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Abstract ─ Gas discharges play a central role in the 
electrical breakdown of matter, both in nature and 
technology. Therefore, accurate modeling and 
simulation of streamers in gaseous discharge processes 
are of particular interest. This study presents the 
formulation of computationally efficient models of the 
charge density and electric field produced by the lattice 
Boltzmann method. The propagation of double-headed 
streamers is described in 1-cm plane-to-plane geometry 
in pure nitrogen at atmospheric pressure by 1.5D and 
2D models. The lattice Boltzmann method was 
successfully applied to the simulation of streamer 
discharges. Therefore, this scheme is a potential way of 
simulating gaseous discharge problems. 

Index Terms ─ Lattice Boltzmann method, numerical 
simulation, streamer discharge. 

I. INTRODUCTION 
The discharge phenomena in gaseous dielectrics 

have high practical importance. Knowledge of the 
discharge characteristics in gaseous dielectrics is 
important in solving several practical problems that 
arise in insulation systems. Completely revealing the 
mechanism of streamer discharges based on existing 
experiment strategies is impossible, and many 
important microcosmic physical quantities remain 
undetermined. Thus, numerical simulation has become 
an important method in advancing the development of 
gas discharge theory. Different models have been 
developed to study streamer propagation. However, a 
high-accuracy algorithm is required for the streamer 
discharge distribution of particles in large changes in 
space. Kunhardt and Min introduced the finite 
difference and finite element methods, respectively, to 
solve this model. Kunhardt presented results from a 
self-consistent, 2D numerical simulation of streamer 
formation and propagation in non-attaching (N2) and 
attaching (N2-SF6 mixture) gases using a one-moment 

fluid model [1]. Min proposed the use of an adaptive 
mesh generation as a method of streamer simulation. A
higher resolution and more efficient grid distribution 
with fewer grids can be obtained through adaptive mesh 
generation [2]. However, this method generally requires 
the Poisson and Boltzmann equations to be solved in 
each step, which make calculations complex and 
computer programs generally difficult to complete. 

Describing charge density, electric-field distribution, 
temperature, and other physical quantities has been a 
major problem in simulating the streamer discharge 
development process by computer technology. 2D flux-
corrected transport techniques are well-known and 
popular methods for the numerical calculation of 
streamer propagation. These methods allow for the 
numerical solution of transport equations under strongly 
space-charge-dominated conditions such as those that 
occur at the head of propagating streamers. Medvedev 
recently applied the lattice Boltzmann model (LBM) to 
simulate the electric breakdown in liquids and 
investigated pre-breakdown hydrodynamic flows and 
initial stages of the electric breakdown in dielectric 
liquids. These three models (the purely thermal, bubble, 
and combined models) were used to describe the 
expansion of streamer channels [3]. Kupershtokh 
developed an efficient lattice Boltzmann equation 
(LBE) model to simulate different electrohydrodynamic 
(EHD) phenomena. This model includes fluid 
dynamics, electric-charge transport through advection 
and conduction currents, and action of electric forces 
upon space charges in liquids [4]. The current study 
applies the LBE model for the numerical simulation of 
avalanche and streamers. 

II. MODEL FORMULATION 
A. Lattice Boltzmann model 

The kinetic nature of LBM introduces three 
important features that distinguish it from other 
numerical methods. First, the convection operator (or 
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streaming process) of the LBM in phase space (or 
velocity space) is linear. This feature is borrowed from 
kinetic theory and contrasts with nonlinear convection 
terms in other approaches that use macroscopic 
representations. Simple convection combined with a 
relaxation process (or collision operator) allows the 
recovery of nonlinear macroscopic advection through 
multi-scale expansions. Second, incompressible 
Navier–Stokes (NS) equations can be obtained in the 
nearly incompressible limit of the LBM. The pressure 
in the LBM is calculated using an equation of state. By 
contrast, pressure satisfies a Poisson equation with 
velocity strains that act as sources in the direct 
numerical simulation of incompressible NS equations.
Solving this equation for pressure often produces 
numerical difficulties that require special treatment 
such as iteration or relaxation. Third, the LBM utilizes 
a minimal set of velocities in phase space. The phase 
space is a complete functional space in traditional 
kinetic theory with the Maxwell–Boltzmann equilibrium 
distribution. The averaging process involves information 
from the entire velocity phase space. Given that only 
one or two speeds and a few moving directions are used 
in LBM, the transformation that relates to the 
microscopic distribution function and macroscopic 
quantities is simplified, which consists of simple 
arithmetic calculations. 

