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Abstract — We discuss preconditioning strategies forthe Green’s function and b, = +/10/co the character-
solving large Electric Field Integral Equation systems.istic impedance of vacuunk (s the electric permittivity
We consider several algebraic preconditioners for solvingnd i the magnetic permeability). This formulation is the
the dense linear system arising from the Galerkin disonly one that can be used to model arbitrary geome-
cretization of the pertinentintegral equation. We show thatries, including those with cavities, disconnected parts,
approximate inverse methods based on Frobenius-norbreaks on the surface and is the most difficult to solve
minimization techniques can be very effective to reduceby iterative methods. However, the solution techniques
the number of iterations of Krylov subspace solvers fordescribed in this paper are applicable to other integral
this problem class. We describe the implementation oformulations as well, such as the Combined Field Integral
the preconditioner within the Fast Multipole Algorithm Equation (CFIE) and the Magnetic Field Integral Equation
and we illustrate how to reduce the construction cos{MFIE) [1]. The Galerkin discretization of equation (1)
by using static pattern selection strategies. Finally, wdeads to dense and complex linear systems of equations,
present deflating techniques based on low-rank matrix

updates to enhance the robustness of the approximate Ax =10 (2)

inverse on tough problems. Experiments are reported on

. . v%/hose coefficient matrid is symmetric for EFIE, non-
the numerical behavior of the proposed method on a seS mmetric for CFIE and MEIE. Each entrv of the co-
of realistic industrial problems. Y ! ' Y

efficient matrix is associated with the interaction of a
Keywords:spectral corrections, electromagnetic scatteringpair of triangles in the mesh; the entries of the unknown
applications, and Frobenius-norm minimization method. vectorz are associated with the vectorial flux across an
edge in the mesh, and the right-hand sidelepends
I. INTRODUCTION on the frequency and the direction of the illuminating
wave. Although efficient out-of-core direct solvers have
In this study we consider the scattering problempeen developed for this problem class [2, 3], the huge
from a perfectly conducting objed? with boundaryl'  storage requirement remains the main bottleneck to the
and assume that the domain is illuminated by an yiapjlity of integral equation methods for solving high-
incident plane wave(Einc, Hinc) Of angular frequency frequency scattering problems in electromagnetism. The
w = ck = 2mc/), where the constant is the speed of ge of jterative methods can solve the memory limits
light, & is the wavenumber antl= ¢/ f is the wavelength ¢ girect solvers but their success depends much on the
(f is the frequency). We concentrate our attention onynderlying integral formulation. The CFIE formulation
the Electric Field Integral Equation (EFIE) formulation gjyes rise to well conditioned systems, and the number
that reads as: find the surface currgrduch that for all  of jterations of nonsymmetric Krylov solvers scale as

tangential test functiong’, we have, O(n°25). On EFIE, Krylov methods scale a8(n®?),
. . thus preconditioning is mandatory to use.
[ [ 6ty = () 7w
rJr [1. SOLUTION TECHNIQUES
1 . = . 2,
_ﬁdwFJ(x) ' d“’FJt(y)) dzdy The design of robust preconditioners for boundary

i . -, integral equations can be challenging; many important

= k—ZO/FEmc(SC) j(z)dx. (1)  research papers (see e.g. [4-7]) have addressed this issue
in recent years. Simple preconditioners like the diagonal

etkly—z| of A, diagonal blocks, or a band can be effective only

In equation (1) we denote by(jy —a|) = 4|y — x| when the coefficient matrix has some degree of diagonal
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eree; is the jth canonical unit vector anth,; is the
lumn vector representing thith column ofM . Both the
%onstruction and the application 8f are inherently par-
allel. The preconditioner is combined with the Multilevel
Fast Multipole Algorithm (MLFMA) [14, 15] exploiting
the box-wise partitioning of the object available in the
FLFMA. MLFMA partitions the mesh of the object by
recursive subdivision into disjoint aggregates of small size
Scompared to the wavelength, each roughly formed by an
equal number of separate triangles. The number of levels
for the box-wise partitioning is determined so that the size
of the smallest box is of the order of/2. We skip the
Table 1. Number of iterations required by Krylov solvers gescription of the MLFMA as it is out of the scope of this
USing various preconditioners to reduce the initial reSiduabaper; details of the para||e| imp|ementation we use are
by six orders of magnitude on a model problem (se€ound in [16, 17]. The nonzero pattern of the approximate

