
A Partial Solution of MoM Matrices Based on Characteristic 
Basis Functions and its Application to On-Board 

Antennas Positioning 
 
 

Jaime Laviada, Javier Gutiérrez-Meana, Marcos R. Pino, and Fernando Las-Heras 
 

Área de Teoría de la Señal y Comunicaciones (TSC-UNIOVI) 
University of Oviedo, Campus de Viesques, 33203 Gijón, Asturias, Spain  

jlaviada@tsc.uniovi.es, jmeana@tsc.uniovi.es, mpino@tsc.uniovi.es, flasheras@tsc.uniovi.es  
 
  

Abstract ─ A new technique, called incomplete 
Gauss-Jordan elimination (IGJE), is presented and 
hybridized with the characteristic basis function 
method (CBFM) to enable the partial solution of 
the method of moments (MoM) matrix. As a 
consequence, the goal of this technique is its 
application to optimization problems in 
electrically large scenarios where multiple but 
similar configurations need to be analyzed, since 
our method performs these analyses with a 
considerable reduction in the computational time 
and also memory. The term “similar” refers to the 
fact that the original structure is split into different 
blocks and modifications in the geometry 
(inserting, eliminating, or changing elements) of 
only a specific set of these blocks are allowed 
throughout the optimization process. In particular, 
we take advantage of this technique to analyze the 
optimum emplacement of an antenna on a given 
structure (e.g. a ship or airplane) with just one 
analysis. An example of an airplane antenna 
positioning is shown to illustrate the procedure.  
 
Index Terms ─ Characteristic basis functions, 
method of moments, on-board antennas.  
 

I. INTRODUCTION 
Many usual simulations in the electromagnetic 

engineering involve the evaluation of small 
modifications on certain parts of a given structure. 
In this paper, this fixed part of the total structure 
will be referred to as mother structure. Among 
other examples, we can cite the tuning of antennas 
by systematically changing the dimensions of 
certain small metallic additions (e. g. a stub or a 
parasitic element). Another example of the 
previous situation is the study of the radiation 

pattern of an on-board antenna. In the latter case, 
the antenna is placed on multiple positions in order 
to study if the elements of the environment, such 
as the fuselage of an airplane or the tower of a 
ship, affect the radiation characteristics of the 
antenna. This results in multiple analyses of 
structures that share most of the geometry. In the 
method of moments context, several techniques 
have been proposed to enable the partial solution 
of the mother structure so that the analysis, after 
changing a part in the rest of the geometry, can be 
resumed. 

The work on this kind of analysis has been 
dispersed along the years. However, a common 
step has been to speed up the computation of the 
entries of the matrix. For this purpose, the matrix 
with all the possible metallic parts is calculated 
and stored. Thus, if a substructure with some 
eliminated parts has to be analyzed, the related 
matrix is easily computed by removing the rows 
and columns associated to the removed metallic 
parts. After this stage, several techniques have 
been proposed in order to avoid solving the 
equations system from the scratch for each 
analysis. Although there is not an exhaustive 
comparison among these methods in the literature, 
their performance is expected to be close to each 
other since they are based on similar foundations. 

Among the pioneering works on this field, we 
can cite the “add-on” method [1–3] that produces 
an incremental computation of the inverse of the 
impedance matrix based on the Sherman-Morrison 
formula and, therefore, enabling the access to 
partial solutions. 

The research on this field has also been 
focused on modifying common solving techniques 
for equations systems such as the LU factorization 
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[4] or the Gaussian elimination [5] yielding 
schemes very appropriate for the optimization of 
microwave circuits and antennas [6]. Another 
efficient partial solver was proposed in [7] for the 
optimization via genetic algorithms. The work on 
partial solving has also been continued more 
recently for the optimization of non-intuitive 
planar structures [8, 9]. 

As previously mentioned, an extreme case of 
small modifications on a large structure is the 
positioning of on-board antennas. In this problem, 
the mother structure is typically an aircraft or ship 
where the antenna must be placed. The derived 
structures to be analyzed would be composed by 
the airplane or the ship and the antenna located in 
multiple positions. Since the aforementioned 
partial solving techniques must deal with the entire 
MoM matrix, they are typically limited in the 
electrical size of the mother structure and, 
therefore, their direct application to electrically 
large structures is not possible. 

The analysis of on-board antennas has been 
traditionally tackled by hybrid methods that 
combine asymptotic techniques to analyze the 
mother structures with full-wave methods to 
analyze the antenna and its nearest environment. 
Among these techniques, we can cite hybridization 
of the method of moments with the physical optics 
[10] or with the uniform theory of diffraction [11]. 

