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Abstract ─ This work describes a meshless 
approach to obtain resonant frequencies and field 
distributions in axisymmetric electromagnetic 
cavities. The meshless local Petrov-Galerkin is 
used with shape functions generated by moving 
least squares. Boundary conditions are imposed by 
a collocation method that does not require 
integrations. The proposed analysis has simple 
implementation and reduced computational effort. 
Results for TE and TM modes of cylindrical and 
spherical cavities are presented and compared with 
analytical solutions. 
  
Index Terms ─ BOR (bodies of revolution), 
electromagnetic cavities, LBIE (local boundary 
integral equation), and MLPG (meshless local 
Petrov-Galerkin).  
 

I. INTRODUCTION 
Meshless methods are a class of numerical 

methods able to solve problems governed by 
partial differential equations (PDE), as other 
methods vastly used by the computational 
electromagnetic (CEM) community like the finite 
element method (FEM) and the finite difference 
method (FDM). The FDM is usually employed to 
solve problems in time domain, generating the 
well-known finite difference time domain (FDTD) 
[1]. FEM, on the other hand, is generally used to 
solve electromagnetic problems in frequency 
domain. Both methods need a mesh (FEM) or a 
grid (FDTD) to attain a numerical solution.  

A mesh generation with strict quality 
restrictions required by numerical methods is a 
very demanding task, especially for very 
complicated geometries and for three-dimensional 
(3D) problems. For this reason, alternative 
numerical techniques without meshes or grids are 
sought. In meshless methods, the numerical 
solution is obtained without setting up any kind of 
grid or mesh. From a computational perspective, 
FEM requires more time in its mesh setup, while 
meshless methods demand on its matrix 
computation due to the complexity of their shape 
function construction.  

Meshless methods can be classified in two 
categories: methods based on strong forms and 
those based on weak formulations. In strong-form 
methods, the governing partial differential 
equations (PDEs) are directly discretized using 
simple collocation techniques. These methods are 
computationally efficient and have simple 
implementation; but they are often unstable, not 
robust, and inaccurate [2]. Meshless methods 
based on collocation are generally implemented 
using smoothed particle hydrodynamics for 
electromagnetics (SPEM) formulations [3] or 
radial basis functions [4, 5, and 6].   

In order to use methods based on weak 
formulations, it is necessary to construct a weak 
equation, which is obtained by applying the 
residual method to the PDE [2]. Galerkin or 
Petrov-Galerkin methods can be used to discretize 
the weak equation, resulting in methods more 
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robust, stable, and with higher convergence rates 
than collocation techniques [2].  

The element free Galerkin method (EFGM) is 
a global weak formulation, which has been 
successfully applied in the solution of wave 
scattering problems [7]. The main drawback of the 
EFGM is that it requires a background mesh to 
perform numerical integrations. Recently, 
meshless local Petrov-Galerkin (MLPG), which is 
a local weak-form method and does not use a 
mesh even for integration, has been used to solve 
wave propagation [8] and 3D static problems [9]. 

The present work extends the MLPG 
procedures presented in [8 and 9] to determine the 
resonant frequencies and field distributions inside 
axisymmetric cavities. Similar problems have been 
solved in [4 and 5] using meshless collocation 
methods. Our work adopts MLPG, which is a 
weak-form method that, in principle, has better 
precision and numerical stability when compared 
with collocation methods [2].  
 

II. PROBLEM FORMULATION 
The vectorial Helmholtz equation for a source-

free region containing a material characterized by 
its relative permittivity 𝜖𝑟 and permeability 𝜇𝑟 is 
given by [10] 

∇ × �
1
𝜖𝑟

 ∇ × 𝐻��⃗ � − 𝑘0
2𝜇𝑟𝐻��⃗ = 0,          (1) 

where 𝑘02 = 𝜔2𝜖0𝜇0 and 𝑘0 is the free-space 
wavenumber.  

We first make the assumption that the field 
distribution is also axisymmetric, i.e., the magnetic 
field in (1) has only the 𝜙-component and varies 
only in 𝜌 and 𝑧 directions (𝐻��⃗ = 𝐻𝜙(𝜌, 𝑧)𝜙�). This 
assumption is applied in (1) and results in a TM 
scalar formulation: 
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= 0.                                                     (2) 

The weak form is then obtained by the weighted 
residual method, multiplying (2) by a test function 
𝜓(𝜌, 𝑧) and integrating the result over the domain 
Ω: 
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After some mathematical manipulations [10], the 
weak form for the TM solution is obtained:  
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The TE weak formulation is obtained from 
duality. A single equation mathematically 
expressing both TE and TM cases is written as 
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= 0,                                    (5) 

where, for TM modes, 𝑢 = 𝜌𝐻𝜙 , 𝑓 is the relative 
electric permittivity 𝜖𝑟,  and  𝑔 is the relative 
magnetic permeability 𝜇𝑟 inside the cavity. For TE 
modes,  𝑢 = 𝜌𝐸𝜙, 𝑓 = 𝜇𝑟, and 𝑔 =  𝜖𝑟. 
 

