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Abstract – A new kind of fast spectral domain method is
presented for the solution of integral equations related to
planar structures embedded in multilayered media. It is
based on the well-known spectral domain Green’s func-
tion for multilayered media to construct a diagonalized
translation operator on the Cartesian wavenumber plane to
efficiently evaluate the matrix-vector multiplications dur-
ing the iterative solution process. This allows fast integral
equation solutions for arbitrary layer arrangements similar
as with fast multipole methods (FMM) for structures in
free space. The convergence properties of the involved
spectral domain integrals related to the group interactions
are drastically improved by different integration path de-
formation strategies combined with enhanced Legendre-
Filon and Laguerre quadrature techniques. Together with
the use of diakoptic preconditioners, only a small number
of iterations are required with the pertinent Krylov sub-
space solvers, typically leading to a significantly higher
computational performance than comparable commercial
integral equation solvers.

Keywords: Planar-3D-structures, multilayered media, fast
integral equation solver, adaptive integration path defor-
mation, extended quadrature techniques, and diakoptic
preconditioner.

I. INTRODUCTION

A large class of structures like microstrip or com-
bined slot/microstrip configurations can be modeled as
so-called Planar-3D structures embedded within multilay-
ered medias. Using the method of moments (MoM) in
combination with the Green’s function of the multilayered
environment reduces the discretization effort to the strip
and/or slot areas of the structure. However, due to the
growing complexity of microwave circuits and antennas,
the number of unknowns can easily become prohibitive, if
standard MoM implementations are applied. To overcome
the large computational effort of the standard MoM,
different fast integral equation solvers for microstrip struc-
tures have been proposed. First implementations were
based on a combination of the conjugate gradient method
with the fast Fourier transform (CG-FFT) for structures in
free space [1,2] and its extension to microstrip structures

[3]. A further extension using the discrete complex-
image technique for the characterization of the layered
medium was presented in [4]. Other approaches make use
of the adaptive integral method (AIM) for accelerating
the matrix-vector products combined as well with the
complex-image technique [5]. Methods based on the fast
multipole method (FMM) and complex-image techniques
are given in [6,7]. However, the numerical efficiency
of the complex-image technique may strongly depend
on the number of required complex images. Another
approach employing a fast multipole method (FMM) can
be found in [8] but is restricted to a thin grounded
dielectric slab. These drawbacks are partly overcome by
the fast inhomogeneous plane wave algorithm, presented
in [9], which is well suited for scatterers located above
an arbitrary multilayered medium or for buried objects.

In contrast to these methods, an approach completely
based on the spectral domain Green’s function of the
multilayered medium is presented in this paper. The cor-
responding Green’s function can be easily computed for
arbitrary layer/metallization arrangements with the same
numerical performance and accuracy, even for problem-
atic configurations like e.g. thin glue layers embedded in
much thicker sub/superstrate environments. The method
is based on the construction of a diagonalized translation
operator on the cartesian wavenumber plane to compute
the far interactions between non-overlapping groups of
basis functions. The interactions of near-neighbour groups
are computed using the matrix entries of the conventional
MoM analogously to other fast integral equation formu-
lations. The far interactions are formulated as spectral
domain integrals but have bad convergence properties
if only real cartesian wavenumbers are used. Thus, an
extension on complex integration paths is used on one
hand to circumvent singularities of the integrand [11] and
on the other hand to get an exponential decay of the
integrands. To achieve this decay , the proposals given
in [12] are modified in such a way that the employed
integration paths do not cross any singularities of the
integrands. However, for large group separations the nu-
merical efficiency is still affected by an oscillatory behav-
ior of the integrands. These oscillations are compensated
with some modifications of a Legendre-Filon quadrature
given in [11] as well. Furthermore, the exponential decay
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rate on the modified integration paths depends on the
lateral distance of the participated groups which makes
it difficult to account for the fast decay rate concerning
group interactions with large lateral distances. Therefore
an extended Laguerre quadrature technique is introduced
which provides practically the same decay rate for all
group far interactions. The overall performance of this
approach is decisively improved by employing Krylov
subspace solvers with extended diakoptic preconditioners
[13] for the treatment of the linear systems of equations
leading to a very fast convergence of the iterative solution
process for a large class of structures. Since our method
is still a two-level approach, the numerical complexity for
the matrix-vector product evaluation reaches ≈ O(N1.5)
with an optimized group size [14] whereas we get roughly
≈ O(N) for the storage complexity.

