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Abstract ─ This paper presents a partial element 
equivalent circuit (PEEC)-based solver that has 
been accelerated to exploit the massively parallel 
structure of graphics processing unit (GPU) 
technology, in order to employ a reluctance-based 
method in an efficient way. A grouping algorithm 
is also presented which makes reluctance 
calculation efficient, suitable for GPUs, and 
feasible even for very large problems. It has been 
shown that by using the reluctance method, the 
coefficient matrix in the system equation can be 
safely sparsified whilst the required accuracy is 
maintained. Because the calculation of the 
reluctance matrix includes matrix inversion, which 
is a task with high computational complexity, 
GPUs as cooperative units are utilized to reduce 
computational costs by taking advantage of 
parallelism. Two test models have been simulated 
and analyzed to benchmark the solver, and the 
results have been compared with the previously 
developed solver. Furthermore, analyzing the 
results reveals that the reluctance method makes it 
possible to use a considerably sparser system and 
thereby solve large problems by decreasing the 
memory demands and the solution time. It is also 
proven that the solution is reliable and accurate, 
whereas the problem has become noticeably 
smaller. 
 
Index Terms - PEEC, electromagnetic simulation, 
reluctance, GPU.  
 

I. INTRODUCTION 
High  frequency electronic circuits have a 

very important role in modern electronic devices. 
When the operational frequency of electronic 
devices is increased, magnetic and electrical 

couplings can cause unexpected results, such as 
current imbalance, thermal hotspots and chip 
overload, in a high frequency circuit. Moreover, 
other phenomena such as signal distortion, 
crosstalk and ground bouncing [1] need to be 
taken into account. Examination of these 
phenomena, leads to electromagnetic compatibility 
(EMC) standards which demand the compliance 
with limitations for electromagnetic interferences. 
Therefore, studying susceptibility and emission is 
an important aspect of high frequency circuit 
design. 

Various methods have been developed to 
address solutions for electromagnetic analysis. 
Among these methods, partial element equivalent 
circuit (PEEC) [2-5] is known to be suitable for 
combined electromagnetic and circuit analysis 
and has been widely used in power electronics, 
PCB design, antenna design and other industrial 
applications. As the complexity of the electrical 
systems and devices and the working frequency is 
increasing continuously [6], new acceleration 
techniques should be developed to solve real 
world problems in a reasonable time using limited 
computational resources. In previous works, other 
acceleration techniques have been used to increase 
the performance of the PEEC-based solver for 
general EMC applications, where no 
approximation is involved [7-8]. This paper 
presents a reluctance-based technique that can be 
employed to solve complex PEEC models in less 
time and with less memory consumption while 
some approximations are included in the final 
solution. A grouping algorithm is proposed to 
partition the geometry in 3D space and assemble 
the partial inductances into block diagonal form, to 
efficiently calculate the reluctance matrix. 
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Additionally, to the best knowledge of the authors 
of this article, no PEEC-based solver which is 
based on GPUs has been reported. However, since 
GPU technology is relatively new, hence the 
available hardware and software tools that have 
been employed in this research are strictly limited 
to the problems that can fit into GPU internal 
memories which are usually less than the main 
memory which is available on modern machines. 
The presented approach in this work is notably 
suitable for power electronic systems analysis, 
since capacitive couplings can be ignored and time 
retardation is not assumed in the simulations. It 
has been proven that using reluctances instead of 
partial inductances, makes it possible to eliminate 
a large amount of data from the equations, as long 
as the solution is kept to be accurate and valid [9]. 
On the other hand, calculation of the reluctance 
matrix is an expensive process and requires matrix 
inversion which has a high order in computational 
complexity which is )( 3nO  for a nn  matrix. In 
particular, for large structures that will result in 
large inductance matrices, reluctance calculation 
can be costly or even impossible to carry out. 
Hence, parallel processing approach in order to 
accelerate the reluctance calculation can be 
considered as a reasonable solution. Typically, 
modern processing units are enhanced with only 
few cores, whereas GPUs installed on modern 
graphic cards can offer processors with hundreds 
of cores and few GFLOPS of computational 
performance which makes these units appropriate 
for extensive and costly computations. Due to the 
high computational power and availability of 
GPUs, the technology has successfully used in 
many research areas, including electromagnetic 
simulations [10-12] and more specifically, FDTD 
[13][14] and Method of Moments [15]. It is also 
shown that the performance gained when a GPU is 
used is dependent on the problem size, which 
means that larger problems result in better 
speedups on GPU-enhanced graphic cards [15]. 