dominance depending on the integral formulation. Block
diagonal preconditioners are generally more robust than
their point-wise counterparts, but may require matrix PN
permutations or renumbering of the grid points to cluster ,/»’f??ﬁ%‘%&‘ .
th - - Y AVAYANAN Y v N Y

e large entries close to the diagonal. Jg%%ﬂ%%ﬁﬂﬂm\,

In Table 1 we report on experiments with various ‘ﬁ‘%&“ﬂﬂvmﬁ\

algebraic preconditioners on a spherelofneter length ﬂ%wNAVAVAVAVAVAVAVAVmﬁ
illuminated at 190 MHz, modeled usingEFIE. The ‘Qg&'%{#g%%&ﬁ
mesh is depicted in Fig. 1. Although the size is small, \‘%QNNAVAVVVAVAuu i
the problem is representative of realistic electromag- \'\F“‘ e
netic scattering calculations and is difficult to solve for N
many iterative solvers and preconditioners. Incomplete
factorizations can be effective for solving nonsymmetric
dense systems [5] and hybrid integral formulations [8],Fig. 1. Model problem, a sphere of 1 meter length,
but on the EFIE the triangular factors can be very ill-jjjyminated at 190 MHz. The mesh is discretized with
conditioned due to the indefiniteness 4f[9]. Although 2430 edges.
pivoting may help to circumvent numerical instabilities
and improve the performance [10], the parallelization may
require significant efforts. Approximate inverse methodserror matrix |I — AM]||r, subject to certain sparsity
are generally less prone to instabilities on indefiniteconstraints. The Frobenius norm allows the decoupling of
systems and they are inherently parallel. Owing to thehe constrained minimization problems intindependent
rapid decay of the discrete Green’s function, the locationinear least-squares problems, one for each column (resp.
of the large entries in the inverse matrix exhibit somerow) of M when preconditioning from the right (resp.
structure, and only a very small number of its entrieseft). The independence of these least-squares problems
have large magnitude compared to the others that amllows immediately from the identity,
much smaller. Several preconditioners of this type have n
been proposed in electromagnetism (see for instance [4, |1 —AM|2% = Z le; — Amaj]|2 ()
7, 11-13]). The approximate inverse can be computed in =
factorized or unfactorized form, depending on the fact thabvh
the preconditioner is expressed as a single matrix or as t%
product of two (or more) matrices. For a small sphere, wi
display in Fig. 2 the sparsity pattern df~* (on the left)
andL~!, the inverse of its Cholesky factor (on the right),
respectively, where all the entries smaller tHahx 102

max; |a;;| = max; |¢;;] = 1. The inverse factord ~*
can be totally unstructured (see Fig. 2(b)), while entrie
of A= decay very rapidly far from the diagonal (see

Fig. 2(a)).

Fig. 1). inverse is computed in advance using the sparsity structure
Precon | GMRES(50) Bi-CGSTAB UQMR TFQMR of the near-field matrix. More precisely, the structure
M; 473 257 354 228 of the column of the preconditioner associated with a
SSOR 245 185 281 266 given edge in the mesh is defined by retaining all the
ILU(0) +500 385 394 439 o . : .
AINV +500 +500 +500 +500 edges within the box itself and one level of neighboring
SPAI 61 48 93 40 boxes [18]. Thus the preconditioner is constructed from

a sparse approximation of the dense coefficient matrix

In this work, we describe an algebraic approximateand it has a sparse block structure; each block is a dense

inverse preconditioner based on Frobenius-norm minimatrix associated with one box. Indeed the least-squares

mization with a static pattern selection strategy for thisproblems corresponding to edges within the same box