Current tendencies are oriented towards the 
application of acceleration schemes such as the 
fast multipole method [12] since they do not 
require the approximations introduced by the 
asymptotic methods. These techniques are very 
powerful and enable the full-wave analysis of 
antennas on large electromagnetic structures [13–
15]. However, they are based on iterative schemes 
rather than on direct solutions complicating the 
hybridization with the aforementioned partial-
solving techniques. 

A remarkable technique to analyze on-board 
antennas has been proposed in [16]. Authors 
decompose the geometry into multiple domains, 
one for the large and fixed structure and the 
remainder for the on-board antennas. Each domain 
is analyzed with full-wave methods in order to 
compute a scattering matrix relating the incident 
field on its boundary to the radiated field. Thus, if 
the antenna is changed, the method only has to 
recompute the scattering matrix of a small domain. 
However, if the antenna is moved, then the 

scattering matrix of the large domain must be also 
recomputed which can be very time-consuming.  

Next sections are arranged as follows. Firstly, 
we present the incomplete Gauss-Jordan 
elimination (IGJE) that enables a partial solution 
compatible with the compression techniques that 
will be treated later. Afterwards, the compression 
of the matrix with the characteristic basis function 
method (CBFM) is detailed and its integration for 
the efficient evaluation of multiple antenna 
positioning is considered. In the results section, 
the application of the IGJE to antenna design is 
illustrated by means of the optimization of a 
reconfigurable antenna. The study of a VHF dipole 
at multiple positions on an airplane is considered 
to illustrate the capabilities of the inclusion of the 
IGJE into a locally modified CBFM method for 
dealing with electrically large structures. Finally, 
the conclusions are summarized and discussed. 
 

II. INCOMPLETE GAUSS-JORDAN 
ELIMINATION SCHEME 

 
A. Description of the method 

The Gauss-Jordan elimination is a simple and 
well-known scheme to calculate the inverse of 
matrices. Although its application to solve 
equations systems is also possible, it is not usual 
because it requires a higher number of operations 
than other schemes (e.g., approximately three 
times more operations than a LU factorization). 

This scheme pursues the reduction of the 
matrix into a row echelon form by means of basic 
operations row by row. Thus, in the n-th step, the 
Gauss-Jordan elimination seeks the first non-zero 
element (pivot element) in the n-th row, 
normalizes the row with this element and adds 
multiples of that row to the rest of rows in order to 
obtain zeros in the column of the pivot element. 
Equivalent operations are performed on the right 
hand side (RHS). At the end of the algorithm, the 
matrix is reduced to a row echelon form and, 
therefore, the solution of the equations system is 
straightforward. 

In the case of MoM matrices, it will be proved 
later that the pivot element is always located in the 
diagonal so that the matrix is progressively 
transformed into the identity matrix. The Gauss-
Jordan elimination without pivoting can be 
expressed using Matlab notation as: 
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for n = 1 : N 
Z(n,n:end) = Z(n,n:end) / Z(n,n); 
V(n,:) = V(n,:) / Z(n,n); 
for m = 1 : N 

if n == m 
continue; 

end 
Z(m,n:end) = Z(m,n:end) -…  
…Z(m,n)*Z(n,n:end); 

V(m,:) = V(m,:) - Z(m,n)*V(n,:); 
end 

end 
 

In the above description, Z is the matrix of the 
equations system with N unknowns and V is a 
matrix containing the right hand terms. At the end 
of the algorithm, the matrix V contains the solution 
to the equations system. After the step n , all the 
entries of the first n  columns of matrix Z are zeros 
except the entries of the diagonal that are equal to 
one; so, it is not necessary to operate with these 
columns when adding row multiples and, 
therefore, it saves some CPU cycles. 

Next, we detail how the conventional Gauss-
Jordan elimination can be modified to obtain the 
incremental solution of a MoM problem. Let us 
split the geometry under analysis into two parts, 
one containing the mother structure, and the other 
one containing the possible metallic additions (e.g. 
parasitic elements) to the mother structure, with 

mN  and fN  unknowns respectively (typically 

fm NN >> ). The total number of unknowns is 
given by fm NNN += . 