II. FORMULATION

A. General Outline of The Fast Algorithm
In a first step, the structure to be analyzed is decom-

posed into groups, which comprise typical components
like couplers, patches, spiral inductors etc. (see Fig.
1). In this context, also a subsequent partitioning into
small squares as in [8] may be applied, but with the
risk of dissecting resonant components of the structure
such as antenna patches what can severely deteriorate
the convergence properties of the method. In this paper
the studies are focused on microstrip/stripline structures,
which can be characterized with the surface impedance
boundary condition on the metallizations,

~Es(x, y)|tan = ZF (x, y) ~Je(x, y) + ~Ei(x, y)|tan. (1)

However, the method can also be extended on mixed
structures consisting of both microstrip/stripline and
coplanar/slotline components as presented in [15]. Based
on equation (1), an integral equation for the surface
currents can be formulated in the spectral domain,

1
4π2

∫
ky

∫
kx

←→
G
E

J (kx, ky)· ~Je(kx, ky)ejkxx+jkyydkxdky|tan

= ZF (x, y) ~Je(x, y) + ~Ei(x, y)|tan (2)

where
←→
G
E

J (kx, ky) and ~Je(kx, ky) are the Fourier trans-
forms of the multilayered medium Green’s function and
the surface currents, respectively, whereas ZF is a surface
impedance and ~Ei comprises the excitation. The surface
currents are discretized with subdomain basis functions
~fm by,

~Je(x, y) =
N∑
m=1

Im ~fm(x, y). (3)

At the moment asymmetric rooftop functions ar-
ranged on arbitrary nonuniform orthogonal meshes are
used, which typically show also a sufficient modeling

Fig. 1. Section of a typical microstrip structure with
group decomposition and numbering.

flexibility for geometries with oblique or curved margins,
if suitable edge-meshing techniques are employed [16].
For the solution of the integral equation with the Galerkin
testing procedure, equation (2) is multiplied by the basis
functions itself. The subsequent integration over these
testing functions ~fn leads to,∫
x

∫
y

~fn(x, y) · ~Es(x, y)dxdy =

∫
ky

∫
kx

[ ←→
T ll′ (kx, ky) · ~Fm(kx, ky)

]
· ~F ∗n(kx, ky)dkxdky

, n ∈ gl, m ∈ gl′ , (4)

introducing a spectral domain translation operator be-
tween the groups gl and gl′
←→
T ll′ (kx, ky) =

←→
G
E

J (kx, ky)ejkx(xl−xl′ )ejky(yl−yl′ ).
(5)

Furthermore,

~Fl′m(kx, ky) =
∫
x

∫
y

~fm(x, y)ejkx(xl′−x)ejky(yl′−y)dxdy

(6)
is the Fourier transform of the expansion function ~fm
related to the center ~ρl′ = (xl′ , yl′) of group gl′ near
this expansion function. Analogously ~Fln(kx, ky) is the
Fourier transform of the test function ~fn related to the
center ~ρl = (xl, yl) of group gl near this test function.

To get a fast algorithm for the matrix-vector product
evaluation,

Zfar · ~I = ~b, (7)

where Zfar is the matrix with the far interactions (not
explicitly generated) and a similar efficiency as with
standard fast multipole methods (FMM) in free space,
the contribution to the elements of the right hand side of
equation (7) ~b = (b1, . . . , bn, . . . , bN )T with regard to the
groups gl and g′l is carried out by the integral,

bn,ll′ =
∫
kx

∫
ky

~F ∗ln(kx, ky)·
←→
T ll′ (kx, ky)· ~Jl′(kx, ky)dkx dky

(8)
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which is evaluated numerically by,

bn,ll′ ≈∑
kxi,kyi

wkxi wkyi ~F
∗
ln(kxi, kyi)·

←→
T ll′ (kxi, kyi) · ~Jl′(kxi, kyi),

(9)

where kxi, kyi are suited sampling points of the cartesian
wavenumber plane and wkxi, wkyi are appropriate inte-
gration weights.

