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Abstract � A method for completely minimizing a 
3D-solenoidal basis set, and identifying its linearly 
independent basis functions in method of moments 
(MoM) based volume integral equation (VIE) is 
presented. The method uses the connecting 
information of the geometric mesh and the 
properties of the 3D solenoidal basis function to 
remove the null space of the basis set. 
Consequently, the approach is not prone to 
numerical inaccuracies due to finite machine 
precision resulting from matrix manipulations. In 
addition, our method is not restricted to simply 
connected or contiguous mesh regions; it is 
applicable to a wide variety of complicated mesh
regions featuring holes and voids. Finally, an 
expression for determining the minimum number 
of linearly independent solenoidal basis functions 
in a given tetrahedral mesh is presented.

Index Terms – Divergence-free, method of 
moments (MoM), and solenoidal edge basis 
function. 

I. INTRODUCTION
When applying VIE based method of 

moments (MoM) formulations in electromagnetic
problems involving arbitrary shaped three-
dimensional (3D) bodies, the solution domain is 
best discretized using a number of tetrahedral 
elements [1]. In each tetrahedral element, a basis 

function is defined to best approximate the 
properties of the electromagnetic quantity of 
interest. It has been shown that the choice of an 
appropriate basis function is of critical importance
when applying MoM formulations [2-4]. The most 
widely used basis function for 3D VIE modeling is 
the Schaubert-Wilton-Glisson (SWG) basis 
function defined in [1]. It is well suited for 
modeling the electric flux density D as it enforces 
the boundary condition of a continuous normal 
component of D on the faces of the tetrahedra 
where it is defined. However, the SWG basis 
function does not have the property of zero-
divergence, which is demanded of D in a 
dielectric. This has encouraged a number of 
authors to use a divergence-free or solenoidal 
basis function that more accurately describes the 
physics within a dielectric [5, 6]. One such basis 
function is the 3D solenoidal basis introduced by 
de Carvalho [7, 8] for modeling the 
electromagnetic scattering of inhomogeneous 
dielectrics. Kulkani [2] demonstrated 
considerably better performance of the 3D-
solenoidal basis function compared with the SWG 
basis function, including the fact that there was a 
significant reduction (1.67 to 2 times) of the 
number of unknowns for the same tetrahedral 
mesh. Although, their analysis was promising, 
they stressed the difficulty of implementing a 
preliminary conditioning operation to remove the 
null space associated with the solenoidal basis set.
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Several approaches were proposed and 
implemented in order to identify the linearly 
independent 3D solenoidal basis functions in a 
given tetrahedra mesh. In [2], the Gram or 
covariance is formed and reduced by row 
operations to an echelon form using Gauss-Jordan 
elimination with partial pivoting. This is a 
complex method involving matrix manipulations 
that are prone to numerical inaccuracies due to 
finite machine precision. As a result, methods 
utilizing only the connecting information in the 
geometric mesh have been developed by several 
authors. In one method, reference [5] constructed 
an undigraph using the nodes and edges in the 
geometric mesh, and created a generating tree 
linking the nodes and edges. The limitation of this 
method is that it is only applicable to simply 
connected mesh regions (or mesh regions without 
holes). In another method, reference [3] proposed 
a solution where the nodes of the mesh are 
counted and tested, one-by-one, with a set of 
established criteria. Unfortunately, this method 
like the previous one is not applicable to objects 
and regions with holes. 

In this paper, we expand on the work reported 
in [3] and introduce a simple, yet robust method 
for determining the linearly independent 3D 
solenoidal basis functions in a given tetrahedral 
mesh. The proposed method is based on the 
connecting information in the geometric mesh and 
the properties of the 3D solenoidal basis function.
As such, it is not prone to numerical inaccuracies 
resulting from complex matrix manipulations. It is 
also applicable to all mesh regions with multiple 
holes and voids. Specifically, it can be used to 
accurately determine the number of voids in a 
given tetrahedral mesh. In addition, an accurate 
expression for determining the minimum number 
of linearly independent basis functions in a given 
mesh is presented.

