprised of conventional glass elements and 
metasurfaces will have complex combinations of mono- and 
polychromatic aberrations that will require both the refractive 
lens geometrical parameters and the metalens phase profile to 
be optimized in concert to achieve the best possible optical 
performance of the combined system. Moreover, the requisite 
metalens phase profile can be used to drive the meta-atom 
optimization procedure and vice versa where a library of meta-
atoms is used to constrain the metalens phase profile range. 
Interestingly, the same optimization algorithms and techniques 
can be used to optimize both the nano-scale meta-atoms and the 
centime-scale metalenses. 

Fig. 1. Multi-objective optimization meta-atom inverse-design framework. 

Fig. 2. Synthesized metalens comprised of optimized meta-atoms. 

III. FUTURE WORK

High-performance meta-atoms should be robust to 
fabrication uncertainties, mechanical stresses, and thermal 
changes which may be experienced in real world operation. 
Thus, an inverse-design framework that enables the 
optimization of meta-atoms based on performance robustness is 
highly desirable. Future studies will investigate the potential for 
realizing robust meta-atoms and metalenses. Additionally, the 
ability to simultaneously simulate and optimize the meta-atoms 
and metalenses across all size scales is an active area of research. 
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