The LBE can be obtained from either discrete 
velocity models or the Boltzmann kinetic equation, and 
deriving macroscopic NS equations from the LBE can 
be performed in several ways. This study uses an LBM 
model that begins from a discrete kinetic equation for 
the particle distribution function, which is commonly 
used [5-7]. Thus, 

(x , ) (x, ) ( (x, )),i i i i if e t t t f t f t	 8 	8 � �B  (1) 
where fi is the particle velocity distribution function 
along the i-th direction, Δt is the time increment, ei is 
the lattice direction velocity, and Ωi(fi(x, t)) is the 
collision operator that represents the change rate for fi
that results from collision: 

u ,i i i
i i

f f e7 7� �� �  (2) 

where ρ is the density, and u is the particle velocity. 
This study uses the Bhatnagar–Gross–Krook (BGK) 

approximation as follows: 
( (x, )) ( ) / ,eq

i i i if t f f IB � � �  (3) 
where τ is a single relaxation time parameter. In the 
BGK model, relaxation time τ governs transport 
coefficients such as viscosity, heat conductivity, and 
diffusivity, and is expressed as: 
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x
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where υ is the kinematics viscosity of fluid, Δx is the 
lattice length, and fi

eq in Equation (3) is the equilibrium 
distribution function. The equilibrium distribution 

function can be analytically obtained [8]: 
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At this point, we consider the following 2D model 
with nine velocities: 
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The direction of ei is shown in Fig. 1 for the nine-
velocity model. 

Fig. 1. Lattice velocities for the 2D model. 

In Equation (5), ωi is the weight coefficient, ω0 = 4/9, 
ω1 = ω2 = ω3 = ω4 = 4/9, ω5 = ω6 = ω7 = ω8 = 1/36, and 
cs is the sound speed expressed as: 

1/ 3.sc RT� � (7) 
This study uses the lattice Boltzmann method to 

solve equations for the concentrations of electric charge 
carriers. We considered a new gravity model in the 
lattice Boltzmann method for charged particle transport 
forced by an electric field. When a body force is 
included in the Boltzmann equation, expressing force in 
terms of its gravitational potential (˗ρ,ϕ) is common. If 
this approach is considered and the density variation 
produced by the body force is negligible, the 
Boltzmann equation that incorporates the body force 
can be expressed in the same form as in the absence of 
gravity but with an altered pressure (p→p+ρϕ). If a 
gravitational force F acts, then a change in momentum 
Δp = F at every time step occurs. This condition was 
incorporated into a model of equilibrium distribution 
[9,10]. Thus, 

( (x, )) ( ) / ,eq
i i i i if t f f tFIB � � � 	8  (8) 

where 
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B. LBM model for avalanche 
A key problem encountered in the breakdown  
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simulation is the establishment of the electron 
avalanche. A numerical simulation of an electron 
avalanche generally adopts the random Monte Carlo 
algorithm. However, the form of an electron avalanche 
and contact between the breakdown field strength and 
process cannot be reflected properly with this method. 
This study presents a simulation of the signal 
development of an electron avalanche using a transport 
model based on Boltzmann equations. 

The electron avalanche formation process was 
described to simulate this breakdown, and the number 
of electrons can be expressed using the following 
equation: 

d ,n x�� (10) 
where n is the number of newly generated electrons 
produced by collision, � is the ionization coefficient, 
and dx is the distance of an electron avalanche. We 
assume that the n0 electron at the negative electrode 
causes an electron avalanche breakdown by impact 
ionization under the action of the breakdown strength. 
Thus, 

0 0
exp d .

x
n n x�� / (11) 

This study uses a 2D nine-velocity D2Q9 model to 
describe the breakdown evolution process [9,11].
Positive ions and electrons were mainly considered to 
describe the initial electron avalanche formation 
process: 

, ,e e p pn n n7 7� � �  (12) 
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The expression for the charge density distribution 
function is as follows: 
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where ei is the direction vector of the electron. In the 
following 2D nine-velocity D2Q9 model: 

0 1 0 1 0 1 1 1 1
,

0 0 1 0 1 1 1 1 1ie
� � �' (

� - .� � �) *
 (15) 

αi is the impact ionization coefficient, which is related 
to the electric field and particle mobility velocity. 
Electron and positive ion velocities can be written as 
the electron and positive ion mobilities that multiply the 
electric field, respectively. 