II. THEORY AND FORMULATION

A. Basis definition
The 3D-solenoidal basis function is defined 

within a tetrahedron of volume as shown in Fig. 
1. It is a constant vector field that is perpendicular 
to the basis edge vector as depicted in Fig. 1. In this 
case, vector ��������� denotes the basis edge vector while 
vector ���������, represents the opposite edge vector 

parallel to the constant vector field. For any given 
point within the tetrahedron, the basis function with 
respect to the corresponding basis edge vector can 
be expressed mathematically as,

�(	) =



��
(	)       (1)

where
(	) = ��     	 � �

 �	 � �
�. (2)

Fig. 1. Definition of the 3D solenoidal basis 
function in a tetrahedron. 

The basis function f(r) defined in equation (1)
is such that its divergence within the tetrahedron is 
zero, i.e., f(r) is solenoidal. Also, f(r) has the 
desired property that the normal component of its 
flux is continuous across any internal face 
boundary, and the total flux of its normal 
component through any face that is not parallel to 
f(r) is equal to one. In a typical tetrahedral mesh 
region consisting of multiple interconnecting 
tetrahedra, equation (1) can be modified to include 
the contributions from all neighbouring tetrahedra 
that share a common basis edge vector giving,

��(	) = �

�

���
�(	)

��

�=�

(3) 

where is the total number of tetrahedra 
connected to the edge. With the definition of 
equation (3), any physical electromagnetic 
quantity that is solenoidal can be approximated in 
the discretized region using the 3D solenoidal 
basis function. Examples of physical quantities 
include the electric flux density D in a pure 
dielectric, the magnetic flux density B, the curl of 
the magnetic field (� × �) or the total volumetric 
current density, and the curl of the electric field
(� × �). 
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B. Size of the basis set
It was shown in [2] that the size of the 3D-

solenoidal basis set is far smaller than the number 
of edges in the mesh region. The number of linearly 
independent solenoidal basis functions is given by,

������ � �!�"#� $ ��#%&�'#*&� (4)
where is the number of linearly independent 
solenoidal basis functions, is the number of 
faces, and is the number of tetrahedra in 
the mesh. When the meshregion is not simply 
connected, i.e., is made up of holes and voids, 
equation (4) can be modified into, 

������ = �!�"#� $ ��#%&�'#*&� $ ��+�*� (5)
where is the number of voids in the mesh.
Equation (5) can be explained by considering a 
mesh region with no voids. A simple void can be
created by removing an internal tetrahedron from 
the mesh. In this case, the previous number of 
independent solenoidal basis function will not 
change since the normal component of flux from 
the remaining neighbouring tetrahedra into the 
void is unchanged. Consequently, the number of 
voids has to be accounted for as in equation (5) 
since there is no change in the number of faces. 
The simple void can be made larger by the 
continuous removal of one tetrahedron and the 
faces it introduced in the region bounding the 
simple void. In this case, equation (5) is unaltered
because each time a tetrahedron is removed, the 
exact number of faces it introduced in the mesh is 
also removed. Using a similar argument, the 
inclusion of a hole has no effect on equations (4)
or (5). This can be explained by considering a 
simple hole that is created by removing exactly 
one tetrahedron and the faces it introduced in the 
mesh region. This simple hole can be extended by 
the continuous removal of exactly one tetrahedron 
and the faces it introduced in the region bounding 
the simple hole. In this case, the number of 
independent solenoidal basis function is still given 
by equations (4) or (5), since the number of 
tetrahedra and faces removed remain balanced.

C. Minimization Algorithm
Consider a mesh region containing a single 

tetrahedron as shown in Fig. 2. Formally, there are 
six defined solenoidal basis functions 
corresponding to the six labeled edges. In  3 space, 
only three of these functions are linearly 

independent, and a more natural choice of these 
functions would be F4(r), F5(r), and F6(r) defined 
on edges 4, 5, and 6 as shown in Fig. 2. In addition, 
edges 4, 5, and 6 form the basis function face of the 
tetrahedra. We define the seed node N1 as the node
that is opposite to the basis function face associated 
with the tetrahedron. Also, we describe the 
neighbouring edges of node N1 as those edges that 
contain node N1: edges 1, 2, and 3 respectively. A 
typical mesh region can be constructed by the 
addition of more tetrahedra to the single tetrahedron 
structure  of Fig. 2. When tetrahedra are added, they 
will share nodes, edges or faces depending on the 
mesh geometry.

