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Abstract – We discuss preconditioning strategies for
solving large Electric Field Integral Equation systems.
We consider several algebraic preconditioners for solving
the dense linear system arising from the Galerkin dis-
cretization of the pertinent integral equation. We show that
approximate inverse methods based on Frobenius-norm
minimization techniques can be very effective to reduce
the number of iterations of Krylov subspace solvers for
this problem class. We describe the implementation of
the preconditioner within the Fast Multipole Algorithm
and we illustrate how to reduce the construction cost
by using static pattern selection strategies. Finally, we
present deflating techniques based on low-rank matrix
updates to enhance the robustness of the approximate
inverse on tough problems. Experiments are reported on
the numerical behavior of the proposed method on a set
of realistic industrial problems.

Keywords:spectral corrections, electromagnetic scattering
applications, and Frobenius-norm minimization method.

I. INTRODUCTION

In this study we consider the scattering problem
from a perfectly conducting objectΩ with boundaryΓ
and assume that the domainΩ is illuminated by an
incident plane wave( ~Einc, ~Hinc) of angular frequency
ω = ck = 2πc/λ, where the constantc is the speed of
light, k is the wavenumber andλ = c/f is the wavelength
(f is the frequency). We concentrate our attention on
the Electric Field Integral Equation (EFIE) formulation
that reads as: find the surface current~j such that for all
tangential test functions~jt, we have,

∫

Γ

∫

Γ

G(|y − x|)
(

~j(x) ·~jt(y)

−

1

k2
divΓ

~j(x) · divΓ
~jt(y)

)

dxdy

=
i

kZ0

∫

Γ

~Einc(x) ·~jt(x)dx. (1)

In equation (1) we denote byG(|y−x|) =
eik|y−x|

4π|y − x|

the Green’s function and byZ0 =
√

µ0/ε0 the character-
istic impedance of vacuum (ε is the electric permittivity
andµ the magnetic permeability). This formulation is the
only one that can be used to model arbitrary geome-
tries, including those with cavities, disconnected parts,
breaks on the surface and is the most difficult to solve
by iterative methods. However, the solution techniques
described in this paper are applicable to other integral
formulations as well, such as the Combined Field Integral
Equation (CFIE) and the Magnetic Field Integral Equation
(MFIE) [1]. The Galerkin discretization of equation (1)
leads to dense and complex linear systems of equations,

Ax = b (2)

whose coefficient matrixA is symmetric for EFIE, non-
symmetric for CFIE and MFIE. Each entry of the co-
efficient matrix is associated with the interaction of a
pair of triangles in the mesh; the entries of the unknown
vectorx are associated with the vectorial flux across an
edge in the mesh, and the right-hand sideb depends
on the frequency and the direction of the illuminating
wave. Although efficient out-of-core direct solvers have
been developed for this problem class [2, 3], the huge
storage requirement remains the main bottleneck to the
viability of integral equation methods for solving high-
frequency scattering problems in electromagnetism. The
use of iterative methods can solve the memory limits
of direct solvers but their success depends much on the
underlying integral formulation. The CFIE formulation
gives rise to well conditioned systems, and the number
of iterations of nonsymmetric Krylov solvers scale as
O(n0.25). On EFIE, Krylov methods scale asO(n0.5),
thus preconditioning is mandatory to use.

II. SOLUTION TECHNIQUES

The design of robust preconditioners for boundary
integral equations can be challenging; many important
research papers (see e.g. [4–7]) have addressed this issue
in recent years. Simple preconditioners like the diagonal
of A, diagonal blocks, or a band can be effective only
when the coefficient matrix has some degree of diagonal
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dominance depending on the integral formulation. Block
diagonal preconditioners are generally more robust than
their point-wise counterparts, but may require matrix
permutations or renumbering of the grid points to cluster
the large entries close to the diagonal.