In this representation, the spectral current density of
all groups gl′ with centers ~ρl′ (source groups) is formed
in the spectral domain by,

~Jl′(kxi, kyi) =
∑
m∈gl′

Im ~Fl′m(kxi, kyi), l′ = 1, . . . , Ng

(10)
with Ng the number of groups. Equation (10) forms
the aggregation process whereas equations (8) and (9)
corresponds to the translation and disaggregation step,
finally the elements of the complete right hand side of
equation (7) are generated by,

bn =
Ng∑

l′ 6=l+NN

l′=1

bn,ll′ , l = 1, . . . , Ng (11)

where NN indicates near-neighbour groups.
However, if the spectral domain integrations equation

(8) are carried out using standard quadrature techniques
with real wavenumbers kx and ky , significant convergence
problems occur due to integrand singularities, a slow
decay and an oscillatory behavior of the integrands. To
overcome these drawbacks, at first a special decomposi-
tion of the cartesian wavenumber plane is employed.

B. Decomposition of The Cartesian Wavenumber Plane
The decomposition of the cartesian wavenumber

plane is shown in Fig. 2 together with the schematical
arrangement of the sampling points kxi, kyi. The first
quadrant is decomposed into an inner area Ain and three
outer areas Aout1 to Aout3. The other quadrants are
decomposed analogously.

The Green’s function contains singularities in terms
of branchpoints and poles related to guided waves like
surface or parallel plate waves. The localizations of
guided wave poles and branchpoints are restricted by
|kxp|, |kyp| < k0

√
εr,max, where kxp and kyp are the

real locations of the singularities forming concentric rings
within the inner areas and εr,max is the maximum permit-
tivity of all layers. Furthermore, kBx and kBy denote the
real locations of the branchpoints.

For the wavenumber kx, the chosen integration path
deformations in the inner areas are skeched in Fig. 3 a).
The integration path extends from −ki on the real axis
with a vertical and horizontal path section to −jkxym,
then through the origin along the branch cuts to +jkxym

and finally to +ki back to the real axis. The choice
for ki is done with a numerical localization algorithm
searching for the location |kxpm| of the pole with the
largest propagation constant of the corresponding guided
wave. Then the value ki is chosen by ki ≈ 1.1 · |kxpm|
leading to a minimization of the inner area extension.

Fig. 2. Decomposition of the cartesian wavenumber plane
with schematical distribution of sampling points.

This path is simultaneously used for the ky-wavenumber.

C. Cancellation of Oscillatory Integrand Behavior
The integration paths in the inner area parallel to the

real axis have the parametrization,

ku(tu) = tu ± jkxym, tu ∈ [−ki, ki], real, u = x or y.
(12)

The behavior of the integrands of equation (8) with
regard to the variables tx and ty and the above integration
paths can be well approximated by,

INTn,ll′(tx, ty)≈Cin ~F ∗n(tx, ty)·
←→
G
E

J (tx, ty) · ~J0l′(tx, ty)

ejtx (xl−xl′ )ejty (yl−yl′ ) (13)

where ~Fn and ~J0l′ are now the Fourier transforms of the
basis function ~fn and the current distribution ~Jl′ of group
gl′ with regard to the origin of the coordinate system (not
to the group centers) and a factor Cin not depending on
tx and ty . The terms ~Fn and ~J0l′ are actually evaluated
in the implementation i.e., the translation operator Tll′
is only implicitly involved to emphasize the analogies
with fast multipole methods and to represent the integrand
behavior.

Thus, the integrand mainly shows an oscillatory
behavior due to the both exponentials containing the
group center distances (xl − xl′) and (yl − yl′). To
largely cancel out these oscillations, the product

←→
T ll′
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(kx, ky) · ~Jl′(kx, ky) is multiplied by the compensating
exponentials e−jtx (xl−xl′ ) and e−jty (yl−yl′ ). To account
for these compensative multiplications, specific integra-
tion weights wLegtxi , wLegtyi for the disaggregation process
are determined.

