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Abstract—We benchmark the accuracy and the speed of the 
Acceleware FDTD library vs XFdtd in simulating a microstrip 
patch antenna. The benchmark is based on the sampled electric 
and magnetic fields. The results show that Acceleware performs 
almost three times faster than XFdtd. The relative mean error is 
less than 2.0%. 

Index Terms—Acceleware, FDTD, microstrip antenna, XFdtd. 

I. INTRODUCTION

The finite-difference time-domain (FDTD) method is a well-

established and widely used technique in solving electro- 

magnetic (EM) problems [1]. Fast FDTD computations 

including those in many FDTD commercial solvers were 

achieved by utilizing graphics processing units (GPUs) [2]– 

[5]. However, it is necessary to verify the accuracy of the 

simulation of the electric (E) and magnetic (H) fields before 

fabricating real devices. In this work, the simulations on two 

established software packages are presented, Acceleware 

FDTD library and Remcom’s XFdtd. The Acceleware FDTD 

library is a bundle of C/C++ functions that can be used to build 

applications to solve EM problems [6]. In contrast, Remcom’s 

XFdtd is a full-featured EM simulation solver software package 

[7]. In this paper, the Acceleware FDTD library is benchmarked 

against XFdtd regarding the simulation of the E- and H-fields 

of a patch antenna. The hardware and implementation are 

described below. 

II. DESIGN and SIMULATIONS

For the benchmark, a rectangular microstrip patch antenna is 

simulated used in both XFdtd and the Acceleware application.  

Fig. 1 shows the dimensions of the antenna in yee-cells. Each 

yee-cell has dimensions, ∆𝑥 = 1 × 10−3 , ∆𝑦 = 9.9 × 10−4 , 

and ∆𝑧 = 9.41 × 10−4  meters. Since XFdtd presents a more 

polished interface and features, the modeling effort starts in the 

XFdtd package. The antenna design and material properties are 

provided in [8]. Initially, a voltage source with a Gaussian time 

pulse of a frequency range from 0 to 20 GHz is implemented. 

The S-parameters are extracted from the package to identify the 

antenna resonant frequency at 6.564 GHz. Then the excitation 

is substituted for a sinusoid with frequency 6.564 GHz. 
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Fig. 1. Microstrip patch antenna model. All dimensions are given in 

yee-cells. (∆𝑥 = 1 × 10−3 , ∆𝑦 = 9.9 × 10−4 , and ∆𝑧 = 9.41 × 10−4

meters). 

Once the design is completed in XFdtd, the same antenna 

specification is modeled in Acceleware C/C++. A custom 

voltage source with the same frequency and sinusoidal time 

signal is implemented. Convolutional perfectly matched layer 

(CPML) is modeled based on [9], [10]. Uniform kappa and alpha 

values are used as 1 and 0 respectively, over seven layers of 

CPML. The matching layer covers all sides except the bottom 

one (in the z-direction), which is set to be a Perfect Electrical 

Conductor (PEC) and is used as the ground plane. Following the 

work in [1], [11], the time-step value ∆t is calculated as, 

∆𝑡 ≤
1

𝑐√
1

∆𝑥2+
1

∆𝑦2 +
1

∆𝑧2

,  (1) 

where, c is the speed of light and ∆x, ∆y, and ∆z are the yee-cell 

dimensions for free space in meters. 

A key part of the benchmark is to compare the E- and H-field 

data at the same yee-cell vertices in the two simulations. A 1:1 

mapping between spatial coordinates of the yee-cells is ensured 

in both models between XFdtd and Acceleware. In XFdtd, the 

near-field sensors are used to record the field data from the 

selected locations. The same locations are used in the C/C++ 

code to extract the E- and H-field data at those locations. In total, 

there are three sets of locations, each set containing at least four 

spatial coordinates. Each coordinate yields six data points, 

three for the E-field components and three for the H-field 

components in x-, y-, and z-directions.

ACES JOURNAL, Vol. 35, No. 11, November 2020

Submitted On: August 29, 2020 
Accepted On: September 5, 2020 1054-4887 © ACES

https://doi.org/10.47037/2020.ACES.J.351174

1410

mailto:tfkamuch@uark.edu


Fig. 2. Plot showing simulation times vs the number of FDTD cells. 

Fig. 3. Plot showing accuracy of the simulated E-x & H-x fields at yee-

cell coordinates (13, 11, 3). 

All XFdtd simulations are run on a Ryzen Threadripper 

2990WX 32-core CPU with 128 GB system memory, and a 

Nvidia GTX 1050 GPU, running on Windows 10. We test the 

Acceleware application on an Intel Xeon Silver 4110 8-core 

CPU with 128 GB of system memory, and a Nvidia Tesla V100 

GPU, running on CentOS 7. Field recording instruments are 

disabled in all simulation time tests. 

III. SIMULATION RESULTS

Fig. 2 shows the performance achieved by the Acceleware 

code vs XFdtd packages. Upon increasing the number of cells 

in the FDTD simulation, the execution times were measured for 

the time-marching loop. Each test was executed five times and 

the mean execution time was recorded. The results show that 

the Acceleware code performs significantly faster. However, 

this could be due to the use of the Tesla V100 compared with 

the GTX 1050 in the XFdtd simulation. 

It should be noted that when benchmarking field data, data 

recorded in XFdtd was used as the reference. Furthermore, to 

observe the difference between the two datasets, we calculated 

percentage error following the formulation of equation 2, 

𝐸𝑟𝑟𝑜𝑟 =
|𝐴−𝑋|

𝑋
 ×  100%, (2) 

where, X is peak values of |XFdtd| and A is peak values of 
|Acceleware|. Fig. 3 shows E- and H-field data simulation data 

in the x-direction at yee-cell coordinates (13, 11, 3) in space. 

The results show that the Acceleware code is in good accuracy 

agreement with the XFdtd package. The highest error calculated 

for all locations is less than 5%. Table I shows the mean and 

standard deviation of error at twelve locations in space for each 

field component averaged over 3000 time-steps. 

TABLE I: Table showing summary of Mean and Standard deviation 

of error 

Field E[x] E[y] E[z] H[x] H[y] H[z] 

Mean 0.46% 1.09% 0.55% 1.37% 0.28% 1.00% 

Stdev 0.36% 0.58% 0.45% 0.71% 0.27% 0.60% 

IV. CONCLUSION

We have shown that the Acceleware FDTD library-based 

code results are in good accuracy agreement with the commercial 

package XFdtd. The cases presented here demonstrate a mean 

error less than 2.0%. Furthermore, we have also demonstrated 

that with a state-of-the-art GPU, the Acceleware code achieves 

high-performance simulations. The Acceleware code performed 

almost three times faster than XFdtd. It should be noted that the 

hardware platform is not the same across the comparison. In the 

future, we plan to use identical hardware configurations in 

similar benchmarks. We are also working on modeling more 

complex configurations using the Acceleware FDTD library 

package. 
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