Fortunately, reluctance method in 
combination with sparsification techniques will 
bring a system of equations which consists of a 
sparse coefficient matrix. By having sparser 
systems, memory consumption will decrease, and 
sparse solvers can be used that can solve very 
large systems in less time than conventional direct 
solvers which are tailored for dense matrices. The 

PEEC-based solver presented in this paper is 
based on reluctance technique when only inductive 
couplings exist in the model and capacitive 
couplings have been neglected. This assumption is 
primarily valid for applications in power 
electronics where high current electrical devices 
are studied where inductance extraction plays an 

important role because of high 
dt
di

 which can 

cause high induced voltages in a circuit. 
 

II. THE PEEC THEORY 
This section gives a brief summary of the 

classical PEEC formulation. For further 
information, see [2-5]. 
 
A. Extraction of the equivalent circuit 

The classical PEEC method is derived from 
the equation for the total electric field at a point 
[16] written as 

),(),(),(),( tr
t
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where iE


 is an incident electric field, J is a 
current density, A  is the magnetic vector 
potential, _ is the scalar electric potential, and   is 
the electrical conductivity all at observation point 
r . By using the definitions of the scalar and 
vector potentials, the current- and charge-densities 
are discretized by defining pulse basis functions 
for the conductors and dielectric materials. Pulse 
functions are also used for the weighting 
functions, resulting in a Galerkin type solution. By 
defining a suitable inner product, a weighted 
volume integral over the cells, the field equation 
(1) can be interpreted as Kirchhoff’s voltage law 
over a PEEC cell consisting of partial self 
inductances between the nodes and partial mutual 
inductances representing the magnetic field 
coupling in the equivalent circuit. The partial 
inductances shown as 11PL  and 22PL  in Fig. 1 are 
defined as 











 dada
rr
dldl

aa
L

llaa
P 






 

1
4

        (2) 
for volume cell   and  . Figure 1 also shows the 
node capacitances which are related to the 
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coefficients of potential iip  while ratios consisting 
of iiij pp  are leading to the current sources in the 
PEEC circuit. The coefficients of potentials are 
computed as 
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and a resistive term between the nodes is defined 
as 




 a

l
R               (4) 

 

 
(a) 

 

 
(b) 

 
Fig.  1.  Metal strip with 3 nodes and 2 cells (a) 
and corresponding PEEC circuit (b) (mutual 
couplings are not shown). 
 
In (2), (3) and (4), a  represents the cross section 
of the rectangular volume cell normal to the 
current direction   , l  is the length in the current 
direction and S  is the charge surface cells. For a 
detailed derivation of the method, including the 
non-orthogonal formulation, see [17]. 

 

B. Solution of the equivalent circuit 
The discretization process of the EFIE in (1) 

and the successive Galerkin’s weighting leads to 
an equivalent circuit formulation. When 
Kirchhoff’s voltage and current laws are enforced 
to the iN  independent loops and N  independent 
nodes of the PEEC equivalent circuit, the 
following equations are obtained 
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where 
  N  is the vector of node potentials 

to infinity; N  is the node space of the 
equivalent network; 

 iN
LI   is the vector of currents 

including both conduction and 
displacement currents; iN  is the current 
space of the equivalent network; 

 PL  is the matrix of partial inductances 
describing the magnetic field coupling; 

 P  is the matrix of coefficients of potential 
describing the electric field coupling; 

 LY  is an admittance matrix describing the 
lumped components connected to the 
PEEC model; 

 R is the matrix of cell resistances; 
 A  is the connectivity matrix which 

describes the current direction between 
each pair of nodes, assigned to each cell; 

 SV  is the vector of distributed voltage 
sources due to external electromagnetic 
fields or lumped voltage sources; 

 SI  is the vector of lumped current 
sources. 