If we emphasize on the integration with regard to tx
over an interval tx ∈ [txa, txb] and F (tx) is denoted as
the smooth part of e.g., the integrand equation (13), we
can write,

txb∫
txa

F (tx)ejtx (xl−xl′ )dtx ≈ Csc
NLeg−1∑
i=0

F (txi)w
Leg
txi

(14)
where the weights wLegtxi of this special quadrature are the
solutions of the linear system of equations,

NLeg−1∑
i=0

pn(ti) w
Leg
txi =

1∫
−1

pn(t)ej d·tdt, n = 0, . . . , NLeg−1

(15)
with pn(t) denoting the Legendre polynomials of order n
and ti are the roots of the Legendre polynomial of order
NLeg (i.e the number of used sampling points), and d =
(txb− txa)(xl−xl′)/2. Furthermore, we have introduced
a scaling factor Csc = 1

2 (txb − txa)ej
1
2 (txb+txa)(xl−xl′ ).

Further details of the derivation and solution of equations
(14) and (15) leading to this combined Legendre-Filon
quadrature are given in [11]. The integration with regard
to ky is performed analogously.

On the vertical path sections on or parallel to the
imaginary axis no oscillations occur, but we have an
exponential increasing and decreasing behavior which
becomes distinctive for large group distances. Therefore,
this behavior is compensated as well by using a slightly
modified integration technique as explained above. With
these measures the number of sampling points Nin in
the inner areas can be restricted to about 10-15 for both
wavenumbers kx, ky using maximum group sizes of a few
wavelengths.

D. Integration Path Deformations in The Outer
Wavenumber Plane

These integrand oscillations are also present in the
outer integration areas, if real wavenumbers kx, ky are
employed. In this case the integrands of equation (8)
behave like,

INTn,ll′(kx, ky) ≈

Cout ~F
∗
n(kx, ky)·

←→
G
E

J (kx, ky) · ~J0l′(kx, ky)

ejkx(xl−xl′ )ejky(yl−yl′ ). (16)

Additionally, the Green’s functions show a linear growing
behavior with kx, ky → ∞, if source and observation
points are in the same plane z = const. Thus, conver-
gence of the integrals is only achieved by the decay of

the Fourier transforms of the group current distributions
and the test basis functions.

Fig. 3. Employed integration path deformations with
singularity locations and migrations.

The overall convergence is therefore typically very
poor and additionally depends on the group geometries.
To achieve an extensive convergence acceleration, an
adapted complex integration path deformation is em-
ployed in the outer areas. This integration path deforma-
tion depends on the values of the lateral group distances
|(xl − xl′)| and |(yl − yl′)|.

If |(xl − xl′)| > |(yl − yl′)| is valid as given for
the group arrangement in Fig. 4(a), the lateral group dis-
tance in x-direction causes the largest oscillations of the
integrand equation (16). Choosing a complex integration
path for the wavenumber kx beginning from kx = ±ki
according to,

kx(t) = ±ki − jt, t ≥ 0, real, (17)

then the corresponding oscillating exponential is trans-
formed into a decaying exponential from this point,

ej kx(t)(xl−xl′ ) = e±jki(xl−xl′ )e−t (xl′−xl) (18)

provided that (xl′ − xl) > 0.
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However, it can be shown that an overall decay of the
whole integrand equation (16) on the path equation (17)
is only given if the group domains do not overlap with
regard to this direction i.e., if we have a finite separation
with a distance ∆xsll′ > 0 (see Fig. 1 and Fig. 4(a)). As
will be shown later, the decay behavior of the integrand
equation (16) for larger values t in equation (17) is
dominated by the exponential e−t∆xsll′ . Therefore, the
following case differentiation is made:

If |∆xsll′ | > |∆ysll′ | (see Fig. 4(a)), then a complex
integration path for kx is used according to equation (17)
whereas ky remains real in the outer areas.

If |∆ysll′ | > |∆xsll′ | (see Fig. 4(b)), then the
complex integration path for ky ,

ky(t) = ±ki − jt, t ≥ 0, real, (19)

is used, whereas kx remains real, correspondingly the
integrand decay is dominated by e−t|∆ysll′ | in this case.

If the first case is valid, ∆xsll′ must not be negative
i.e., the observation group must be located left from the
source group. Analogously, ∆ysll′ must not be negative in
the second case i.e., the observation group must be located
below the source group. If these geometrical configura-
tions are not fulfilled, the roles of source and observation
groups are simply exchanged. This means, that in these
cases the aggregation step equation (10) extends over
the conjugate complex Fourier transforms ~F ∗ln(kxi, kyi)
whereas the disaggregation step equation (9) is performed
with the simple Fourier transforms ~Fl′m(kxi, kyi).