III. THE MESHLESS APPROACH 
Equation (5) is numerically evaluated by a 

meshless approach, which begins by spreading 
nodes (field nodes) over the problem domain Ω 
and its boundary 𝜕Ω (see Fig. 1). Every node xI 
has an associated shape function 𝜙I, which is 
different from zero only in a small region around 
the node I. This region is known as node I’s 
influence domains ΩFI, as illustrated in Fig. 1. The 
influence domain can be of any shape (generally 
circular, square, or rectangular forms are adopted), 
as long as their union covers all the problem 
domain Ω. In this work, circular influence domains 
are employed. The local approximation of 𝑢 at a 
point x is then given by: 

𝑢ℎ(𝑥) = �𝜙I(𝑥)𝑢I

𝑁

I

,                     (6) 

where 𝐼 = 1, … ,𝑁 represents the nodes whose 
influence domains include point x and 𝑢I are the 
nodal values. The set of N nodes is known as the 
support domain Ωx (Fig. 1). To build the shape 
function we have adopted the moving least squares    
(MLS)    method,    which    begins    by  
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Fig. 1. A computational domain Ω and its 
boundaries 𝜕Ω. The horizontal striped regions are 
influence domains ΩF1 and ΩF2 of the nodes 
x1 and x2, respectively. The non-striped regions 
are test domains ΩS3 and ΩS4 of the nodes x3 and 
x4, respectively. The vertical striped region is the 
support domain  Ωx of a point x.  
 
expressing 𝑢ℎ as [2] 

𝑢ℎ(x) = 𝐩T(x)𝐚(x), ∀ x ∈  Ω𝐱,   (7) 

where 𝐩T(x) = [𝑝1(x),𝑝2(x), … ,𝑝𝑚(x)] is a 
complete monomial basis with 𝑚 terms and 𝐚(x) 
is a vector containing the coefficients 𝑎j(x), 
𝑗 = 1, 2, … ,𝑚, which are functions of the space 
co-ordinates x = [𝜌, 𝑧]T. For example, using a 
first order polynomial, 𝐩T(x) is given by: 

𝐩T(x) = [1,𝜌, 𝑧],   for  𝑚 = 3.             (8)  

The coefficient vector 𝐚(x) is determined by 
minimizing a weight discrete 𝐿2-norm defined as: 

𝐽 = �𝑤(dI)
𝑁

I=1

[𝐩T(xI)𝐚(x)− uI]2,          (9) 

where 𝑁 is the number of nodes in the support 
domain of x and xI are the coordinates of node I. 
The chosen weighting function is a third order 
spline function expressed by [2]: 

 𝑤(𝑑𝐼) =

⎩
⎪
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4
3
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2 − 4
3
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                                 if 1
2
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0                                   otherwise,

(10) 

where 𝑑I = |x − xI|/𝑟I and 𝑟I is the radius of the 
influence domain associated to node I, as shown in 
Fig. 1. The 𝑟I values are obtained in a two step 
preprocess: (i) a small set of 𝑁𝑖𝑛𝑖 neighbor nodes 
for each node I is selected; (ii) the distance 
between node I and its furthest neighbor node 
(𝑑𝑖𝑠𝑡I) is evaluated and multiplied by the 
dimensionless size parameter 𝛼I, defining 
𝑟𝐼 = 𝑑𝑖𝑠𝑡𝐼 ⋅ 𝛼𝐼.  

The minimization of 𝐽 results in [2] 

𝐚(x) = 𝐀−1(x)𝐁(x)𝐔,                   (11)    

where 𝐀 is the moment matrix, given by 

𝐀(x) = �𝑤(x − xI)𝐩(xI)𝐩T(xI)
𝑁

I=0

,       (12) 

the matrix 𝐁 has the form 𝐁(x) =
[𝑩𝟏,𝑩𝟐, … ,𝑩𝑵], with column elements 𝑩I defined 
by 

𝑩I = w(dI)𝐩(xI),                   (13) 

and 𝐔 is the vector that contains all fictitious nodal 
values of  support domain Ωx, 𝐔 = {u1, … , u𝑁}T. 