In Table 1 we report on experiments with various
algebraic preconditioners on a sphere of1 meter length
illuminated at 190 MHz, modeled usingEFIE. The
mesh is depicted in Fig. 1. Although the size is small,
the problem is representative of realistic electromag-
netic scattering calculations and is difficult to solve for
many iterative solvers and preconditioners. Incomplete
factorizations can be effective for solving nonsymmetric
dense systems [5] and hybrid integral formulations [8],
but on the EFIE the triangular factors can be very ill-
conditioned due to the indefiniteness ofA [9]. Although
pivoting may help to circumvent numerical instabilities
and improve the performance [10], the parallelization may
require significant efforts. Approximate inverse methods
are generally less prone to instabilities on indefinite
systems and they are inherently parallel. Owing to the
rapid decay of the discrete Green’s function, the location
of the large entries in the inverse matrix exhibit some
structure, and only a very small number of its entries
have large magnitude compared to the others that are
much smaller. Several preconditioners of this type have
been proposed in electromagnetism (see for instance [4,
7, 11–13]). The approximate inverse can be computed in
factorized or unfactorized form, depending on the fact that
the preconditioner is expressed as a single matrix or as the
product of two (or more) matrices. For a small sphere, we
display in Fig. 2 the sparsity pattern ofA−1 (on the left)
andL−1, the inverse of its Cholesky factor (on the right),
respectively, where all the entries smaller than5.0×10−2

have been dropped after a symmetric scaling such that
maxi |aji| = maxi |`ji| = 1. The inverse factorsL−1

can be totally unstructured (see Fig. 2(b)), while entries
of A−1 decay very rapidly far from the diagonal (see
Fig. 2(a)).

Table 1. Number of iterations required by Krylov solvers
using various preconditioners to reduce the initial residual
by six orders of magnitude on a model problem (see
Fig. 1).

Precon GMRES(50) Bi-CGSTAB UQMR TFQMR
Mj 473 257 354 228

SSOR 245 185 281 266
ILU(0) +500 385 394 439
AINV +500 +500 +500 +500
SPAI 61 48 93 40

In this work, we describe an algebraic approximate
inverse preconditioner based on Frobenius-norm mini-
mization with a static pattern selection strategy for this
problem class. The approximate inverse is computed as
the matrixM that minimizes the Frobenius-norm of the

Fig. 1. Model problem, a sphere of 1 meter length,
illuminated at 190 MHz. The mesh is discretized with
2430 edges.

error matrix ‖I − AM‖F , subject to certain sparsity
constraints. The Frobenius norm allows the decoupling of
the constrained minimization problems inton independent
linear least-squares problems, one for each column (resp.
row) of M when preconditioning from the right (resp.
left). The independence of these least-squares problems
follows immediately from the identity,

‖I − AM‖
2

F =
n

∑

j=1

‖ej − Am•j‖
2

2
(3)

whereej is the jth canonical unit vector andm•j is the
column vector representing thejth column ofM . Both the
construction and the application ofM are inherently par-
allel. The preconditioner is combined with the Multilevel
Fast Multipole Algorithm (MLFMA) [14, 15] exploiting
the box-wise partitioning of the object available in the
MLFMA. MLFMA partitions the mesh of the object by
recursive subdivision into disjoint aggregates of small size
compared to the wavelength, each roughly formed by an
equal number of separate triangles. The number of levels
for the box-wise partitioning is determined so that the size
of the smallest box is of the order ofλ/2. We skip the
description of the MLFMA as it is out of the scope of this
paper; details of the parallel implementation we use are
found in [16, 17]. The nonzero pattern of the approximate
inverse is computed in advance using the sparsity structure
of the near-field matrix. More precisely, the structure
of the column of the preconditioner associated with a
given edge in the mesh is defined by retaining all the
edges within the box itself and one level of neighboring
boxes [18]. Thus the preconditioner is constructed from
a sparse approximation of the dense coefficient matrix
and it has a sparse block structure; each block is a dense
matrix associated with one box. Indeed the least-squares
problems corresponding to edges within the same box
are identical because they are defined using the same
nonzero structure and the same set of entries ofA. It
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means that we only have to compute oneQR factorization
per box. Blocking the columns enables us to reduce
the algorithmic complexity of computingM to O(n).
Parallelism can be exploited by assigning disjoint subsets
of boxes to different processors and performing the least-
squares solutions independently on each processor. We
remark that the preconditioner computed by Frobenius-
norm minimization is not guaranteed to be symmetric; we
may enforce symmetry inM by reflecting at each step the
computed entries with respect to the diagonal, and then
solving a reduced least-squares problem to compute the
remaining entries below the diagonal.
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(a) Sparsity pattern ofsparsified(A−1).
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(b) Sparsity pattern ofsparsified(L−1).

Fig. 2. Sparsity patterns of the inverse ofA (on the
left) and of the inverse of its lower triangular factor (on
the right), where all the entries whose relative magnitude
is smaller than5.0×10−2 are dropped. The test problem,
representative of the general trend, is a small sphere.