The equation system in (5) is equivalent to 
the circuit equations formulated in SPICE-type 
solvers for obtaining the solution in node voltages 
and branch currents. However, for PEECs the 
equation system in (5) contains denser matrices 
( PL  and P ) than a pure electric network system 
solution due to the large number of mutually 
coupled inductors and mutual capacitances. 
Therefore, the solution of PEECs requires linear 
algebra packages suitable for dense matrices. The 
equation system in (5) is often entitled a Modified 
Nodal Analysis (MNA) formulation [18] and can 
be modified to suit the solution of PEECs [19]. 
Neglecting capacitive couplings from the PEEC 
model will lead to (6) which is the reduced form of 
(5) and discussed in this paper. 
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The next section explains that how the dense 
system derived from MNA formulation is 
converted to a sparse system, without getting 
numerically unstable and invalid solution [20-21]. 
 

III. SPARSE MATRIX FORMULATIONS 
USING THE RELUCTANCE METHOD 

In this section, the reluctance method and its 
application to sparsifying systems of linear 
equations in PEEC are discussed. 

 

A. The reluctance method 
From the partial inductance matrix PL , the 

reluctance matrix K  is defined as the inverse of 
PL . 

 

                       1 PLK                           (7)                                   
 

By multiplying PL   with a vector of N  branch 
currents, a vector containing the drop of the 
magnetic vector potential along each segment will 
be obtained, as shown in (8). 
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(9) 
 
To extract values of the reluctance matrix, the 
linear equation system (9) should be solved. 
Therefore, unlike the elements of the partial 
inductance matrix, there is no formulation to 
calculate the reluctance values directly. Therefore, 
the PL  matrix is needed to calculate the K  
matrix. The physical meaning of ijK  is defined as 

the induced current in the thi  conductor 
(aggressor) when the total flux for the thj  
conductor (victim) is equal to one and the total 
flux along each other conductor is set to zero. This 

definition suggests that the induced current in 
victims should be in the opposite direction of the 
current in the aggressor to keep the flux around all 
victims at zero. These induced currents will 
generate magnetic fields around victims, which 
cancel the part of the field induced on the 
aggressor and shield the field on the aggressor 
from going farther. This phenomenon explains the 
locality (shielding effect) of the reluctance matrix 
[9]. The locality property of the method has been 
demonstrated in Fig. 2, where the third conductor 
results in a shorter arrow for the induced current, 
accounting for the overall effect. Figure 2 also 
shows the induced current in the third conductor, 
contributed to by two other bars, in dashed lines, 
and the overall effect of the induced currents using 
a solid line arrow. Because of this rippling effect 
of the magnetic field and the induced current, the 
value of each ijK  in the reluctance matrix 
represents the overall effect rather than a single 
active line. Therefore, the off-diagonal values in 
K  would decrease more rapidly than PL , which 
exhibits locality and the shielding effect of the 
reluctance matrix [22]. 

Like the capacitance matrix, the reluctance 
matrix is supposed to be symmetric positive 
definite and have the locality property [20]. 
Hence, only a small number of elements in the K  
matrix need to be kept to maintain an appropriate 
level of accuracy of the solution. The stability of 
the method is directly related to how the structure 
is discretized. It has been proven that stability is 
ensured for a sufficiently discretized structure 
[21]. 

 
B. Extraction of the reluctance matrix 

As stated in the previous section, there is no 
formulation to calculate reluctance matrix directly 
and thus, the inductance matrix must be calculated 
first and then inversion carried out. Because 
matrix inversion is a cumbersome numerical task 
with time complexity of )( 3nO  for a nn  
matrix, inverting a large matrix can highly degrade 
the overall performance of the solution. Several 
algorithms have been developed to overcome this 
problem by defining a window over a structure 
and then traversing the geometry using the 
window and the calculating the inductive 
couplings within the covered area and then finally 
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extract values for the reluctance sub-matrix 
[23][24]. In window-based approaches, the 
stability of the method is highly dependent on the 
window size. Further, choosing an unnecessarily 
large window in order to reach a high level of the 
accuracy can make the reluctance extraction 
computationally expensive and a small window 
will return inaccurate results. Therefore, finding an 
optimum size for the window to be traversed is 
crucial and usually challenging and hard to find. 
 
 
 

 
 
Fig.  2.  The effect of reluctance on three parallel 
bars. 
 