We will assume that the matrix is rearranged 
to place the unknowns related to the mother 
structure in the first rows and columns and the 
unknowns belonging to each metallic additions 
are, also, arranged consecutively. After mN  
iterations, the matrix will reach the form shown in 
Fig.1a, i.e., the identity matrix is placed in the 
first mm NN ×  entries and the elements under this 
submatrix are zeros. Since we have carried out 
exactly the same operations on the initial 

mm NN ×  submatrix as if we consider the isolated 
mother structure, the first mN  coefficients of the 
RHS contain the solution of the isolated mother 
structure. If we continue the elimination until 
solving the unknowns associated to the next 
metallic addition, we will obtain the solution for 
the mother structure plus that addition. On the 
other hand, if we had swapped the rows and  

Once the previous concepts have been 
detailed, it is straightforward to prove that the 
pivot element must be located in the diagonal. 
After k  steps, the first kk ×  entries in the MoM 
matrix must be equal to the identity matrix 
(solution to the problem considering the k  first 
basis functions). When another step is performed, 
a solution must exist as it corresponds to the 
problem of 1+k  basis functions. Since the first 

kk ×  entries are the identity matrix, there is only 
one choice for the pivot element: its location in the 

 
 
 
 
 
columns to place the rows and columns related to 
a different addition at the position of the 
submatrix related to the first addition (see Fig. 
1b), we would have obtained the solution of the 
mother structure plus that different addition. 
Thus, it is very efficient to analyze the impact of 
different extensions of the mother structure just 
by resuming from the point of Fig.1a. 
 
 

0 

0 

0 

N

Nm

Nf

Addition #1

Addition #M

Addition #2

“Mother” 
structure 

(a)  
 

 

0 

0 

0 

N

Nm

Nf

Addition #2

Addition #M

Addition #1

“Mother” 
structure 

(b) 
 

 
Fig. 1. Equations system matrix after solving the 
mother structure: (a) without any change; (b) after 
swapping rows and columns of the entries
associated to the first and second additions. 
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1+k  position of the diagonal. The reasoning can 
be extended to any arbitrary number of steps. 

 
B. Complexity of the incomplete Gauss-Jordan 
elimination 

The computational time cost to solve the 
mother structure can be approximated by the cost 
of solving the entire structure and, therefore, it is 

( )3NΟ , as the usual direct solution schemes. On 
the other hand, the computational cost for 
resuming the analysis is only ( )NN 2

fΟ . Hence, 
this strategy involves a first analysis that is time-
consuming but the penalty to analyze the rest of 
the combinations is very low. 

The storage of the initial matrix and the time 
for the first analysis limit the size of the structures 
to be studied. In the next section, this problem will 
be mitigated by including recent developments 
related to reductions in the number of unknowns 
using efficient sets of macro basis functions to 
model parts of the geometry. 

It is important to remark that after solving the 
mother structure (first mN  steps), it is only 
necessary to store the last fN  columns of the 
matrix, saving a large amount of memory in case 
we need to store several of these matrices (e.g. to 
carry out frequency sweeps). 
  

III. ANTENNA POSITIONING WITH 
CHARACTERISTIC BASIS FUNCTIONS 

In the previous section, we have seen how the 
MoM matrix can be partially solved. However, 
this methodology requires initially to store the 
entire MoM matrix so it is limited to electrically 
small geometries. In this section, we will show 
how the previous method in combination with the 
CBFM can be applied to the positioning of on-
board antennas.  

It is important to remark that in this case we 
must deal with parts of the geometry where two 
configurations are possible (with or without 
antenna) rather than analyzing the effect of adding 
metallic regions.  

In particular, the problem under analysis 
consists in the study of one antenna for S   
positions on an electrically large structure. This 
situation is depicted in Fig. 2a for a cactus antenna 
placed on a ship for 5=S . In other words, we 

pursue to analyze a structure where a given set of 
blocks can potentially contain the antenna yielding 
an inter-block strategy. 

 

 
For this purpose, we will combine the 

aforementioned IGJE with the characteristic basis 
function method (CBFM) that has shown very 
desirable properties for the analysis of locally 
modified structures in the past [17]. 

The CBFM was developed with the aim of 
reducing the number of degrees of freedom when 
analyzing electromagnetic problems. The method 
is based on the use of the so-called “characteristic 
basis functions” (CBFs) which are defined on non-
overlapped fragments of the geometry that are 
referred to as blocks.  