In our numerical experiments, reported in the next
section, we observe a lack of robustness of the ap-
proximate inverse on tough configurations due to the
presence of small eigenvalues that cluster near zero in
their natural trajectory towards point one of the spec-

trum of the preconditioned matrix under the action of
the preconditioner. This consideration motivates us to
introduce a stabilization step after computingM , which
deflates a small group of eigenvalues close to zero in the
spectrum ofMA. Deflating techniques have proved to be
useful to accelerate the convergence of iterative methods
for general linear systems (e.g. [19–21]). We consider
equation (2) and we denote byM1 the left preconditioner,
meaning that we solve,

M1Ax = M1b. (4)

We assume that the preconditioned matrixM1A is
diagonalisable, that is,

M1A = V ΛV −1 (5)

with Λ = diag(λi), where |λ1| ≤ . . . ≤ |λn| are the
eigenvalues andV = (vi) the associated right eigen-
vectors. We denote byU = (ui) the associated left
eigenvectors; we then haveUHV = diag(uH

i vi), with
uH

i vi 6= 0, ∀i. Let Vε be the set of right eigenvectors
associated with the set of eigenvaluesλi with |λi| ≤ ε.
Similarly, we define byUε the corresponding subset of
left eigenvectors.

Theorem 1: Let

Ac = UH
ε M1AVε,

Mc = VεA
−1

c UH
ε M1

and
M = M1 + Mc.

Then MA is diagonalisable and we haveMA =
V diag(ηi)V

−1 with
{

ηi = λi if |λi| > ε,
ηi = 1 + λi if |λi| ≤ ε.

Ac represents the projection of the matrixM1A on
the coarse space defined by the approximate eigenvectors
associated with its smallest eigenvalues.Proof

We first remark thatAc = diag(λiu
H
i vi) with |λi| ≤

ε and soAc is nonsingular.Ac represents the projection of
the matrixM1A on the space spanned by the approximate
eigenvectors associated with its smallest eigenvalues.
Let V = (Vε, Vε̄), whereVε̄ is the set of(n − k) right
eigenvectors associated with eigenvalues|λi| > ε.
Let Dε = diag(λi) with |λi| ≤ ε and Dε̄ = diag(λj)
with |λj | > ε.
The following relations hold:MAVε = Vε(Dε + Ik)
where Ik denotes the(k × k) identity matrix, and
MAVε̄ = Vε̄Dε̄ sinceUH

ε Vε̄ = 0; then we have

MAV = V

(

Dε + Ik 0
0 Dε̄

)

.
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Theorem 2: Let W be such that

Ãc = WHAVε has full rank,

M̃c = VεÃ
−1

c WH

and
M̃ = M1 + M̃c.

ThenM̃A is similar to a matrix whose eigenvalues are
{

ηi = λi if |λi| > ε,
ηi = 1 + λi if |λi| ≤ ε.

Proof
With the same notation as for Proposition 1 we have:
M̃AVε = Vε(Dε + Ik) and,M̃AVε̄ = Vε̄Dε̄ + VεC with
C = A−1

c WHAVε̄; then we have

M̃AV = V

(

Dε + Ik C
0 Dε̄

)

.

For right preconditioning, that isAM1y = b, similar
results hold. We should point out that in the nonsym-
metric case a natural choice exists for the operatorW ,
i.e. to selectW = Vε, that saves the computation of
left eigenvectors. These formulations enable us to move
to one any set of eigenvalues lying in any particular
region of the spectrum; if for some particular applica-
tions some eigenvalues different from the smallest ones
perturb the convergence they can be removed by the
same technique. The application of the correction update
at each iteration step costs2nk + k2, where k is the
size of the coarse space. The novelty of this study with
respect to that conducted in [19] is to use MLFMA for
computing approximations to the smallest eigenvalues and
their corresponding approximate eigenvectors. We use the
Implicitly Restarted Arnoldi Method implemented in the
ARPACK package [22] that only requires matrix-vector
products for the spectral computation. Thus the resulting
preconditioner is nearly matrix-free.