A novel approach to calculate reluctance 
matrix is proposed in this paper which is based on 
grouping the parts of the structure along axes, 
meaning that three main groups are created, which 
contain parts of the model in the x- , y- and z-axis. 
Because elements in each group are geometrically 
perpendicular to the other groups, there will be no 
inductive couplings between groups and only 
couplings within each group are considered. This 
assumption leads to the existence of a block 
diagonal partial inductance matrix where each 
block can simply be inverted to determine the 
reluctance matrix. The total process of inverting 
all blocks is substantially less costly than inverting 
the whole matrix. By holding the assumption that 
the studied structure is uniformly placed in the 
space along all three axes, each block will have 

roughly the dimension size of 
3
1

 of the 

dimensions of partial inductance matrix, as shown 
in (10). By substituting (10) into (11), the time 
complexity of the inversion of the original matrix 
is compared to the time complexity of the 
inversion of each block. According to (11), the 
maximum speedup that can be achieved is 
approximately 9, which is a worthwhile 
improvement in the performance. Moreover, it can 
be concluded that the reluctance calculation can be 

a bottleneck in the total solution. Thus, a 
massively parallel approach using GPU 
technology to accelerate the performance of this 
part of the solution is a reasonable solution. 
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Figure 3 depicts the reluctance matrix, 

calculated from a block diagonal partial 
inductance matrix, where each block which 
represents parts of the model in each axis, is 
inverted separately. 
 

 
 
Fig.  3.  Calculating reluctance from an inductance 
matrix in block diagonal form.  
C. Reluctance formulation in PEEC 

In this paper, only quasi-static (R,Lp)PEEC 
is studied, where capacitive couplings are 
neglected in the problem. This assumption is 
mostly valid in power electronics and for the 
models that carry high currents, e.g. bus bars in 
power frequency converters, where inductive 
loops are interesting to be identified and studied in 

order to simulate the induced voltage when 
dt
di

 is 

high in such a circuit. Extracting inductance values 
in high frequency power electronics circuits will 
help to improve the layout design to reduce the 
stray inductance and consequently reduce voltage 
overshoots and reduce switching losses. Based on 
the MNA formulation in PEEC, the system 
equation for an (R,Lp)PEEC model is defined as 
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All elements in (12) are described in Section II-B. 
In system equation (12), the right hand side is for 
excitation sources and the unknowns in the 
equation are node potential and cell currents. 

By applying the reluctance matrix, as 
defined in (7) to both sides of (12), the new 
formulation which is shown in (13) will be 
achieved. This new formulation is introduced as 
(R,K)PEEC. 
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IV. PEEC-BASED SOLVER 

This section describes a solver developed 
based on the PEEC method. Details about solver 
acceleration using GPUs and sparse solver are also 
presented in this section. 
 
A. Implementation of the solver 

A PEEC-based solver has been written in 
the C++ language, which utilizes the Intel Math 
Kernel Library (MKL) [25], optimized for multi-
core systems, and the CUDA-based LAPACK 
(CULA) [26], which is included for the parts of 
the solver that use the GPU. To solve the sparse 
system after applying the reluctance matrix, the 
MUMPS package [27] is used. After calculating 
each block of the reluctance matrix, it can safely 
be sparsified. The sparsification can be described 
as applying a truncation process to small off-
diagonal elements in the reluctance matrix by 
means of the coupling factor 
 

jjii

ij
ij KK

K
k




2

                                           (14) 

 
between the elements i  and j  in the matrix. The 
calculated factor will be compared to a constant 
value and values that are smaller than the constant 
will be removed [28]. The approximation in (13) 
comes from the relation in (15), which is due to 
the sparsified reluctance matrix. As the K  matrix 
is more sparsified, (15) is more approximate. 
Similarly, if K matrix is not sparsified at all, the 
equation IKLP   will hold which leads to the 
exact solution. 
 

IKLP                                                             (15) 
 