These new basis functions are usually much 
less than the conventional low-level basis 
functions. Thus, this reduction enables the direct 
solution of problems much larger than the ones 
that can be analyzed with the conventional MoM. 
In addition, the direct solution avoids any potential 
convergence issue that could happen in the 
conventional fast algorithms which are based on 
iterative schemes. On the other hand, the current 
direct approaches can deal with a smaller number 
of unknowns if compared with the most powerful 
iterative schemes such as the FMM [12]. The 
CBFM is widely described in the literature and, 
therefore, we will only explain briefly the parts 
related to the current work. The reader is referred 

  
 

(a) 
 

 

(b) 
 

Fig. 2. Antenna positioning: a) all possible 
locations; b) antenna placed at position #2. 
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to [18-21] and the references therein for further 
details about the method. 

Once the CBFs have been defined in terms of 
the low-level basis functions as in [20] and their 
coefficients are arranged by columns, then the 
matrix containing the interactions between the 
CBFs in the m-th observation block and the n-th 
source block is computed as: 
 

( ) ( )
nmn

t
mmn JZJZ 01 =  ,                     (1) 

 
where ( )0

mnZ  contains the reaction terms among the 
low-level basis functions of the m-th and n-th 
blocks. Thus, the original submatrix ( )0

mnZ  is 
converted to a nm KK ×  block whose dimensions 
are typically around one order of magnitude less 
than the dimensions of the original matrix. It is 
also remarkable that the CBFM can be generalized 
through a multilevel formulation that enables to 
achieve higher compression rates for electrically 
large structures [22]. This compression together 
with the block partitioning is the keys to 
efficiently modify the geometry. In order to 
accomplish our goal, we split the geometry into T  
blocks. These blocks are classified into two types 
depending if they contain a possible location of the 
antenna, that will be referred to as antenna 
positioning block (AP block), or not. The other 
blocks contain the mother structure and, therefore, 
they will be referred to as mother structure blocks 
(MS blocks). Hence, there will be S  AP blocks 
containing possible locations of the antenna and 
R  blocks containing regular pieces of geometry, 
where SRT += . 

From the previous discussion, it can be 
inferred that both MS blocks and AP blocks can be 
created as in the conventional CBFM [18-21]). 
The only special rule that we have followed in this 
paper is that the volume enclosed by the antenna 
must be contained in one single CBFM block. It 
can be easily carried out by grouping all the 
blocks, in which the antenna spans, into one single 
block. 

The AP blocks can be made of two possible 
geometries: i) with the antenna; ii) without the 
antenna. Since the regular CBFM enables the 
analysis of only one location in each simulation, 
an appropriate setup must be carried out to avoid 
unnecessary computation. 

The equations system is built considering both 
configurations for the AP blocks at the same time 
yielding an augmented impedance matrix. It is 
important to remark that as a consequence of 
considering both configurations for the AP blocks, 
the CBFs for those blocks must be also computed 
for both block geometries. For the sake of clarity, 
the MS blocks are numbered from 1 to M  while 
the AP blocks ranges from 1+R  to SR +  for 
cases without antenna and from 1++ SR  to 

SR 2+  for configurations with antenna. 
The augmented matrix contains the interaction 

among the MS blocks (subindex M ), the AP 
blocks without the antenna (subindex P ), and the 
AP blocks with the antenna (subindex 'P ): 

 

( )

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

P'P'PP'MP'

PP'PPPM

MP'MPMM

a

ZZZ
ZZZ
ZZZ

Z 1 ,              (2) 

 
where the subscript a  stands for “augmented” and 
the submatrices contain the interactions due to the 
corresponding blocks, i. e.: 
 

   

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

+++++

+++++

++

11
1

1

1
1

1
11

1
1

11
1

1

db,cab,cab,ca

db,ab,ab,a

db,ab,ab,a

ZZZ

ZZZ
ZZZ

Zαβ ,       (3) 

 
where α  and β  can be equal to M , P  or P' . 
The blocks involved in each submatrix, can be 
easily computed considering the aforementioned 
scheme numbering for the blocks. In addition, we 
provide the Tables 1a and 1b that present the 
values for the indexes a , c  and b, d  for each 
possible combination of α  and β . 