An overview of the pole and branchpoint migration
together with the introduced integration path deforma-
tions for the wavenumber kx is given in Fig. 3(b) and
(c). Figure 3(b) shows the circumstances for the case
0 < Re(ky) < ki. In this case, the poles due to guided
waves and the branchpoints ±kBx are located near the
real axis. Thus, they are circumvented by the rectangularly
shaped integration path of the inner areas. Beginning
from kx = ±ki, the integration paths proceed parallel
to the imaginary axis. If Re(ky) becomes larger, the
poles and branchpoints migrate towards the origin. In
the case Re(ky) > ki (Fig. 3(c)) they proceed together
with the branchcuts on the imaginary axis. Therefore the
rectangularly shaped integration path can be replaced by a
path on the real axis in this case. The significant advantage
of this choice of path deformation is given by the fact,
that no poles and branchcuts are crossed, thus no residue
contributions must be considered.

However, despite of the exponential decay behavior
achieved by the introduced complex integration paths,
an oscillating exponential always remains e.g., in the
case |∆xsll′ | > |∆ysll′ |, the term ejky(yl−yl′ ) must be
considered. Furthermore, we have a larger number of
oscillation cycles in the outer areas compared to the
inner areas, since the integration intervals are larger than
in the inner areas (see Fig. 1). Applying the Legendre-

Filon quadrature outlined above during the disaggregation
process, the exponential e−jky(yn−yl′ ) is used for the
compensation of the oscillations with regard to ky instead
of e−jky(yl−yl′ ). Here, ~ρn = (xn, yn) denotes the lateral
location of the individual test basis function ~fn(x, y) with
regard to the origin of the main coordinate system. With
this individual treatment of each test function during the
disaggregation process, the best oscillation suppression is
reached what is especially important for larger groups.

Fig. 4. Group constellations in context with integration
path deformations in the outer areas.

The additional effort for computing the quadrature
weights for the individual test functions is practically
negligible. Although we have no exponential decay for
the integrand with regard to the remaining real wavenum-
ber, the upper integration boundary kx,A, ky,A can be
restricted to about 15 k0 with a number of sampling points
Nkx, Nky of about 5-8.

E. Extended Laguerre Quadrature Applied to The Outer
Integrands

Now the integrals over the outer areas already
show excellent convergence properties due to the out-
lined integration path deformations and quadrature tech-
niques. However, the exponential decay rate on the paths
equations (17) and (19) strongly depends on the non-
overlapping group distances ∆xsll′ or ∆ysll′ , which is
a severe drawback for an integration technique using a
rigid sampling point distribution.

The essential decay behavior of the group interaction
integrands is demonstrated in Fig. 5 (a), depicting a linear
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patch array with 6 patches where each patch is considered
as one group. If we consider the interactions of group 1
with the other groups, then the first non-neighbour group
is the third one in this case, leading to the minimum non-
overlapping group distance ∆xsmin = ∆xs13, providing
the slowest decay rate. To analyze the essential decay
behavior of the group interaction integrands, the patch
currents are described by one symmetric rooftop function
for each patch. The exponential behavior of the Fourier
transform with regard to kx of such a rooftop function is
simply given by,

Fl′(kx) =
(
w − w

2
(ej

w
2 kx + e−j

w
2 kx)

)
ejxl′kx (20)

i.e., the further dependence ∼ 1
k2

x
is not considered here.

The exponential behavior of the interaction integrand of
observation group 1 with the other non-neighbour source
groups is then defined by INT1l′(kx) = F ∗1 (kx)Fl′(kx),
l′ = 3, . . . , 6, i.e., the influence of the Green’s function
is neglected for this representation. Figure 5(b) shows the
behavior of the interaction integrands INT1l′(kx) and of
the exponential e−kx∆xs1l′ on the path kx = ki − j t
with w = 12 mm, ∆x12 = 5 mm, f = 10 GHz and
ki =

√
2.2k0. All curves are normalized to 0 dB for t = 0.

As expected it can be recognized that the decay rate of
the integrands for small values of t is even larger than the
decay rate of the corresponding exponential e−kx∆xs1l′ ,
but for larger t both expressions quickly show the same
decay rate.