It should be noted that, sparser reluctance matrices 
will create sparser coefficient matrices, which will 
speed up the solving process. Moreover, due to the 
locality property of the reluctance matrix, K  can 
be sparsified up to a high level, at which the 
desirable level of accuracy is still maintained [22]. 
In a PEEC-based solution, the coefficient matrix in 
the MNA formulation consumes the largest part of 
the total allocated memory. Using (R,K)PEEC, 
this matrix is converted to a sparse matrix where 
the majority of its elements are set to zero. Thus, 
the solver assembles the matrix, in a row-by-row 
manner, and at each step, the assembled row is 
stored in sparse format to save the memory. Sparse 
direct solvers involve much more complicated 
algorithms than solvers suited for dense systems. 
This class of solvers is used to solve the matrix 
equation bAx  , where the coefficient matrix A  
is considered to be large and sparse. The main 
challenge in these types of solvers is the efficient 
fill-in of the L  and U  factors of a sparse system. 
Typically, matrices in PEEC are dense, 
unsymmetric, indefinite and ill-conditioned. By 
sparsifying such matrices, the system becomes 
even closer to being singular and thereby would 
need numerical techniques, i.e. pivot perturbation 
or iterative refinement, to compensate for 
numerical instabilities. Later, by acquiring a valid 
sparse system, MUMPS will be utilized as an 
appropriate solver for this purpose [27]. For 
unsymmetric matrices, MUMPS first tries to 
symmetrize the matrix, based on the pattern 

TAA , and then reorder the matrix to minimize 
the cost of the factorization. This process, which is 
known as symbolic factorization, is necessary to 
determine the non-zero structure of the factors, 
before performing any numerical factorization. By 
having a matrix equation where the coefficient 
matrix is symmetric, the symbolic factorization 
can be performed as 
 

LDUA T                                                  (16) 
 
where 

 A  is the sparse coefficient matrix; 
   is the permutation matrix that reorders 

A ; 
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 L  and U  are triangular matrices, parts of 
the factorized A ; 

 D  is a diagonal matrix, a part of the 
factorized A . 

 
Using the MUMPS package, various methods for 
reordering are available, e.g. Approximate 
Minimum Degree (AMD) [29] and METIS [30]. 
The reordering can also be performed by 
providing the solver with a permutation matrix  . 
Using a sparse direct solver, the solution is carried 
out in three main steps: 
 

1. Analysis: The symbolic factorization, 
which involves reordering, is performed 
on the symmetric pattern of the coefficient 
matrix. Permutation applies on the row 
and columns of the original matrix 
through a permutation matrix which 
consists of a set of orthogonal reordering 
vectors. 

2. Factorization: By having symbolic data, 
the numerical factorization is performed 
using a numerical pivoting method. In the 
case of detecting zero pivots, perturbation 
will be performed by the sparse solver. 
The perturbations can affect the accuracy 
of the results. The accuracy will be 
retained by iterative refinement steps after 
the solution is done. 

3. Solution: The factorized system is solved 
in this phase, using backward-forward 
substitution. As mentioned, some iterative 
refinement steps are also performed to 
correct the effect of possible perturbations. 

 
Due to the structure of the sparse coefficient 

matrix in (R,K)PEEC formulation, many of the 
diagonal elements are set to zero, which can easily 
cause the final solution to become numerically 
unstable. Thus, certain algorithms known as 
weighted matching and scaling are used by the 
solver, to increase the accuracy of the pivoting 
[31]. MUMPS offers several remedies, and it is 
very important to choose a proper algorithm for 
this purpose. During several experiments, it was 
observed that when no scaling was applied, a few 
unwanted spikes could appear in the solution. On 
the other hand, when the scaling algorithms were 
applied, the spikes didn’t appear and accurate 

results were acquired. Figure 4 depicts the effect 
of using scaling to solve a linear equation. It is 
observed that spikes do not appear in the final 
solution when a scaling feature with more accurate 
pivoting is enabled. 
 

 
 
 Fig.  4.  The effect of scaling on the accuracy of 
pivoting during the factorization of an ill-
conditioned sparse coefficient matrix. 
 
B. GPU Acceleration 

According to (10) and (11), grouping the 
structure along each axis can improve the 
performance of the reluctance calculation up to a 
factor of 9. Therefore, massively parallel solutions 
can be used to speed up this process. In the 
implemented PEEC-based solver, each block of 
the reluctance matrix is calculated in the following 
steps: 
 

1. Calculate each block of the partial 
inductance matrix; 

2. Transfer the calculated block from the 
host to the GPU device; 

3. Invert the transferred block on the GPU 
device; 

4. Transfer the inverted block back to the 
host; 

5. Sparsify the block, and store it in sparse 
format; 

6. Release the memory for that block. 
 

Because the solver uses complex double 
precision data to solve problems in the frequency 
domain, NVIDIA Fermibased GPUs are exploited 
in this research. NVIDIA Fermibased M2050 
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Tesla series graphic cards offer 448 CUDA cores 
with 3 GB internal memory and have the 
computational power of 515 GFLOPS which 
makes them appropriate for expensive 
mathematical calculations [32]. 