Equation (7) can be rewritten using (11) as 
follows [2]:  

𝑢ℎ(x) = 𝐩T(x)𝐀−1(x)𝐁(x)𝐔 = 𝚽T(x)𝐔,    (14) 

where 𝚽(x) is the matrix of MLS shape functions 
corresponding to 𝑁 nodes of Ωx, written as: 

𝚽T(x) = [𝜙1(x),𝜙2(x), … ,𝜙𝑁(x)],      (15) 

where 𝜙I(x) is the shape function of the Ith node 
of Ωx. Equation (14) indicates that shape functions 
and, consequently, the MLS approximation 
depend on 𝐀−1. A well-conditioned 𝐀 matrix is 
guaranteed using N ≫ m and avoiding certain 
singular node distributions (e.g., a collinear node 
distribution) [2]. Equation (14) is the matrix form 
of (6).  

The partial derivatives of 𝚽 with respect to 𝜌  
are obtained as: 

 𝚽,𝜌
T = 𝐩,𝜌

T𝐀−1𝐁 + 𝐩T𝐀,𝜌
−1𝐁+ 𝐩T𝐀−1𝐁,𝜌, (16) 

where the subscript ,𝜌 denotes the parcial 
derivative with respect to 𝜌. Derivatives of the 
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shape function with respect to 𝑧 are obtained in a 
similar way [2].   

Figure 2 illustrates a MLS shape function for a 
node located at xT = [0,0], obtained using 25 
nodes uniformly spread over Ω. Each node in the 
domain will have a similar function associated to it 
and the final approximation will be given by (6). 
The precision of the approximation depends on the 
node distribution, but if we define a FEM mesh 
and generate a MLS approximation using the FEM 
mesh nodes, the MLS approximation is typically 
more precise than FEM [2]. Figure 3 shows the 
first derivative of the MLS shape function with 
respect to 𝜌. 

 
IV. THE MLPG ANALYSIS 

The MLS function approximation is now 
applied to describe 𝑢 in equation (5). The 
proposed analysis is similar to MLPG4/LBIE 
(local boundary integral equation) [2], but it 
differs in what concerns the imposition of 
boundary conditions, which follows the treatment 
of interface conditions discussed in [9]. For the 
MLPG method, it is necessary to spread nodes 
inside Ω (interior nodes) and over the global 
boundary 𝜕Ω (boundary nodes), as shown in Fig. 
1. Interior nodes use the test function 𝜓I, which 
acts in a local region near node I (the node’s test 
domain ΩSI) where the integrations are carried 
out. In LBIE, ΩSI is generally a circle centered at 
the interior node I and the corresponding test 
function 𝜓I must satisfy the following 
requirements:  

 ∇2𝜓I = −𝛿(x − xI)  , a delta function at xI, (17)   

𝜓𝐼 = 0, at the test domain boundary ΩS.   (18) 

Conditions (17) and (18) are satisfied by the 
following test function: 

𝜓I(x) =
1

2𝜋
ln �

𝑠I
|x − xI|

� ,                (19) 

where 𝑠I is the radius of the circular domain ΩSI, 
chosen such that ΩSI does not intersect the global 
boundary 𝜕Ω [9]. The local weak form can be 
obtained by replacing 𝜓 by 𝜓I and 𝑢 by 𝑢ℎ in (5), 
where the boundary integral vanishes due to (18), 
resulting in: 

�
∇𝜓I ⋅ ∇𝑢ℎ

𝑓𝜌
𝑑𝐴

Ω𝑠
−𝑘02�

𝑔𝜓I𝑢ℎ

𝜌
𝑑𝐴 = 0.   (20)

Ω𝑠
 

 
Fig. 2. Shape function, 𝜙. 
 

 
Fig. 3. First derivative of shape function, 𝜙,𝜌. 
 
This local formulation is versatile. For example, it 
can be used to analyze a layered medium of 
permissivities or permeabilities. In these cases, it 
is necessary to deal with the discontinuity between 
different media, which can be accomplished by 
using the techniques described in [11].  

All boundary nodes are used to impose the 
boundary conditions and a simple technique 
(known as the meshless collocation scheme) that 
requires no integration is adopted [9]. Boundary 
conditions are expressed in a general form as: 

𝑏(xI)𝑢ℎ(xI) + 𝑐(xI)
𝜕𝑢ℎ(xI)
𝜕𝑛

= ℎ(xI),    (21) 

where 𝑏 = 1 and 𝑐 = 0 if xI is at a Dirichlet 
boundary or 𝑏 = 0 and 𝑐 = 1 if it is at a Neumann 
boundary. ℎ is a known imposed value. In a cavity 
with a perfect electric conductor wall, for TE 
modes, the function 𝑢 satisfies a Dirichlet 
boundary condition over the wall (i.e. 𝐸𝜙 = 0), 
while for TM modes a Neumann condition is 
imposed (𝜕𝐻𝜙/𝜕𝑛 = 0). Over the axis of 
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symmetry (z-axis), the Dirichlet condition 𝑢 = 0 
is imposed for both modes, as 𝜌 = 0. 