Fig. 2. 3D solenoidal basis functions defined as 
bold lines on the opposite face to seed node N1.

According to [3], all tetrahedra having the same 
seed node are grouped together to form a structure 
very similar to an icosahedron (soccer ball structure
[3]) where the seed node is at the center of the 
structure. The basis functions associated with all the 
tetrahedra in this structure are defined on the edges 
of the exterior faces. Subsequently, nodes on these 
exterior faces are used in turn as seed nodes to 
create more structures and this process continues as 
described in [3]. However, as more of these 
icosahedra like structures are formed, a situation 
will arise when a newly formed structure shares a 
node, an edge or a face with one or more previously 
formed structures. When this occurs, (5) is no
longer satisfied,leading to an incorrect result. If the 
mesh region is simply connected or contiguous, 
then this problem can be avoided by appropriate 
seed node selection as discussed in [3]. In order to 
resolve this problem for non-contiguous mesh 
regions with multiple holes and voids, we introduce
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additional solenoidal basis functions in the structure
when it shares one or more edges, or faces with one 
or more previously formed structures. These 
additional functions are determined by the nature of 
the contact between the structures. For simplicity, 
we will consider two possible scenarios for contact: 
edge contact and face contact between any two
tetrahedra of the structure as shown in Fig. 3. Using
equation (5) on the edge contact configuration 
shown in Fig. 3 (a) indicates that six and not five
solenoidal basis functions are required. In order to 
find out which additional basis functions are
required while still adhering to the icosahedra 
approach, we observe that basis function F6(r) will 
be modified by the contact based on equation (3). 
Since the new tetrahedron shares an edge with the 
previous defined one, F6

�,(	)�#- = �,(	).&#/�+0� + 
2
��2

2(	) . (6)

(r) is modified accordingly 
into,

This modification will destabilize the previous 
choice of basis functions in the structure, and basis 
functions F4(r), F5(r), F6(r), F10(r), and F11(r) no 
longer linearly combine to produce the dependent 
basis F1(r), F2(r), and F3


2

��2
2(	)  = �4(	) ± ���(	)

(r). However, since 

                  = �5(	) ± ���(	) , (7)
we can choose either F7(r) or F8(r) as an additional 
basis function so that the dependent bases can now 
be determined. Similarly, it can be shown that for 
the contact configuration in Fig. 3 (b), two 
additional solenoidal basis functions must be 
chosen from the set {F7(r), F8(r), F9

�4(	) ± �5(	) ± �2(	) = �.

(r)}, since we 
have that, 

(8)
Using the results from these configurations, we 

describe an algorithm to determine the linearly 
independent solenoidal basis functions from the set 
of all edges. A flow diagram of the algorithm is 
depicted in Fig. 4. The first process is to specify an 
arbitrary node as the head node and insert it into an 
empty linked list. Next, we pick the head or first 
node from the list as the first seed node, and we find 
all tetrahedra sharing this node. A two-step 
validation test is then performed on all tetrahedra 
found. The first step involves checking each 
tetrahedron found for one or more neighbouring 
edges that are not shared with any tetrahedra of a 
previous seed node, and one or more nodes on the 
basis function face that are already in the linked list. 

This is the mesh continuity test as defined in [3]. If 
no tetrahedron is found that satisfies these 
conditions then the test is successful. On the other 
hand, if one or more tetrahedra fail the test then we 
apply the next step of validation. The introduction 
of this second step is the key contribution of this 
paper that differentiates it from the work in [3]. The 
second step examines each tetrahedron that failed 
the mesh continuity test to determine how they 
touch the other tetrahedra from previously listed 
seed nodes. For this test to be successful, all 
tetrahedra must touch other tetrahedra from 
previously listed seed nodes as shown in either 
contact configuration of Fig. 3. If one or more 
tetrahedra touch in any other way, the seed node is 
removed and inserted at the end of the linked list 
and the process is repeated with a new seed node. 
Upon a successful outcome from validation testing, 
the appropriate edges of the basis function faces or 
neighbouring edges of all tetrahedra found are 
selected as basis function, and the nodes on the 
basis function faces are inserted into the linked list. 
This process is repeated until all nodes in the mesh 
are exhausted.