The inversion using the GPU is performed 
by calling a CULA-appropriate routine [26]. Then, 
the routine will transfer the whole block of data to 
the graphic card’s internal memory, to minimize 
the communication overhead, and will invert it 
using the massively parallel structure of the 
graphic card. When the inversion has been 
completed, the solution is transferred back to the 
main memory of the host system. Since the 
internal memory of available GPUs is commonly 
less than the available memory on the modern 
machines, thus the problem size is limited to the 
size of the internal memory on the graphic cards. 
In the future, with more powerful GPUs with 
larger memory and advances in the software tools 
which could partition the data into blocks which 
could be solved separately on GPUs, it would be 
possible to perform the whole solution solely on 
GPUs. CULA routines use some reserved memory 
for internal usage, where this workspace is 
allocated on both the GPU memory and the main 
memory [32]. The process of inversion is actually 
performed by both the host CPU and all 
processing cores on the GPU. However, the 
computations are mostly handled by the cores 
available on the GPU. 

Additionally, the sparse solver has been 
compiled to use BLAS [33] operations on the 
GPU. Hence, all BLAS operations of the solver 
are performed by the GPU to reach the highest 
level of parallelism.  

V. RESULTS 
In this section, the performance of the solver 

will be studied using a PEEC model of a 
interconnection bus bar as a part of a power 
frequency converter. The analyzed model consists 
of a planar DC-link bus bar as typically used in 
multi-level medium voltage frequency converters 
[34]. The purpose of the DC-link in a multi-level 

frequency converter is to store the energy between 
the front-end rectifier and back-end inverter units, 
and the DC-link must therefore be designed for 
low stray inductance to limit the overvoltage peaks 
when switching high currents. Furthermore, the 
requirements and complexity of the bus bar 
strongly depend on the circuit topology used for 
power conversion [35]. The simulation model is 
depicted in Fig. 5. 
 

 
 
Fig.  5.  PEEC model of the studied bus bars. 
 
In the modeled bus bars, a current source with the 
amplitude of 1A is connected between two ports, 
which are marked two arrows which point to the 
connection ports. The simulation has been 
performed from 1 Hz to 10 MHz using 10 
frequency steps. The total resistance and 
inductance of the bars has been extracted from the 
simulation. Two different test cases of the same 
model with different mesh densities have been 
analyzed. In these tests, the dense solver utilizes 
the Intel MKL library, while the sparse solver uses 
the reluctance method together with the sparse 
direct solver MUMPS. All simulations have been 
run on a Linux 64-bit cluster, equipped with two 
quad-core Intel Xeon E5520 2.2 GHz processors 
with 24 GB of RAM installed and a Tesla M2050 
card with 3 GB of on-board memory. 
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Table 1 shows the simulation results of each test 
case using different levels of sparsification. 
Figures 6 and 7 present the total resistance and 
inductance of the bus bars as the frequency 
increases. It should be noted that for the first test 
case, the results for the case which the reluctance 
matrix is sparsified up to 95% almost overlaps the 
results without any sparsification. Moreover, 
results from the second test model reveal that as 
the problem size increases, the error rate decreases 
when the reluctance matrix gets sparser. Figures 6 
and 7 also demonstrates the skin and proximity 
effects along the bus bars, where, as the frequency 
increases resistance increases and inductance 
decreases to a certain level. 

From Figs. 6 and 7 and Table 1, several 
conclusions can be drawn: 
 
 The highest error in the results occurs when 

the sparsification is up to 98%. However, this 
error is still adequate and less than 8%. 

 Although the reluctance matrix is sparsified up 
to 98%, the error is still quite low. Moreover, 
despite this acceptable error in the results, for 
the smallest model, the speed and memory 
usage has been improved by factors of 
approximately 10 and 35, respectively. It is 
also evident that problems that could not be 
solved before, due to the lack of the memory 
(i.e. BB2), can now be solved with small 
approximations involved in the solution.  