Fig. 5. Linear test array (a) and the decay behavior of the
corresponding interaction integrands (b).

If the sampling points for the integration are adjusted
to the slowest decay rate with regard to a chosen group
decomposition, the integrands with significantly faster
decay rates cannot be evaluated with sufficient accuracy

applying these sampling points. To get rid of these dif-
ferent decay rates, the products

←→
T ll′ (kx, ky) · ~Jl′(kx, ky)

are multiplied by corresponding increasing exponentials
e+t α, where for small separations α = ∆xsmin is
chosen and α = ∆xsll′ for all separations larger than
≈ 2∆xsmin.

To account for these multiplications, again special
integration weights are determined. If we emphasize on
the integration with regard to kx on the path equation
(17) and using the substitution t′ = ∆xsmin t it can be
written,

I =

∞∫
0

F (kx(t))e−∆xsll′ tdt =

1
∆xsmin

∞∫
0

F
(
kx(

t′

∆xsmin
)
)
e
−
(

∆xsadd
∆xsmin

+1
)
t′
dt′ ≈

1
∆xsmin

NLag−1∑
s=0

F
(
kx(

ts
∆xsmin

)
)
wLags . (21)

F (kx) denotes the smooth decaying part of the
integrand and ∆xsll′ = ∆xsmin + ∆xsadd was used.
In the case of a group interaction with the minimum
separation ∆xsmin (i.e., ∆xsadd = 0), the exponential of
the second integral in equation (21) becomes e−t

′
. Such

weighting function is related with the standard Laguerre
quadrature, thus the weights wLags can be directly derived
with this quadrature rule in this case. The sampling points
ts are the roots of the Laguerre polynomial of order
NLag . However, this quadrature becomes less accurate
for separations ∆xll′ larger than about 2∆xsmin. For
these cases, extended Laguerre quadrature weights are
computed, using a similar variational approch as for the
outlined Legendre-Filon quadrature. This leads to the
linear system of equations,

NLag−1∑
s=0

ln(ts)wLags =

∞∫
0

ln(t)e−
(

∆xsadd
∆xsmin

+1
)
t
dt,

n = 0, . . . , NLag − 1 (22)

where ln(t) are the Laguerre polynomials of order n using
the same sampling points ts as the standard Laguerre
quadrature. The right hand side is efficiently computed by

means of the integral
∞∫
0

tn e−α tdt = n!/αn+1. By this

quadrature technique, all contributions with exponential
decay can be evaluated with the same sampling points and
accuracy. The number of necessary sampling points Nkx
and Nky on the paths equations (17) and (19) amounts to
approx. 5–7 and can be further reduced for interactions
with large separations.
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F. Near-Zone Matrix and Preconditioning Stategies

While the interactions between the well separated
groups can be computed by the methods described above,
the interactions between near-neighbour groups must be
evaluated directly by computing the matrix entries of the
standard MoM. This is done with the methods outlined
in [11] based on an asymptotic extraction technique for
convergence acceleration. However, it can be noted that
the outlined integration techniques given above can also
be applied for the computation of the standard MoM
matrix entries with high accuracy and efficiency, if the
participated basis functions do not overlap.

The entries of this near-zone matrix Znear are stored
in the compressed sparse row (CSR) format (see e.g.,
[17]). This near-zone matrix is also used to build a precon-
ditioner for the pertinent Krylov subspace solvers. At first,
a Transpose Free Quasi Minimim Residual (TFQMR)
method was employed [18], showing already very good
convergence properties, but the currently implemented
Generalized Minimum Residual (GMRES)-solver shows
so far the best convergence for a large class of structures.

If we have a pure microstrip or aperture structure,
the system matrix is symmetric, thus a sparse Cholesky
factorization of the near-zone matrix is applied,

Znear = C · CT . (23)

For this factorization a special kind of sparse LDLT -
factorization based on a pure row-wise access on the
matrix entries is used at first. This LDLT -factorization
is subsequently transformed into the desired Cholesky
factorization, which is stored in the modified sparse row
(MSR) format. Furthermore, matrix fill-ins are permitted
during the factorization process, whereas the number
of these matrix fill-ins is reduced by a proper group
numbering in advance. The localizations of the fill-ins are
determined during a symbolic factorization to guarantee
a correct storage allocation.