The discharge process is transient, so the Poisson 
equation and particle transport equation should be 
solved at each step. For a given charge distribution, the 
electric field can be calculated by the charge intensity. 
The impact ionization coefficient and particle velocity 
can then be calculated by the local field. Furthermore, 
next-step charge distribution can be calculated by 
previous step parameters. 

C. Simulation for streamer discharges 
For streamer simulations in nitrogen at atmospheric 

pressure, the following standard drift–diffusion 
equations were used for electrons, positive ions, and 
anion, which were coupled to the Poisson equation: 
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where ne and np are electron and positive ion densities, 
respectively, nn is the anion density, vi = uiE is the drift 
velocity of electrons, E is the electric field, and ui is the 
electron mobility. D is the electron diffusion coefficient, 
and α represents the impact ionization coefficient. U is 
the electric potential, s is the photoionization, ε is the 
permittivity of free space, and e is the electron charge 
[12, 13]. 

Considering the photoionization process in a 
numerical simulation is important. The photoionization 
model developed by Zhelezniak was introduced into the 
numerical simulation of streamer discharge in 
atmospheric air [14,15]. Given the non-locality of 
radiative transfer, the photoionization model involves 
describing radiative relations between all points of the 
plasma. Thus, calculating the photoionization model is 
complex. A model derived by Zheleznyak is an 
example of photoionization in air, where the 
photoionization rate at the point of observation r
because of source points of emitting photoionizing UV 
photons at r’ is as follows: 

2

(r ') ( ) d ,
4D

I f RS D
R�

� /// (17) 

where R = |r–r’|. The photon production in this model 
is assumed to be proportional to the ionization 
production rate Si, and I(r) is given by the following: 

(r ')
(r) (r),qu u

i
u q i

pn
I S

p p
�

K K
I �

� �
	

 (18) 

where ξ is the photoionization efficiency, nu(r) is the 
density of u, the ratio pq/(p+pq) is a quenching factor, τu
is the lifetime of the excited state u that accounts for the 
effects of spontaneous emission and quenching, νu is the 
electron impact excitation frequency for level u, and  
Si = νine (where ne is the electron number density and νi
is the ionization frequency). The function f(R) in 
Equation (17) is defined in two studies [16-18].
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The distribution function and charge density were 
used in the present study to describe photoionization. In 
a traditional LBM model, Ωi is required to satisfy the 
conservation of the total mass and total momentum at 
each lattice as follows: 

0, 0.i i i
i i

eB � B �� �  (19) 

The sum of all collision operators Ωi in our model is 
equal to photoionization: 

, u.i i i
i i

S e SB � B �� �  (20) 

If only the physics in long wavelengths and low-
frequency limits are important, the lattice spacing ∆x
and time increment ∆t in Equation (1) can be regarded 
as small parameters of the same order ε. Through a
Taylor expansion in time and space, the following 
continuum form of the kinetic equation accurate to the 
second order in ε can be obtained: 

2
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The Chapman–Enskog expansion can be employed 
to derive the macroscopic hydrodynamic equation, 
which is essentially a formal multi-scaling expansion: 

2

1 2

1

.
t t t
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� � �� �
�� ��

(22) 

The Equation (22) assumes that the diffusion time 
scale t2 is much slower than the convection time scale 
t1. The one-particle distribution function fi can similarly 
be expanded formally on the local equilibrium 
distribution function feq and photoionization distribution 
function fseq: 

( ).eq seq neq
if f f f�� 	 	  (23) 

At this point, fi
eq depends on the local macroscopic 

variables (ρ and ρu) and should satisfy the following 
constraints: 

, u.eq eq
i i i

i i
f f e7 7� �� �  (24) 

fi
seq depends on the local macroscopic variables (S and 

Su) and should satisfy the following constraints: 
, u .seq seq

i i i
i i

f S f e S� �� �  (25) 

Thus, 
(1) (2) 2( ),neq

i if f f O� �� 	 	  (26) 
is the non-equilibrium distribution function, which has 
the following constraints: 