 For reluctance calculations, the GPU solution 
results in a remarkable speedup, compared to 
the CPU-only solution. The speedup increases 
even more as the problem size increases. 
For the first test case, reluctance calculation 
took 110 and 57 seconds for CPU and GPU 
respectively and the second test case, 
reluctance calculation was carried out in 437 

and 120 seconds for CPU and GPU 
respectively. As stated before, all matrix 
operations have also been done on GPU which 
improved the overall solution. It is expected 
that higher speedup will be achieved when 
graphic cards with higher internal memories 
are manufactured. Furthermore, at each time, 
only one block of the inductance matrix shown 
in Fig. 3 is transferred to the GPU. Thus, the 
memory peak is always decreased to the 
largest block in the inductance matrix. 

 In Table 1, the dense solver indicates the 
solver which uses only CPU resources while 
the sparse solver uses CPU together with GPU 
resources, since it performs all BLAS 
operations on GPU. Comparison between 
dense and sparse solvers with no sparsity, 
reveals that the GPU have contributed to gain 
a speedup around 3.4 to solve exactly the same 
problem. 

 Smaller problems loose the accuracy faster 
than larger problems when the reluctance 
matrix is sparsified in the same level. 
Comparison between two analyzed structures, 
yields that BB1 showed 8% error when the 
reluctance matrix is 98% sparsieifed while 
BB2 had only 3% error with the same level of 
sparsification, comparing to the cases when 
95% sparsification is applied. 

 The parallel sparse direct solver shows better 
performance than the dense solver even when 
the reluctance matrix is not sparsified at all. 
This performance increase can be due to the 
nature of the coefficient matrix in the MNA 
formulation in the PEEC, which is relatively 
sparse, and the efficiency of the sparse solver 
for sparse systems.  

 
Model 

 
Solver 

Num. of 
unknowns 

Mem. 
[GB] 

Sparse 
[%] 

Time 
[hh:mm:ss] 

 
 

BB1 

Dense 
Sparse 
Sparse 
Sparse 

 
 

33 296 

17.7 
13.3 
0.8 
0.5

0 
0 

95 
98 

06:34:10 
01:56:50 
01:00:22 
00:40:00 

 
 

BB2 

Dense 
Sparse 
Sparse 
Sparse 

 
 

58 668 

55 
41.5 
6.6 
2.8

0 
0 

95 
98 

-* 
-* 

10:12:02 
08:10:28 

Table 1: Bus bar solution 

-*: Not available due to memory 
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VI. CONCLUSION AND FURTHER WORK 
The improved solver presented in this paper 

makes it possible to solve very large 
problems with limited computational resources. 
Using the reluctance method, the final coefficient 
matrix in the system equation can be sparsified 
without the risk of an unstable solution, due to the 
diagonal dominance of the reluctance matrix. In 
the new solver, the bottleneck of the solution is 
shifted to the reluctance matrix calculation. 
Therefore, utilizing GPU technology together with 
grouping algorithms is the key to improving the 
performance in this phase of the solution. A 
numerical test case was studied which proved that 
even by sparsifying the reluctance matrix up to a 
high level (i.e. 98%) the required accuracy was 
still satisfied. In addition, memory usage and the 
grouping algorithms were analyzed, showing that, 
using grouping strategy, the reluctance matrix can 
be computed by inverting sub-matrices, which is 
less expensive and more efficient than inverting 
the whole pL  matrix. It was also observed that, 
even when no sparsification is applied to the 
system, the direct sparse solver performs more 
efficiently than conventional dense solvers. 
Because of the relatively sparse matrices involved 
in MNA formulations, which make sparse solvers 
more appropriate for this purpose. For the next 
step, the iterative solvers can be considered for use 
with the PEEC-based solver. Using iterative 
solvers, the time complexity of the solution can be 
reduced, but because of the severely ill 
conditioned matrices that are involved in the 
PEEC method, the development of a proper 
preconditioner will be a challenging and critical 
task. Finally, the iterative PEEC-based solver can 
be enhanced to employ GPU hardware. The 
workload of preconditioning and Krylov subspace 
solver can be shared between the host and GPU to 
acquire maximum efficiency and the parallelism. 
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Fig.  6.  Bus bar resistance (a) and inductance (b) 
of the BB1 model, simulated using dense and 
sparse solvers with different sparsification levels. 
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      (a) 

 

 
 
     (b) 

 
Fig.  7.  Bus bar resistance (a) and inductance (b) 
of the BB2 model, simulated using dense and 
sparse solvers with different sparsification levels. 
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