problem class. The approximate inverse is computed aare identical because they are defined using the same
the matrix M that minimizes the Frobenius-norm of the nonzero structure and the same set of entriesAofit
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means that we only have to compute @pR factorization trum of the preconditioned matrix under the action of
per box. Blocking the columns enables us to reducéhe preconditioner. This consideration motivates us to
the algorithmic complexity of computing/ to O(n).  introduce a stabilization step after computifg, which
Parallelism can be exploited by assigning disjoint subsetdeflates a small group of eigenvalues close to zero in the
of boxes to different processors and performing the leastspectrum ofAf A. Deflating techniques have proved to be
squares solutions independently on each processor. Weseful to accelerate the convergence of iterative methods
remark that the preconditioner computed by Frobeniusfor general linear systems (e.g. [19-21]). We consider
norm minimization is not guaranteed to be symmetric; weequation (2) and we denote By, the left preconditioner,
may enforce symmetry i/ by reflecting at each step the meaning that we solve,

computed entries with respect to the diagonal, and then

solving a reduced least-squares problem to compute the My Az = Myb. )

remaining entries below the diagonal. We assume that the preconditioned mathik A is
diagonalisable, that is,

MiA=VAV~? ®)

with A = diag()\;), where |\ | < ... < |\,]| are the
eigenvalues and” = (v;) the associated right eigen-
vectors. We denote by = (u;) the associated left
eigenvectors; we then havé”’V = diag(uflv;), with
uflv; # 0,Vi. Let V. be the set of right eigenvectors
associated with the set of eigenvalugswith |\;| < .
Similarly, we define byU. the corresponding subset of
left eigenvectors.
Theorem 1: Let

A, =UEM AV,
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Density = 8.75%

(a) Sparsity pattern afparsified@d ). M, = VaAc_lUEHMl

and
M = M, + M..

Then M A is diagonalisable and we havel A =
Vdiag(n;)V~! with

{ ni:)\i if |)\z| > e,
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A, represents the projection of the mati¥; A on
the coarse space defined by the approximate eigenvectors
associated with its smallest eigenvaluesoof
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(b) Sparsity pattern ofparsified. ).

We first remark thatd,. = diag(\jufv;) with |\;] <
¢ and soA.. is nonsingularA, represents the projection of
the matrixM; A on the space spanned by the approximate
eigenvectors associated with its smallest eigenvalues.
etV = (Vz, V), whereV: is the set of(n — k) right
eigenvectors associated with eigenvaliie$ > .
Let D. = diag(\;) with |\;| < € and Dz = diag()\;)
with | ;] > e.
tThe following relations hold:M AV, = V.(D. + Ij)

In our numerical experiments, reported in the nex h I d he(k x &) ideni . q
section, we observe a lack of robustness of the apW ere I, denotes t % x k) identity matrix, an
UMVz = 0; then we have

proximate inverse on tough configurations due to theMAVf = VzDe since

resence of small eigenvalues that cluster near zero in

P g MAV_V(DES—I’“ 1()) >
=

Fig. 2.  Sparsity patterns of the inverse 4f(on the
left) and of the inverse of its lower triangular factor (on
the right), where all the entries whose relative magnitud
is smaller tharb.0 x 10~2 are dropped. The test problem,
representative of the general trend, is a small sphere.

their natural trajectory towards point one of the spec-
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code. The experiment are run in single precision on eight

processors of a Compaq Alpha server. The Compaq Alpha

server is a cluster of symmetric multiprocessors. Each

A, = WHAV. has full rank, node consists of four DEC Alpha processors (EV 6, 1.3

- R GFlops peak) that share 512 MB of memory. We observe
M.=V-AZW the favorable numerical scalability of the preconditioner

and for reasonably large value of the restart parameter and the
M = M, + M.,. O(n) complexity of computingV/ thanks to the blocking

strategy.

Theorem 2: Let W be such that

Then M A is similar to a matrix whose eigenvalues are

ni=N\ it |\ > e, K

X
F
Pr oof
With the same notation as for Proposition 1 we hg

MAV, = V.(D. + I,) and, M AVz = V:D: + V.C with
_ A-1yi7H AT/ -

C'=A;"WHAVe then we have (@) The Cobra problem. It represents an air intake and has

D.+1, C ) Size67.9 cm x 23.3 cm x 11 cm.