( ) ( )0, 0,k k
i i i

i i
f f e� �� �  (27) 

for both k = 1 and k = 2. When fi is inserted into the 
collision operator Ωi, the Taylor expansion provides the 
following: 

3( ) ( ) ( ).eq seq
i i if f O �B � B 	B 	  (28) 

From Equation (21), we note that when ε→0, then 
Ωi(fi

eq) = 0, Ωi(fi
seq) = S. This condition leads to the 

following linearized collision operator: 
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i
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f
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is the collision matrix that determines the scattering rate 
between directions i and j. For a given lattice, Mij only 
depends on the angle between directions i and j, and has 
a limited set of values. For mass and momentum 
conservation collision, Mij satisfies the following 
constraints [19]: 

0, 0.ij ij i
i i

M M e� �� � (31) 

If we further assume that the local particle distribution 
relaxes to an equilibrium state at a single rate: 

1 ,ij ijM 

I

� � (32) 

we then arrive at the lattice BGK (LBGK) collision 
term [20]: 
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and the LBGK equation: 
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Photoionization is described at this point by the 
equilibrium distribution function from an LBGK model: 
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Finally, the LBM equation for streamer discharge 
simulation is written as follows: 

(x , ) (x, ) .
eq seq

i i i
i i i i

f f f
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D. Numerical algorithm processes 
The solution procedure can be illustrated by the 

following numerical algorithms: 
(a) Initial equilibrium distribution function fi(x, 0); 
(b) Poisson’s equation and algorithm for the electric 

field force and photoionization are solved; 
(c) Continuity equations are computed as follows: 

(x, ) (x, ) ;
eq seq

i i i
i i i

f f f
f t f t tF

I
� �? � 	 	8 (37) 

(d) Migration for location is executed as follows: 
(x , ) (x, );i i if e t t t f t?	 8 	8 � (38) 

(e) Macroscopic quantities are computed as follows: 

1
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(f) If t + ∆t < tfinal, then step (b) is repeated. 

III. NUMERICAL RESULTS 
A. Numerical results of an electron avalanche 

This section first investigates the physical quantity 
of electron density, which depicts the process of an 
electron avalanche. The computational domain is 
256×256, and the characteristic is L = 256, ∆x = 1. The 
electric breakdown of gas that occurs in a uniform 
electric field is directed vertically. We used periodic 
boundary conditions at the sides of the computation 
area and solid walls at the top and bottom. Charge 
injection from the tip results in the formation of an 
electron avalanche. As the conductive channel reaches 
the second electrode, the channel stage of the electric 
breakdown begins. Simulation results are shown in Fig.
2.

Fig. 2. Growth of an electron avalanche channel. Time 
at: (a) t = 10, (b) t = 200, and (c) t = 1000. The white 
color corresponds to the electron density. 

Figure 3 shows an initial electron avalanche in the 
ionization chamber, which was obtained from a study 
[21]. The shape of the electron avalanche has a rough 
vertebral shape. Comparing Figs. 2 and 3 shows a
remarkable similarity in the shape of the electron 
avalanche. Therefore, the result of using an LBE 
simulation is valid. The numerical simulation method is 
feasible at least for describing the shape of an electron 
avalanche. 

Fig. 3. Initial electron avalanche in the ionization 
chamber is shown. P = 270 (133 Pa), E = 10.5 kV/cm. 

B. Propagation of a 1.5D model for streamer 
discharges 

The following section attempts to demonstrate the 
efficiency of using an LBM model for the two 
examples selected among classic streamer simulation 
test cases. First, a 1.5D model was used. The numerical 
solutions of these equations have been limited to simple 
situations for a long time, in which the streamer was 
assumed to be confined inside a cylinder with a 
constant radius. Inside the cylinder, the charged particle 
density was assumed to be confined inside a cylinder 
with a constant radius and constant along the radial 
direction. The space and time evolution of charged 
particles can only be calculated in one dimension (along 
the direction of propagation) under these conditions,
and the electric field was obtained using the so-called 
disc method. If only a 1D approach is necessary to 
calculate the space and time variations of charged 
particle densities, noting that the electric field has to be 
calculated in two dimensions is important. This 
approach is recognized in 1.5D model studies, and was 
popular during the early stages of streamer simulation. 
At present, this approach is mainly used to rapidly 
check the accuracy of different numerical models. 
Thus, the 1.5D model was used in the subsequent 
sections for the said purpose. Second, the complete 2D 
propagation of a double-headed streamer under a 
homogeneous electric field was investigated. These 
results allow us to check the efficiency of the LBM in 
different scenarios and demonstrate strong improvements 
compared with other models. Calculations were made 
using the 1.5D approximation defined in the previous 
section, and the propagation of a double-headed 
streamer was calculated by an LBM Q1D3 model. The 
propagation of a double-headed streamer was considered 
in plane-to-plane geometry in pure nitrogen at 
atmospheric pressure [22]. The cathode is located at x = 1 
and the anode is located at x = 0. The applied voltage is 
equal to 52 kV. A 0.05 cm discharge radius was 
selected. The initial distribution of electrons and ions 
has the following Gaussian shape: 