The numerical solution of the problem is 
obtained by transforming (20) and (21) into a set 
of linear equations, resulting in:  

(𝐶−𝑘𝑜2𝐷)𝑢𝐼 = 0,                            (22) 

where, for interior nodes,  

𝐶IJ = �
∇𝜓I ⋅ ∇𝜙J

𝑓𝜌
𝑑𝐴

ΩS
,               (23) 

𝐷IJ = �
𝑔𝜓I𝜙J
𝜌

𝑑𝐴,                     (24)
ΩS

 

and, for boundary nodes, 𝐶IJ = 𝜙J(xI)  (Dirichlet) 
or 𝐶IJ = 𝜕𝜙J(xI) /𝜕𝑛 (Neumann), and 𝐷IJ = 0. 𝐶 
and D are sparse matrices, which reduce the 
memory requirements and computation time by 
eliminating operations on zero elements. The 
wavenumbers 𝑘0 are obtained from the 
eigenvalues of (22). 
 

V. NUMERICAL RESULTS 
Axially symmetric resonant cavities can be 

analyzed by the proposed technique. We present 
results for two cavities: a cylindrical and a 
spherical cavity. Only modes without 𝜙-variation 
are analyzed (n = 0). 

In the first example, we analyze a cylindrical 
cavity with radius equal to 1m, height equal to 2m, 
and vacuum in its interior (𝜀𝑟 = 𝜇𝑟 = 1). Table 1 
shows the first resonant wavenumbers evaluated 
analytically [12] and numerically, using 3321 
uniformly spaced nodes over the domain and its 
boundary (node spacing of 2.5cm). Table 1 also 
shows the percentual relative errors. The 
maximum error is approximately 0.49% for TM 
and 0.05% for TE modes. We do not have an 
explanation for the larger TM error. The main 
difference between the TE and TM problems is the 
boundary conditions: the TE problem only uses 
Dirichlet boundary conditions while the TM one 
has a Neumann boundary at the cavity wall.  
However, this difference does not completely 
explain the larger TM error. 
In order to evaluate the convergence of the 
proposed method, it is necessary to determine the 
best   values   for   the   parameters  𝛼I,  which 
were defined in Section III to determine the node’s 
influence domain. Our study demonstrated that the 
numerical accuracy depends on this parameter, 

with small 𝛼I values leading to large errors 
because of the insufficient number of nodes to 
perform a precise MLS approximation. However, 
larger αI values result in larger number of nodes 
inside the support domains. This results in an 
increase in time to evaluate the shape functions 
and in less sparse matrices, which also require 
more computing time to determine the eigenvalues 
and eigenvectors. 
 
Table 1: Resonant wavenumbers 𝑘 (𝑟𝑎𝑑/𝑚) and 
relative errors (%) for the cylindrical cavity 

𝐌𝐎𝐃𝐄𝐧𝐩𝐪 Analytical 
Solution 

Numerical 
Solution 

Error 
(%) 

TE011 4.1411799 4.1423492 0.0282       
𝐓𝐄𝟎𝟏𝟐 4.9549545 4.9570499 0.0422 
TE013 6.0735970 6.0769282 0.0548 
TM010 2.4048255 2.4167237 0.4947 
TM011 2.8723835 2.8865461 0.4930 
TM012 3.9563607 3.9757341 0.4896 

 
Figure 4 presents the relative error as a 

function of 𝛼𝐼. This figure (obtained with 𝑁𝑖𝑛𝑖 = 6 
and 1981 uniformly spaced nodes over the domain 
and its boundary, with a node spacing of 33 cm) 
shows that optimum values of 𝛼𝐼 are between 1.3 
and 2.0. The simulations suggest the optimum 
values 𝛼𝐼 = 1.3  and 1.6 for TE and TM modes, 
respectively. 

Figure 5 presents the convergence results for 
the six modes present in Table 1. The node 
spacing is changed in the interval [0.333 m, 0.025 
m] and the convergence rates are approximately 
1.84 and 1.2 for TE and TM modes, respectively. 