MAV:V( 0 D

For right preconditioning, that igl M,y = b, similar
results hold. We should point out that in the nonsym-
metric case a natural choice exists for the oper&tgr
i.e. to selectiV = V., that saves the computation of
left eigenvectors. These formulations enable us to move
to one any set of eigenvalues lying in any particular
region of the spectrum; if for some particular applica- ! z
tions some eigenvalues different from the smallest ones
perturb the convergence they can be removed by the
same technique. The application of the correction update
at each iteration step costk + k2, wherek is the
size of the coarse space. The novelty of this study with
respect to that conducted in [19] is to use MLFMA for
computing approximations to the smallest eigenvalues and
their corresponding approximate eigenvectors. We use the
Implicitly Restarted Arnoldi Method implemented in the

(b) The Almond problem. The size &5 m.

ARPACK package [22] that only rgquires matrix-vectpr (© The aircraft problem: an industrial civil
products for the spectral computation. Thus the resulting aircraft from a European company. It repre-
preconditioner is nearly matrix-free. ggmgxe{real-hfe model problem in an industrial

I1l. PERFORMANCE ANALYSIS Fig. 3. Geometries considered for the numerical exper-

iments. Courtesy of EADS-CCR Toulouse.

In Table 2 we report on the results of the approximate
inverse (referred to as§ PAI) of an experiment on the In Table 3, we show the parallel scalability of the
Cobra problem (Fig. 3(a)p = 60695) and on the implementation of the preconditioner in the FMM code
Almond problem (Fig. 3(b)n = 104793), two standard on an industrial civil aircraft from a European company,
test cases in the electromagnetic community. For botla real-life model problem in an industrial context (the
geometries, the scattering problem is modeled using thmesh is depicted in Fig. 3(c)). We solve systems of
EFIE and the integral equation is discretized by theincreasing size on a larger number of processors, keeping
Galerkin method. We use the Fast Multipole Method forthe number of unknowns per processor constant. It can
computing approximate matrix-vector products; we refebe observed the very good parallel scalability of the
to [17] for the numerical implementation of the multipole construction and of the application of the preconditioner
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typical of approximate inverse methods; for the matrix-Table 4. Number of iterations required by GMRES and

vector product operation, théogn factor appears in the SQMR preconditioned by a Frobenius-norm minimization

results. method updated with spectral corrections to reduce the
normwise backward error by0—2 for increasing size of

Table 2. Number of iterations and elapsed time requiredhe coarse space.