0
0( ,0) ( ,0) (exp( ( ))),e p b

x

x x
n x n x n n

L
�

� � 	 �  (41) 

with σx = 0.027 cm, x0 = 0.5 cm, n0 = 1014 cm3, and  
nb = 108 cm3. Two streamers start to propagate toward 
the opposite electrodes in this case. 

Figures 4 and 5 reveal the space variation of the net 
charge density and electric field during double-headed
streamer propagation. Figure 4 shows the comparison 
of charge densities at four different time points (t = 0.5, 
1.5, 2.5, 3 ns) during streamer head propagation. Figure 
5 shows the comparison of the electric field at four 
different time points (t = 0.5, 1.5, 2.5, 3 ns) during 
streamer head propagation. After 2.5 ns of propagation, 
the propagation distance of the anode-directed streamer 
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is 1.8 cm, whereas that of the cathode-directed streamer 
is 2.8 cm. The velocity of the anode-directed streamer 
is 0.8×108 cm/s to 1.8×108 cm/s, whereas that of the 
cathode-directed streamer is 0.4×108 cm/s to 1.0x108 cm/s. 
Two regions have large charge densities on the head of 
the double-headed streamer. These results are similar to 
the findings of a previous study [23].

Fig. 4. Double-headed streamer front propagation and 
charge density at different time points (t = 0.5, 1.5 1.5, 
3 ns) are shown. 

Fig. 5. Double-headed streamer front propagation and 
electric field at different time points (t = 0.5, 1.5, 1.5, 3 ns) 
are shown. 

C. Propagation of 2D double-headed streamer 
Calculations in this section were performed using 

the 2D approximation defined in the previous section, 
and the propagation of a double-headed streamer was 
calculated using the LBM Q2D9 model. The size of the 
computational domain is 1.4×0.125 cm2. The center of 
the Gaussian distribution is located in the middle of the 
simulation domain at x0 = 0.7 cm. The applied voltage 
is equal to 52 kV. Figure 6 shows a cross-sectional  

view of the charge density distributions and electric 
field at t = 3.0 ns, which was obtained using the Q2D9 
LBM model. This cross-sectional view represents an 
example of the 2D views of the simulation results. The 
streamer propagation under homogeneous electric fields 
validates the effectiveness of the LBM model compared 
with other computational models [24,25].

Fig. 6. Propagation of a double-headed streamer in a 2D
domain and a cross-sectional view of distributions of 
the: (a) charge density and (b) electric field at t = 3.0 ns. 

IV. DISCUSSION AND CONCLUSION 
This study attempted to simulate the gaseous 

discharge process using an LBM model. The LBM 
model has been developed into an alternative and 
promising scheme for different types of numerical 
simulations in recent years. Unlike other numerical 
schemes, the lattice Boltzmann method was based on 
microscopic models and mesoscopic kinetic equations. 
This scheme can be particularly successful in fluid flow 
applications and numerical simulations of EHD 
problems. This study is only an experimental 
application of the LBM, which was applied to break 
down gaseous dielectric problems. We have also 
compared the LBM streamer model with other results 
obtained using different numerical techniques to solve 
transport equations for charged particles. The efficiency 
of the LBM was supported by similar results. Several 
issues remained unsolved in this model, such as the use 
of simple photoionization. In addition, the LBM model 
has several unique advantages on the complex 
boundary problem and porous material issues. 
Combined with the theory of discharge gas systems and 
characteristic advantage of this model, several gas 
discharge conditions at the complex boundary were 
examined. This study can be an important reference for 
solving several practical problems in the future. 
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