III. PERFORMANCE ANALYSIS

In Table 2 we report on the results of the approximate
inverse (referred to asSPAI) of an experiment on the
Cobra problem (Fig. 3(a),n = 60695) and on the
Almond problem (Fig. 3(b),n = 104793), two standard
test cases in the electromagnetic community. For both
geometries, the scattering problem is modeled using the
EFIE and the integral equation is discretized by the
Galerkin method. We use the Fast Multipole Method for
computing approximate matrix-vector products; we refer
to [17] for the numerical implementation of the multipole

code. The experiment are run in single precision on eight
processors of a Compaq Alpha server. The Compaq Alpha
server is a cluster of symmetric multiprocessors. Each
node consists of four DEC Alpha processors (EV 6, 1.3
GFlops peak) that share 512 MB of memory. We observe
the favorable numerical scalability of the preconditioner
for reasonably large value of the restart parameter and the
O(n) complexity of computingM thanks to the blocking
strategy.

(a) The Cobra problem. It represents an air intake and has
size67.9 cm × 23.3 cm × 11 cm.

(b) The Almond problem. The size is2.5 m.

(c) The aircraft problem: an industrial civil
aircraft from a European company. It repre-
sents a real-life model problem in an industrial
context.

Fig. 3. Geometries considered for the numerical exper-
iments. Courtesy of EADS-CCR Toulouse.

In Table 3, we show the parallel scalability of the
implementation of the preconditioner in the FMM code
on an industrial civil aircraft from a European company,
a real-life model problem in an industrial context (the
mesh is depicted in Fig. 3(c)). We solve systems of
increasing size on a larger number of processors, keeping
the number of unknowns per processor constant. It can
be observed the very good parallel scalability of the
construction and of the application of the preconditioner
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typical of approximate inverse methods; for the matrix-
vector product operation, thenlogn factor appears in the
results.

Table 2. Number of iterations and elapsed time required
to reduce the initial residual by10−3 on 8 processors of
the Compaq machine, except those marked with(k), that
were run onk processors.

Almond

Size Density SPAI Time SPAI GMRES(∞) GMRES(120)
Iter Time Iter Time

104793 0.19 6m 234 20m 253 17m
419172 0.05 21m 413 2h 44m 571 2h 26m
943137 0.02 49m 454 3h 35m(32) 589 5h 55m

Cobra

Size Density SPAI Time SPAI GMRES(∞) GMRES(120)
Iter Time Iter Time

60695 0.24 2m 369 26m 516 23m
179460 0.09 7m 353 1h 11h 406 1h 2m

Table 3. Parallel scalability of the aircraft problem
(see Figure 3(c)).

Problem
size

Nb procs
Construction
time (sec)

Elapsed time
precond (sec)

Elapsed time
mat-vec (sec)

112908 8 513 0.39 1.77
221952 16 497 0.43 2.15
451632 32 509 0.48 2.80
900912 64 514 0.60 3.80

Finally, in Tables 4 to 6 we analyze the effect of
using low-rank deflation techniques on the robustness of
the iterative method. We study initially the numerical
behavior of the preconditioner on a set of small test
problems that are representative of realistic scattering
calculations in electromagnetism. The model problems
are:

Example 1: a cylinder with a hollow inside (110 MHz,
n = 1080);

Example 2: a cylinder with a break on the surface (60
MHz,n = 1299);

Example 3: a satellite (220 MHz,n = 1701);
Example 4: a parallelepiped (420 MHz,n = 2016);

and
Example 5: a sphere (190 MHz,n = 2430).

For physical consistency, we have set the frequency
of the incident wave so that there are about ten dis-
cretization points per wavelength. In each case, we take
as initial guessx0 = 0, and the right-hand side is
such that the exact solution of the system is known. We
consider the formulation described in Theorem 2 and we
apply the spectral updates on top of the preconditioned
systemAM1y = b. In Table 4 we show the number
of iterations required by GMRES to obtain convergence
for increasing size of the coarse space up to 20. The

Table 4. Number of iterations required by GMRES and
SQMR preconditioned by a Frobenius-norm minimization
method updated with spectral corrections to reduce the
normwise backward error by10−8 for increasing size of
the coarse space.