Contrary to the common uses of the partial 
solving techniques, the augmented matrix contains 
blocks that are overlapped, i.e., a block 
corresponding to a piece of geometry and another 
one corresponding to the same geometry but with 
the antenna, and, therefore, it is expected to be 
singular (or at least with a high condition number) 
yielding a meaningless solution. Nevertheless, as 
we will see, we never employ the entire matrix to 
acquire the final solution. 
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Table 1a: Values of a and c  for (3) 
 a c

M=α  1 1−R  
P=α  1+R  1−S  
'P=α  1++ SR  1−S  

 
Table 1b: Values of band d  for (3) 
 b d  

M=β  1 1−R  
P=β  1+R  1−S  
'P=β  1++ SR  1−S  

 
After computing (2), the IGJE is applied until 

finishing the first M blocks, which corresponds to 
the MS blocks, so that the augmented matrix 
becomes: 

 

( )

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

P'P'PP'

PP'PP

MP'
~

MP
~

a
~

ZZ
ZZ
ZZI

Z
0
0

1

,                  (4) 

 
where I  is the identity matrix and the tilde symbol 
~ marks that the submatrix has been modified by 
the application of the IGJE. 
Once the previous stage has been finished, the 
rows and columns related to the entries of the 
block with and without antenna (labelled with a 
prime or not, respectively, in Fig. 3) can be 
swapped to consider the solution for a particular 
position. For example, if we want to solve the 
configuration where the second AP block contains 
the antenna and the other AP blocks are antenna-
free, we swap the rows and columns of the 
corresponding positions (see Fig. 3b). After that, 
the IGJE can be resumed in order to solve the 
following S  blocks and, thus, to obtain the 
solution for the given position. This step can be 
repeated once and again for each block in order to 
obtain the solution for each position. It is 
important to notice that we are only solving the 
first SR +  blocks (possibly reordered) of the 
augmented matrix and, therefore, the solution is 
not expected to be singular as for the 

 entire augmented matrix. 
Regarding  the overall accuracy of the method, 

it is important to observe that the method will 
yield the same results as the conventional CBFM 
as it can be inferred from the previous description. 
Hence, the accuracy of the method is only limited 
by the accuracy of the CBFM which has been 
widely demonstrated in the literature [18-22]. 

  
IV. NUMERICAL RESULTS 

In this section, we firstly validate the IGJE 
algorithm in order to study its capacities for the 
design of antennas by optimizing a reconfigurable 
antenna. Next, the application of the partial 
solution of MoM matrices to electrically large 
structures is illustrated through the analysis of 

 

0 

0 
N

Nm

Nf

Block for Position  #2 
Block for Position #1 

Block for Position #P 
Block for Position #1’ 
Block for Position #2’ 

Block for Position #P’

Compressed blocks for 
the“mother” 

structure 

(a) 
 

 

0 

0 
N

Nm

Nf

Block for Position #2’
Block for Position #1 

Block for Position #P
Block for Position #1’
Block for Position #2 

Block for Position #P’

Compressed blocks for 
the“mother” 

structure 

(b) 
 

Fig. 3. IGJE application to the positioning of
antennas. For the sake of clarity, off-diagonal 
blocks have been omitted. The primed positions
indicate that the block contains the antenna:  
a) block status after the first stage of the IGJE;  
b) block status before resuming the IGJE for
analyzing the antenna in position #2. 
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different emplacements of a VHF monopole 
antenna on an airplane with the objective of 
finding the optimum positioning.  

The times shown in this section correspond to 
the execution of the code on a CPU AMD 
Opteron® at 2.4 GHz. Rao-Wilton-Glisson 
(RWG) basis functions are used to expand the 
currents. 
 
A. Antenna optimization with the incomplete 
Gauss-Jordan elimination 

This example deals with the design of a 
reconfigurable antenna to radiate in a given 
direction. The antenna is based on the model 
presented in [23] and it consists of a free-standing 
symmetric array of square patches (see Fig. 4) 
that can be connected by strips ( 90=a mm; 

30=w mm) yielding 1042  possible combinations. 
The existence or absence of connections between 
patches affects the maximum radiation direction 
enabling multiple radiation pattern configurations. 

The mother structure consists of the patches 
( 2429=mN ) and the feeding strip, while the 
additions region is formed by the rest of the strips 
( 624=fN ). The incomplete solution for the 
mother structure consumes 209 s. After that, the 
analysis of a certain configuration takes 1.58 s in 
the average case (calculated over 1000 runs) and 
13.95 s in the worst case (all patches connected). 
The LU decomposition for the best case (no strips) 
spends 16.23 s. The antenna is optimized by using 
a genetic algorithm to radiate in the endfire 

direction in the band 1.4-1.6 GHz. Figure 4 shows 
the obtained configuration and the realized gain 
(the gain including the mismatch [23]) with a very 
good agreement with the commercial software 
Feko [24]. 
 
B. Monopole positioning on an aircraft 

In order to illustrate the capabilities of the 
combination of the CBFM with the partial solving 
scheme in the context of electrically large 
structures, we will consider the positioning of a 
VHF 4λ  monopole at 120MHz on an airplane-
like geometry (length of 50.8 m and wingspan of 
61 m). The model is discretized using 66,476 
RWG basis functions, so the regular MoM 
application is not feasible. 