Figures 6 through 8 present the electrical and 
magnetic field distributions inside the cavity, 
which were obtained extracting the field 
components from the eigenvectors using 1891 
uniformly spaced nodes over the domain and its 
boundary (node spacing of 33 cm). Figure 6 shows  
TE011(𝐸ϕ) and TM010(𝐻ϕ) modes, Fig. 7 shows  
TE012(𝐸ϕ) and TM011(𝐻ϕ) modes, and Fig. 8 
shows TE013(𝐸ϕ) and TM012(𝐻ϕ) modes.  These 
numerical field distributions are in agreement with 
analytical results [12].  

The second test problem is a spherical cavity 
with radius equal to 1 m and vacuum in its interior 
(𝜀𝑟 = 𝜇𝑟 = 1). Table 2 shows analytical [12] and 
numerical resonant wavenumbers (𝑛 = 0, with 
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2705 nodes uniformly spaced over the domain and 
its boundary, with node spacing of 2.5cm).  The 
maximum error is approximately 0.69% for TM 
and 0.066% for TE modes. 

 
Fig. 4. Influence of the 𝛼𝐼 values on the accuracy 
of the results for the cylindrical cavity.  

 
Fig. 5. Convergence of TE and TM modes for the 
cylindrical cavity.  
 

 
Fig. 6. Numerical field distribution in the 
cylindrical cavity: (a) TE011(𝐸ϕ) and TM010(𝐻ϕ). 

 
Fig. 7. Numerical field distribution in the 
cylindrical cavity: (a) TE012(𝐸ϕ) and TM011(𝐻ϕ). 
 

 
Fig. 8. Numerical field distribution in the 
cylindrical cavity: (a) TE013(𝐸ϕ) and TM012(𝐻ϕ). 
 
Table 2: Resonant wavenumbers 𝑘 (𝑟𝑎𝑑/𝑚) and 
relative errors (%) for the spherical cavity 

𝐌𝐎𝐃𝐄𝐧𝐩𝐪 Analytical 
Solution 

Numerical 
Solution 

Error 
(%) 

TE011 4.4934095 4.4949440 0.0341 
𝐓𝐄𝟎𝟏𝟐 5.7634592 5.7664633 0.0521 
TE013 6.9879300 6.9925602 0.0662 
TM010 2.7437072 2.7579069 0.5175 
TM011 3.8702386 3.8929146 0.5859 
TM012 4.9734204 5.0077221 0.6897 
 
Figure 9 presents the convergence results for 

the modes present in Table 1 (built with the same 
𝑁𝑖𝑛𝑖 and 𝛼𝐼 values chosen for the cylindrical 
cavity). The convergence rates are approximately 
2.0 and 1.4 for TE modes and TM modes, 
respectively. 

Figures 10 through 11 present the numerical 
field distribution inside the spherical cavity, 
obtained using 1553 nodes uniformly spaced over 
the domain and its boundary (node spacing of 
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33cm). Figure 10 shows TE011(𝐸ϕ) and 
TM010(𝐻ϕ) modes, Fig. 11 shows TE012(𝐸ϕ) and 
TM011(𝐻ϕ) modes, and Fig. 12 shows  TE013(𝐸ϕ) 
and TM012(𝐻ϕ) modes.  Again, the field 
distributions are in perfect agreement with 
analytical results [12].  

  

 
Fig. 9. Convergence of TE and TM modes for the 
spherical cavity.  
 

 
Fig. 10. Numerical field distribution in the 
spherical cavity: (a) TE011(𝐸ϕ) and TM010(𝐻ϕ). 
 

CONCLUSIONS 
This work discussed the numerical analysis of 

axisymmetric resonant cavities by a Meshless 
Local Petrov-Galerkin (MLPG) method. The 
axisymmetric weak formulation is simple and 
versatile. The proposed MLPG analysis uses a 
collocation method to impose the boundary 
conditions, which simplifies the algorithm. The 
employed method is a local weak-form method 
and does not require a background mesh.  

Two axially symmetric resonant cavities had 
their eigenvalues and field distributions 

numerically evaluated. The proposed method had 
its convergence rate determined, which for a 
cylindrical cavity are 1.84 and 1.2 for TE and TM 
modes, respectively. For a spherical cavity, the 
convergence rates are 2 and 1.4 for TE and TM 
modes, respectively. The method can be easily 
adaptable to different axially symmetric 
geometries. 
 

 
Fig. 11. Numerical field distribution in the 
spherical cavity: (a) TE012(𝐸ϕ) and TM011(𝐻ϕ). 
 

 
Fig. 12. Numerical field distribution in the 
spherical cavity: (a) TE013(𝐸ϕ) and TM012(𝐻ϕ). 
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