Size of the
coarse space

GMRES(m), Toler. 1e-8 SQMR

m=10 m=30 m=50 m=80 m=110

Example 1
Unprec. +1500 +1500 +1500 651 423 271

0 358 213 144 79 79 103
4 313 169 109 68 68 78
8 294 138 76 58 58 60

12 190 96 52 51 51 52
16 184 80 47 47 47 40
20 174 61 44 44 44 44

Example 2
Unprec. +1500 +1500 +1500 +1500 +1500 439

0 +1500 +1500 496 311 198 161
4 279 192 152 125 93 117
8 188 147 129 90 84 97

12 196 148 131 91 83 82
16 183 137 114 74 74 73
20 168 130 100 69 69 68

Example 3
Unprec. +1500 +1500 +1500 1404 1193 519

0 268 174 130 79 79 92
4 259 150 99 66 66 77
8 225 109 77 58 58 66

12 117 81 56 52 52 56
16 105 74 49 49 49 48
20 96 58 44 44 44 46

Example 4
Unprec. 1100 566 434 309 262 185

0 145 113 90 71 71 61
4 125 97 74 61 61 54
8 101 78 58 56 56 49

12 86 70 52 51 51 42
16 81 64 49 49 49 41
20 77 62 47 47 47 39

Example 5
Unprec. 1241 374 277 216 208 140

0 297 87 75 66 66 51
4 345 66 64 58 58 40
8 55 43 40 40 40 33

12 52 43 38 38 38 34
16 52 44 39 39 39 34
20 53 45 40 40 40 34

numerical experiments are performed in double preci-
sion complex arithmetic on a SGI Origin 2000 and the
number of iterations are for right preconditioning. We
observe that the linear systems are difficult to solve as
GMRES does not converge or converges slowly with no
preconditioner. We can see that the introduction of the
low-rank updates can remarkably accelerate the iterative
solution. By selecting up to 10 eigenpairs the number of
iterations decreases by at least a factor of two on most of
the reported experiments and convergence becomes nearly
independent from the restart parameter. On Example 2,
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the preconditioning updates enable fast convergence of
GMRES with a low restart whereas no convergence was
obtained in 1500 iterations without updates.

Table 5. Number of amortization vectors required by
the IRAM algorithm to compute approximate eigenvalues
nearest zero and the corresponding right eigenvectors.
The computation of the amortization vectors is relative
to GMRES(10) and a tolerance of10−8.

Size of the
coarse space

Number of Amortization Vectors

Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5
4 7 1 28 9 -
8 4 1 4 6 1

12 2 1 2 4 1
16 2 1 2 7 1
20 4 1 2 6 1

Table 6. Experiments using a sparse approximate
inverse preconditioner and spectral deflation combined
with MLFMA.

Cobra problem,n = 60695 - frequency = 10.0 GHz
Dimension of the coarse space

0 5 10 15
GMRES(10) 2719 (1h 10m) 1458 (42m) 594 (12m) 517 (11m)
GMRES(∞) 378 (18m) 262 ( 9m) 216 ( 7m) 188 ( 6m)

Almond problem,n = 104793 - frequency = 2.6 GHz
Dimension of the coarse space

0 10 30 50
GMRES(50) 1524 (1h 17m) 883 (45m) 368 (20m) 284 (5m)
GMRES(∞) 242 (14m) 134 (9m) 92 (6m) 77 (6m)

In Table 5 we show the number ofamortization
vectors relative to GMRES(10), that is the number of
right-hand sides that have to be considered to amortize
the extra cost for the eigencomputation. In bistatic radar
cross section calculations, linear systems with the same
coefficient matrix and up-to hundreds of different right-
hand sides are solved, ranging over the complete set of
directions between the transmitter and the receiver. In
Table 6 the low-rank deflation technique is combined with
the FMM. We report on an experiment on the Cobra
problem (Fig. 3(a),n = 60695) and on the Almond
problem (Fig. 3(b),n = 104793). We see on the Cobra
problem that with a preconditioning update of only10
eigenvectors and setting very low restart in GMRES, we
are able to reduce the number of iterations by nearly
a factor of six; a significant reduction of both number
of iterations and solution time is also observed on the
Almond problem as well owing to the fact that we
use low-accurate MLFMA for computing the spectral
information. On that computer, the temporary disk space
that can be used by the out-of-core solver is around 189

GB. On that hardware the CPU time is also reduced by
a factor of six.

IV. CONCLUDING REMARKS

We have presented experiments with an adaptive pre-
conditioning method constructed on top of an approximate
inverse preconditioner for solving dense linear systems
of equations arising in electromagnetic scattering applica-
tions. The results show that the proposed method can be
very effective to accelerate the convergence of iterative
Krylov solvers. Sparse approximate inverses based on
Frobenius-norm minimization are very good candidates
for preconditioning this problem class for their inherent
parallelism and their proved numerical stability on indef-
inite systems. We have shown that the construction cost
can be controlled using static pattern selection strategies
and the performance can be enhanced significantly using
deflating techniques.
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