Fig. 3. Possible contact configuration of two
tetrahedra from seed nodes N1 and N2

III. EXAMPLES AND TESTING

: (a) 
tetrahedra share an edge and (b) tetrahedra share a 
face.

In this section, we challenge our algorithm 
using different tetrahedra meshes of simple and 
complex geometrical structures containing 
multiple holes and voids. These meshes were 
created with the software package Netgen [9]; they 
are depicted in Fig. 5. The algorithm was 
implemented and executed on an Intel Core i5-
2520M 2.5 GHz PC with 4.0 GB of RAM running 

(a) (b)

THE 3D SOLENOIDAL BASIS FUNCTION IN VOLUME INTEGRAL EQUATION 906



Open Suse 12.1. We tabulate the mesh parameters 
of each discretized region, as well as the output 
from the algorithm into Table I .In every case 
considered, the algorithm is able to identify the 
independent 3D solenoidal basis functions. Also, 
we observe that equation (5) is in agreement with 
the output from the algorithm. The algorithm is 
indeed very robust, and is applicable to a very 
broad class of complex meshes with multiple holes 
and voids, as seen. Moreover, the complete 
minimum number of independent solenoidal bases 
is always smaller than the number of edge bases in 
the discretization (typically by a factor ranging 
between 16% and 20%), resulting in further 
reduction in memory resources. The execution 
time for large meshes is in the order of a few 
seconds, and is less than a second for smaller 
meshes (fewer than 19,000 edges). These results 
are an indication of superior performance when 
compared to linear algebraic methods using the 
same PC hardware. Finally, the algorithm is very 
straight forward to implement, and does not suffer 
from numerical inaccuracies due to floating point 
matrix operations since it uses the connecting 
information in the mesh.

Fig. 4. Algorithm for identifying linearly 
independent basis functions.

Table I. Output from the algorithm for the mesh 
regions shown in Fig. 5. 
Mesh
Region

N NEdges Faces-
NTetrahedra–
N

N

Voids

(Algorithm 
output)

Basis Time
(s)

Fig.5(a) 12864 10723 10723 < 1
Fig.5(b) 11065 9253 9253 < 1
Fig.5(c) 187547 156001 156001 199
Fig.5(d) 24177 19455 19455 1
Fig.5(e) 34957 28240 28240 4
Fig.5(f) 13001 10544 10544 < 1

(a) (b) 

(c) (d) 

(e) (f)

Fig. 5. Mesh regions generated with NETGEN: (a) 
cube with three cylindrical voids, (b) cube with a 
single void of merged cylinders, (c) steel frame 
with multiple holes, (d) gyroscope, (e) three 
connected tori with single connecting void, and (f) 
group of five connecting spheres and two 
separated spheres. 
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IV. CONCLUSION
In this paper, we presented a novel method for 

the determination of the minimum number of 3D-
solenoidal basis functions in a given tetrahedral 
discretization. The method was derived using the 
connecting information in the mesh structure and 
the properties of the 3D-solenoidal basis function.
The method is able to identify the independent 
basis functions even in the presence of holes and 
voids within the mesh structure. To our 
knowledge, this is the only algorithm that is 
insensitive to the presence of holes and voids in 
the mesh discretization. In addition, it provides 
significant savings in computational resources 
when compared to algorithms involving complex 
matrix manipulations. Finally, it is worthy of note 
that the contact configurations of Fig. 3 can be 
expanded to accommodate other ways tetrahedra
from two or more seed nodes can come into 
contact. This will provide an improvement in the 
speed of the algorithm at the expense of an 
increase in the complexity of identifying the type 
of contact, and the additional basis edges resulting 
from that contact. The chosen contact 
configuration is simple and sufficient to guarantee 
proper functioning of the algorithm in any region. 
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