This Cholesky factorization is subsequently used as
a split preconditioner according to,

C−1 Z C−T CT ·~I = C−1 ·U, Z = Zfar+Znear.
(24)

The required forward/backward substitutions to carry out
equation (24) are as well implemented using a pure row-
wise access on the entries of the Cholesky factorization.
Since the groups can also be interpreted as so-called
macro basis functions of the structure within diakoptic
strategies [13,19], we refer to the explained techniques
also as a diakoptic preconditioning.

III. APPLICATIONS

For a first validation, the bistatic radar cross section
(RCS) of a 4x4 patch array on a grounded dielectric slab
is analyzed (Fig. 6(a)).

Fig. 6. Reflectarray (a) and bistatic RCS computations
with different methods (b); a=b=60.0 mm, W=26.0 mm,
L=36.6 mm.

Similar as in [8], where the structure was examined at
first, a homogeneous discretization was chosen with 2300
unknowns altogether. Each patch was considered as one
group. Additionally, the structure was analyzed with the
Planar-EM solver of Ansoft Designer with about the same
number of RWG (Rao Wilton Glisson) basis functions.

The comparison of the bistatic RCS (ϑ − ϑ) in
Fig. 6(b) shows a very good agreement, only the behavior
around the minimum of the RCS at about 48 degrees
is predicted slightly different by the three methods.
However, the overall computation time of this approach
amounts to only 2.5 sec. (3 GHz AMD-PC, used for all
examples), whereas more than 30 sec. are needed with
the solver of Ansoft Designer on the same computer.

As a second example a microstrip antenna array with
feeding network consisting of up to four subarrays with 32
elements is considered. Figure 7 (a) shows the structure
geometry and the discretization using an edge-meshing
for the patches. Further details of the geometry parameters
are given in [11,5]. Each subarray was decomposed into
9 groups as indicated by the dashed rectangles by hands
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of the first subarray. Figure 7 (b) shows the current
distribution at 9.42 GHz.

Fig. 7. Microstrip antenna array (a) with computed current
distribution (b).

For results and performance comparisons, the structure
was analyzed with Ansoft Designer as well using about
the same number of unknowns. Using our diakoptic
preconditioner and GMRES implementation, only 2-3
iterations are needed for a residual error of less than 1
percent. Table 1 shows the comparison of the overall
solution time in seconds depending on the number of
subarrays and unknowns N .

Table 1. Comparison of the numerical performance for a
microstrip antenna array.

subarrays (N ) This approach Ansoft Designer
1 (1625) 5 19
2 (3250) 12 55
3 (4875) 24 115
4 (6500) 38 131(fast solver)

.

It can be recognized that this approach is up to more than
four times faster than the simulations of Ansoft Designer.
In the case of four subarrays, Ansoft Designer makes use
of a fast matrix compression algorithm using multilevel
strategies, based on a singular value decomposition (SVD)
[20] indicated with fast solver in the table. However,

the application of this method is only advantageous for
problems with more than 5000 unknowns, whereas the
approach proposed in this paper shows an increased
efficiency already for small problems.

Figure 8 shows the results for the far-field antenna
patterns. Whereas the E-plane patterns show slight dif-
ferences between both methods, the H-plane patterns are
nearly congruent except for minor deviations at ± 40
degrees. However, the pattern results are also influenced
by the meshing modalities to some extend.

As a final example, the monostatic RCS of larger re-
flectarrays is examined, first characterized in [21] with an
entire domain approach. Figure 9 shows the largest array
with 11x11 patches together with the used discretization
of 17182 unknowns and a typical group decomposition
indicated by the dashed rectangles. For an accurate current
description, again an edge-meshing was applied.

A comparison of the numerical performance of this
approach and Ansoft Designer in terms of overall solution
time in seconds is given in Table 2.

Table 2. Comparison of the numerical performance for
two reflectarrays.

array type (N ) This approach Ansoft Designer
7x7 (6958) 12-25 138 (fast solver)
11x11 (17182) 60-139 650 (fast solver)

However, for the fast spectral domain solver the necessary
number of iterations and therefore the solution time
depends on frequency, whereas nearly the same time is
needed by Ansoft Designer for all frequency points. For
the fast spectral domain approach, the worst convergence
appears at the resonance frequencies with 4-6 necessary
iterations, whereas for the remaining frequencies only 2-
3 iterations are required for a residual error of less than
1 percent. Although the fast spectral domain approach is
currently based only on a two-level strategy, it is up to one
magnitude faster than the multilevel algorithms of Ansoft
Designer.