to reduce the initial residual by0—3 on 8 processors of A
the Compaq machine, except those marked Withthat ci';’;;’fsi‘:ce GMRES(m), Toler. 1e-8 SQMR
were run onk processors. m=10 m=30 m=50 m=80 m=11
Almond
. - - GMRES GMRES(120 Example 1
Size Density SPAI Time SPA or Tifg’) er Tir(ne ) Unprec. +1500 +1500 +1500 651  423| 271
104793 0.19 6m |234  20m 253 17m g gig iég igg ;g gg 1%’
419172 0.05 21m 413 2h 44m [571 2h 26m 8 294 138 76 58 58 60
32)
943137 0.02 49m | 454 3h 35m32) |589 5h 55m b 1% % 5 o o s
Cobra 16 184 80 47 47 47 40
20 174 61 44 44 44 | 44
Size Density SPAI Time SpA] GMRES(o) | GMRES(120)
Iter Time |lter  Time Example 2
60695 0.24 2m [369  26m [516  23m Unprec. +1500 +1500 +1500 +1500 +1500 439
179460 0.09 7m  [353  1h1lh [406 1h2m 0 +1500 +1500 496 311  198| 161
4 2719 192 152 125 93 | 117
8 188 147 129 90 84 | 97
12 196 148 131 91 83| 82
16 183 137 114 74 74| 73
Table 3. Parallel scalability of the aircraft problem 20 168 130 100 69 69| 68
(see Figure 3(c)). Example 3
Problem | o | Construction | Elapsed time | Elapsed time Unprec. +1500  +1500 +1500 1404 1193 519
size P time (sec) precond (sec) | mat-vec (sec) 2 ggg gg 138 gg ;g 35
112908 8 513 0.39 177
221952 16 497 043 2.15 : 225 109 v > Bl %
: : 12 117 81 56 52 52 56
451632 32 509 0.48 2.80 16 105 74 49 49 29 | a8
900912 64 514 0.60 3.80 20 96 58 44 44 44 46
Example 4
. : Unprec. 1100 566 434 309  262] 185
_ Finally, in Tables_, 410 6 we analyze the effect of po 145 113 2 71 1| el
using low-rank deflation techniques on the robustness of 4 125 97 74 61 61 54
the iterative method. We study initially the numerical S oS
behavior of the preconditioner on a set of small test 16 81 64 49 49 49 41
problems that are representative of realistic scattering 20 ” 62 47 47 47 39
calculations in electromagnetism. The model problems Example 5
are: Unprec. 1241 374 277 216 208] 140
) : . _ 0 297 87 75 66 66 51
Example 1: a cylinder with a hollow inside (110 MHz, 4 345 66 64 58 58 | 10
n = 1080); 8 55 43 40 40 40 33
Example 2: a cylinder with a break on the surface (60 12 52 4 38 38 38 34
) 16 52 44 39 39 39 34
MHz,n = 1299), 20 53 45 40 40 40 34
Example 3: a satellite (220 MHz, = 1701);
Example 4: a parallelepiped (420 MHz, = 2016);
and
Example 5: a sphere (190 MHz, = 2430). numerical experiments are performed in double preci-

For physical consistency, we have set the frequencgion complex arithmetic on a SGI Origin 2000 and the
of the incident wave so that there are about ten disnumber of iterations are for right preconditioning. We
cretization points per wavelength. In each case, we takebserve that the linear systems are difficult to solve as
as initial guesszy = 0, and the right-hand side is GMRES does not converge or converges slowly with no
such that the exact solution of the system is known. Wepreconditioner. We can see that the introduction of the
consider the formulation described in Theorem 2 and wdow-rank updates can remarkably accelerate the iterative
apply the spectral updates on top of the preconditionedolution. By selecting up to 10 eigenpairs the number of
systemAM,;y = ©b. In Table 4 we show the number iterations decreases by at least a factor of two on most of
of iterations required by GMRES to obtain convergencehe reported experiments and convergence becomes nearly
for increasing size of the coarse space up to 20. Thendependent from the restart parameter. On Example 2,
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the preconditioning updates enable fast convergence @B. On that hardware the CPU time is also reduced by
GMRES with a low restart whereas no convergence waa factor of six.
obtained in 1500 iterations without updates.

IV. CONCLUDING REMARKS
Table 5. Number of amortization vectors required by
the IRAM algorithm to compute approximate eigenvalues ~ We have presented experiments with an adaptive pre-
nearest zero and the corresponding right eigenvector§onditioning method constructed on top of an approximate
The computation of the amortization vectors is relativelnverse preconditioner for solving dense linear systems

to GMRES(10) and a tolerance 06~%. of equations arising in electromagnetic scattering applica-
tions. The results show that the proposed method can be

very effective to accelerate the convergence of iterative

Ci';z;’fst;:ce Number of Amartization Vectors Krylov solvers. Sparse approximate inverses based on
Ex.1 Ex.2 Ex 3 Ex4 Ex5 Frobenius-norm minimization are very good candidates

4 7 1 28 9 - for preconditioning this problem class for their inherent

12 ‘2" i ‘2‘ 2 i parallelism and their proved numerical stability on indef-
16 2 1 2 7 1 inite systems. We have shown that the construction cost
20 4 1 2 6 1 can be controlled using static pattern selection strategies
and the performance can be enhanced significantly using

deflating techniques.
Table 6. Experiments using a sparse approximate
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