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Abstract — This paper presents a deep learning 

approach for the inverse-design of metal-insulator-metal 

metasurfaces for hyperspectral imaging applications. 

Deep neural networks are able to compensate for the 

complex interactions between electromagnetic waves and 

metastructures to efficiently produce design solutions 

that would be difficult to obtain using other methods. 

Since electromagnetic spectra are sequential in nature, 

recurrent neural networks are especially suited for 

relating such spectra to structural parameters. 

Index Terms ─ Hyperspectral imaging, metal-insulator-

metal, metasurface, narrowband filter, recurrent neural 

network. 

I. INTRODUCTION
Hyperspectral imaging introduces an additional 

dimensionality to conventional imaging by measuring 

many narrowband channels of electromagnetic radiation 

emitted from each point on an object. This additional 

information can help distinguish otherwise unseen 

features of an object and aid in applications such as 

identification, diagnosis, and spectroscopy. 

One of the main challenges with hyperspectral 

imaging is producing these narrowband channels so that 

they are highly efficient over their specified bandwidth, 

but also strongly reject any signals outside this 

bandwidth. Metallic structures are useful for satisfying 

the rejection criteria, but their lossy characteristics at 

infrared and optical frequencies tend to prohibit the 

high-Q response needed to produce highly transmissive 

narrowband windows. Dielectrics, on the other hand, 

can support high-Q resonances, but it is difficult to 

create broad rejection bands, since they are naturally 

transmissive. Metal-insulator-metal (MIM) metamaterials 

[1] have shown potential for overcoming these trade-

offs, but the complexity of the structures makes it 

difficult to satisfy the necessary conditions for hyper-

spectral imaging. 

Deep neural network (DNN) approaches have begun 

to emerge as viable solutions for engineering metamaterial 

structures to produce specified functionalities [2-5]. 

Since electromagnetic spectra are sequential in form, 

recurrent neural networks are promising for solving 

inverse-design challenges in that they can efficiently 

map structural parameters to electromagnetic spectra. 

Specifically, we will demonstrate the use of DNNs to 

produce metasurface filters for hyperspectral imaging 

applications in the long wave infrared regime (9-11µm). 

II. PROPOSED METASTRUCTURE AND

DESIGN 
Figure 1 shows the basic design of the metamaterial 

filter. We use a uniform slab of GaAs with patterned 

layers of Au structures on the top and bottom of the slab 

to form an (MIM) metasurface. By altering the unit cell 

size and the shapes of the Au structures across the 

surface, we can create separate passbands for different 

sections of the metasurface and form 20-40 channels 

spanning the 9-11 µm range. A metasurface divided into 

channels acts as single pixel for a hyperspectral image, 

with multiple metasurfaces being used to form a 

complete image. 

III. DEEP NEURAL NETWORK APPROACH
The inverse design network is trained similarly to

encoder/decoder networks, but in two separate steps. In 

the first step, a decoder network composed of LSTM 

layers is trained to predict transmission spectra from a 

set of structure parameters. Once the decoder network is 

trained, it is used to train an encoder network that takes 

transmission spectra as input and outputs structure 
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parameters. This training occurs by cascading the 

decoder network after the encoder network but freezing 

training on the decoder network, as shown in Fig. 2 (a). 

The cascaded network takes a transmission spectrum as 

input and attempts to reproduce the same spectrum as 

output. Once properly trained, the encoder network is 

removed from the cascade and is now the desired 

inverse-design network (Fig. 2 (b)). This cascaded 

training method is essential to assuring that the encoder 

network will converge to a unique solution, since it’s 

possible for a given transmission spectrum to be 

produced by multiple types of structures. 

Fig. 1. (a) Metasurface filter composed of a slab of GaAs 

between layers of patterned Au structures. (b) Typical 

transmittance spectrum. 

IV. DISCUSSION
The presented metal-insulator-metal design works 

by using the Au layers as diffraction gratings, which 

couple free space electromagnetic waves to surface 

plasmon polariton (SPP) resonance modes that occur at 

the GaAs/Au interfaces. These modes are less lossy than 

those that would occur in purely plasmonic structures 

and thus exhibit a higher-Q factor; as required for 

narrowband transmission. The dual gratings are essential, 

as wave vector conservation prohibits SPP modes from 

being directly excited by free space EM waves or from 

directly radiating into free space.  

Given the complexity of this process, deep neural 

network techniques provide an efficient method for 

producing and realizing designs for complex 

metastructures, such as the MIM narrowband filter we 

have presented. A DNN can be trained from the results 

of full wave simulations, with ~104 structures needed 

to provide the training dataset. On the other hand, 

parameter sweeping methods would require several 

orders of magnitude more simulations to assemble a 

library of structures from which a matching design could 

be pulled. Such a design would likely require further 

optimization, whereas one produced by a fully trained 

DNN would already be locally optimal. 

V. CONCLUSION
Hyperspectral imaging requires the creation of 

many narrowband channels to characterize the emission 

spectrum of an object. The channels can potentially be 

created by appropriate metamaterials, but the complex 

interactions between structures and electromagnetic 

waves make it difficult to satisfy the necessary criteria. 

We have proposed deep neural network approaches for 

the inverse-design of metal-insulator-metal narrowband 

filters to overcome these issues. Recurrent neural 

networks are particularly useful for obtaining accurate 

solutions to this problem so that an optimal design can 

be found. 

Fig. 2. (a) Cascaded training process for the inverse 

design network for narrowband Au/GaAs/Au metal-

insulator-metal filters. The decoder recurrent neural 

network (RNN) is pre-trained separately to predict 

transmission spectra from structure parameters and 

then cascaded to an untrained encoder network. The 

combined network is trained to reproduce input 

transmission spectra at the output, with training for the 

decoder network turned off so that only the weights for 

the encoder network are adjusted during training. (b) The 

trained encoder network is detached from the cascaded 

network and is now capable of producing a set of MIM 

structure parameters from a transmission spectrum input. 
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