The results for the monostatic RCS (ϑ − ϑ) are
given in Fig. 10(a) for the three methods. The curves of
this approach and Ansoft Designer are nearly congruent,
whereas slight differences are observed for the entire do-
main method especially at the first patch resonance around
2.71 GHz and the minimum at about 3.25 GHz. Due to
the incident angle of ϕ = 45o of the exciting plane wave,
both patch resonances are excited as illustrated by hands
of the current distribution (this approach) in Fig. 10(b)
(first resonance) and Fig. 10(c) (second resonance).
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Fig. 8. Far-field pattern comparison for the antenna array
of Fig. 7.

Fig. 9. Reflectarray with 11x11 patches with discretization
and group decomposition; a=b=55.517 mm, W=26.0 mm,
L=36.6 mm.

The detailed numerical behavior of the fast spectral do-
main solver is given in Fig. 11 based on computations

of reflectarrays of 3x3 elements up to 11x11 elements
with three iterations. Additionally the behavior of Ansoft
Designer is outlined. As indicated in the diagramms, An-
soft Designer uses a standard MoM up to 5000 unknowns
(6x6-array) and switches over to its fast matrix compres-
sion algorithm (fast SVD solver) beginning with the 7x7-
reflectarray. According to [20], the numerical complexity
of this fast SVD solver should reach O(N logN) con-
cerning the matrix-vector product evaluation (Fig. 11(a)).

Fig. 10. Comparison of the monostatic RCS of the 11x11
reflectarray (Fig. 9) and a 7x7 reflectarray computed with
different methods (a). Computed current distribution at
the fist (b) and second patch resonance (c).

Since the necessary number of iterations increases no-
ticeably with increasing number of unknowns, the overall
numerical complexity of Ansoft Designer (solid line) is
obviously larger than O(N logN). In contrast to this, the
number of necessary iterations remains roughly constant
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using the fast spectral domain solver, thus the complexity
is only slightly higher than O(N1.5). This slightly higher
complexity is caused by the additional computation of the
sparse Cholesky factorization and the forward-backward
substitutions in conjunction with the employment of the
diakoptic preconditioning. Figure 11(b) shows the mem-
ory requirements of both approaches. Whereas the storage
complexity of this approach is slightly higher than O(N),
the memory requirement of Ansoft Designer shows a quite
complicated behavior, but is typically significantly higher
than observed with this approach.

Fig. 11. Comparison of the overall computation time
versus number of unknowns (a); Behavior of the storage
requirements (b).

The same structures were also analyzed in [7] with a fast
multipole approach based on a modified complex discrete
image method using a Pentium IV 2.4 GHz PC. In [7], a
3x3 and a 7x7 array with 1737 and 8428 unknowns was
computed with 0.6 seconds and 7.49 seconds per iteration,
respectively. If we consider the lower clock rate of the
computer used in [7], this would result in roughly the
same computational effort with 0.54 seconds and 7.47
seconds per iteration using this approach and the same
number of unknowns.

IV. CONCLUSIONS

This paper has introduced a new kind of fast spectral
domain solver for the characterization of larger microwave
structures embedded in arbitrary multilayered media with
a similar numerical complexity than fast multipole meth-
ods for structures in free space. The group interactions
within the fast matrix-vector product computations are
evaluated in the cartesian wavenumber plane, where adap-
tive integration path deformations and enhanced inte-
gration techniques such as higher-order Legendre-Filon
and extended Laguerre quadrature rules lead to a high
accuracy with a low integration effort. Together with
diakoptic preconditioning techniques, a fast convergence
of the pertinent Krylov subspace solvers is achieved,
leading to a very good overall numerical performance of
the whole framework. This is demonstrated by means of
several applications and comparisons with other solvers,
showing a significantly higher computational performance
than a comparable commercial software package whereas
a similar performance is observed in comparison with
a fast multipole method modified for the treatment of
multilayered media. The next investigations aim for a
substantial reduction of quadrature points by an optimiza-
tion of the integration path deformations and a further
improved treatment of the evanescent wave contributions.
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