In order to apply the CBFM, the airplane is 
fragmented into 247 blocks and we choose 18 
possible blocks to contain the monopole antenna. 
Seven of the 18 blocks are chosen along the 
highest part of the fuselage of the airplane since 
more equilibrated radiation patterns are expected 
on these positions. The remainder eleven blocks 
are chosen on the wings in order to also check the 
performance of the monopole on them. This 
partitioning as well as the antenna positions are 
depicted in Fig. 5. The CBFs generation is carried 
out illuminating each block with 400 plane waves 
and applying a SVD threshold of 210− . 

If we consider the analysis of the CBFM for a 
single antenna, e.g. position #2 in Fig. 5, the 

Fig. 4. Realized gain on the design band for the 
reconfigurable antenna. 

 
 
Fig. 5. Block partitioning of the airplane. The 
border of the blocks containing the possible 
location of the monopole has been highlighted. 
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CBFM reduces the problem to 9145 unknowns 
and it is solved in 6522 s. Thus, the study for all 
the locations with the CBFM would require 
approximately 117,396 s. 

On the other hand, if the problem is solved for 
all the 18 locations of the monopole in a single 
analysis with the locally modified CBFM plus the 
IGJE, it results in a total number of unknowns of 
10,175 (the increment with respect to 9145 is due 
to the duplication of the AP blocks). In this case, 
the number of unknowns belonging to the mother 
structure (the airplane without the blocks with a 
possible location of the monopole) is 8383=mN . 

The total time until reaching the partial 
solution corresponding to the mother structure –
i.e., CBFs generation, matrix filling and first mN  
steps of the IGJE– is 16,430 s. After that, each 
position can be analyzed in only 30 s and, 
therefore, the total time to analyze the 18 positions 
is 16,970 s. The computational times for both 
strategies as well as the time for analyzing 18 
monopole positions with the CBFM are detailed in 
Table 2. 

The radiation patterns are shown in Fig. 6 for 
the six positions numbered in Fig. 5 together with 
the results provided by Feko in order to validate 
the accuracy of the radiation patterns. It is 
important to remark that all the possible locations 
of the antenna are on the upper part of the fuselage 
and wings in order to provide coverage during the 
taxiing on the ground. Thus, a mask of º30±  has 
been plotted in the elevation patterns to facilitate 
the graphical inspection. According to this mask, 
the most suitable diagram is the one corresponding 
to placing the antenna on the nose (position #6). 

 
V. CONCLUSIONS AND DISCUSSION 

The partial solving techniques available in the 
literature have been traditionally limited to 
electrically small structures because they need to 
deal with the entire MoM matrix. In this paper, we 
have presented a new partial solving technique 
based on the incomplete Gauss-Jordan elimination 
scheme and its extension to face electrically large 
problems. This extension has been carried out by 
combining the IGJE with the expansion of the 
currents by means of characteristic basis functions. 
Then, the number of unknowns is considerably 
reduced so the matrix can be efficiently 
manipulated in order to store and solve the MoM 

equations system. This fact together with the 
CBFM block partitioning have been exploited to 
efficiently analyze multiple given configurations 
of a certain set of blocks (inter-block strategy). 
The applicability of the IGJE plus the CBFM has 
been illustrated by considering the evaluation of 
positioning an antenna at multiple locations of an 
airplane, and has proven to be a highly efficient 
technique for optimization problems involving 
electrically large structures. 
 
Table 2: Computational times for the analysis of 
the on-board VHF monopole on an airplane using 
the conventional CBFM and the modified CBFM 

 CBFM 
1 

monopole 

CBFM 
18  

monopoles 

CBFM+IGJE 
18  

monopoles 
CBFs 

generation 2635 s 2635 s ×  18 2828 s 

Matrix 
filling 3265 s 3265 s ×  18 3863 s 

LU 
factorization 622 s 622 s ×  18 - 

IGJE 1st 
stage - - 9739 s 

IGJE 2nd 
stage - - 30 s ×  18= 

540s  

Total time 6522 s 6522 s ×  18 
= 117,396 s 16,970 s 

 
The future research lines are focused on 

including the multilevel formulation with the aim 
of dealing with even larger problems. The authors 
are also working in the effective modification of 
the content inside a block (intra-block strategy) in 
order to make possible the fine-tuning of the 
position of the antenna. 
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