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Abstract ─ Scattering from edges and/or tips (i.e., 
diffraction) has long been modeled using different 
approaches. Initially, it was handled analytically using 
high frequency asymptotics (HFA). Parallel to the 
development in computer technology diffraction has 
begun to be modeled using numerical approaches also. 
Here, method of moments (MoM) is used to model the 
canonical wedge scattering problem and a novel, 
generally applicable procedure is introduced to extract 
diffracted fields and diffraction coefficients. 

Index Terms ─ Diffraction, high frequency asymptotics, 
Method of Moments (MoM), wedge. 

I. INTRODUCTION 
The word scattering is used to represent all wave 

components produced from the interaction of 
electromagnetic (EM) waves with objects and include 
incidence, reflection, refraction, and diffraction.
Mathematical (analytical) methods are used when 
frequency is high (i.e., when electromagnetic signal 
wavelength is quite low compared with the interacted 
object size) and these are geometric optics (GO), 
physical optics (PO), geometric theory of diffraction 
(GTD), uniform theory of diffraction (UTD), and 
physical theory of diffraction (PTD) [1-10]. GO is a ray-
based approach which models incident, reflected, and 
refracted fields between source and receiver. PO, on the 
other hand, is an induced-surface-current based approach 
and models wave scattering caused by the induced-
currents on the illuminated side of the object. Both GO 
and PO models are incapable of modeling edge and/or 
tip diffracted fields. These deficiencies were removed 
with the introduction of diffraction models GTD, UTD, 
and PTD. GTD takes into account diffraction
everywhere except near critical angles and caustics. 
UTD can handle diffraction near critical angles but still 
suffers from caustics. Original PTD is general and can 
handle diffraction everywhere except near grazing 

incidence (this deficiency is then removed, see [2], Sec. 
7.9). A very useful MatLab wedge diffraction package 
has been introduced for the illustration and visualization 
of all these HFA approaches [11].

Finite difference time domain (FDTD) method [12] 
is an effective approach in diffraction modeling [13-14]. 
A novel multi-step FDTD modeling has been introduced 
for the extraction of diffracted fields and diffraction 
coefficient [15]. A useful MatLab-based FDTD package 
was also introduced for the visualization of diffracted 
fields and for comparisons with several HFA models 
[16].

There have been several attempts in diffraction 
modeling using method of moments (MoM) in hybrid 
form [14-21]. The idea was to focus on and around the 
tip of the wedge and use MoM there; then combine the 
solution with one of the HFA approaches elsewhere. For 
example, MoM is combined with PO in [17] and then 
modified in [18] to overcome the failure of the hybrid 
approach in some cases. A similar hybridization example 
may be [19] where MoM was combined with the GTD. 
MoM solutions of wedge problems are well known and 
- in particular - adequate modeling by suitable basis-
functions incorporating appropriate edge conditions well 
discussed in [20].

A novel two-step MoM [22] approach is introduced 
here for the extraction and visualization of diffracted 
fields on the canonical wedge scattering problem. 

II. TWO DIMENSIONAL (2D) WEDGE 
SCATTERING AND DIFFRACTION 

MODELING 
The non-penetrable wedge diffraction problem is 

canonical and plays a fundamental role in understanding 
and construction of HFA techniques as well as for the 
numerical tests. The exact solution to this scattering 
problem was first found by Sommerfeld [23] in the 
particular case of a half-plane. For the wedge with an 
arbitrary angle between its faces, the solution was 
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obtained by Macdonald and later on by Sommerfeld who 
developed the method of branched wave functions. 

Figure 1 shows the 2D geometry of the semi-infinite 
wedge with PEC boundaries and exterior angle � .
Wedge is located in a homogenous medium and 
illuminated by a cylindrical wave diverging from the line 
source ),( 00 �rS  and receiver point is given by ),( �rR ,
where zr ,,�  are the polar coordinates. The z-axis is 
aligned along the edge of the wedge. The angle �  is 
measured from the top face of the wedge. The time 
dependence )exp( ti��  is accepted in the paper. 

Fig. 1. 2D wedge geometry, line source and critical 
angles separating incident, reflected, diffracted fields. 

The scenario in Fig. 1 ( ��� ��� 00 ) belongs to 
the single side illumination (SSI) where the top face is 
illuminated. In this case, the 2D scattering plane around 
the wedge may be divided into three regions in terms of 
critical wave phenomena occurring there. The region  
( 00 ��� ��� ) includes all the field components - 
incident, reflected, and diffracted fields. The critical 
angle 0��� ��  is called Reflection Shadow Boundary 

(RSB). The region ( 00 ����� 	��� ) contains only 
incident and diffracted fields. The critical angle 

0��� 	�  is the limiting boundary of the incident field 
and called Incident Shadow Boundary (ISB). The third 
region ( ���� ��	 0 ) is the shadow region where 
only diffracted fields exist. 

The scenario with ( ���� ��� 0 ) belongs to the 
Double Side Illumination (DSI) where both faces are 
always illuminated. In this case, the 2D scattering plane 
around the wedge may also be divided into three regions. 
The regions ( 00 ��� ��� ) and ( ����� ���� 02 ) 
contain all the field components. The region between 
these two (i.e., 00 2 ������ ����� ) contains no 
reflected fields and only incident and diffracted fields 
exist. 

The field outside the wedge satisfies the 
Helmholtz’s equation [1]: 
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where k is the free-space wave number, 0I  is the line 
current amplitude, )(�
  is the Dirac delta functions, the 
boundary conditions (BC) on 0��  and �� �  are: 
 (TM/SBC) 0�su  or (TE/HBC) 0/ ��� nuh , (2) 
and the Sommerfeld’s radiation condition (SRC) at 
infinity is: 
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In the case of acoustic waves, either the field or its 
normal derivative is zero on the surface and these 
conditions refer to acoustically soft (SBC) and hard 
(HBC) wedges, respectively. In the case of EM waves, 
SBC and HBC correspond to the z-component of electric 
field intensity Ez (TM) and the z-component of magnetic 
field intensity Hz (TE), respectively. Non penetrable 
wedge corresponds to perfectly electrical/magnetic 
conductors for Dirichlet/Neumann (soft/hard or TM/TE) 
type BCs. 

The total field solutions of the Helmholtz’s equation 
with SBC and HBC for both SSI and DSI are [2]: 
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Here, )(�
l

J�  and )()1( �
l

H�  are Bessel and Hankel functions, 

respectively; / ,l l� � ��  and 0 0.5,� � 1 2 3 1.� � �� � � �1.�

The diffracted fields d iff
hsu ,  can be calculated by 

subtracting the GO fields from (4) and (5) in different 
regions as: 
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and for DSI ( ���� ��� 0 ): 
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where (-) and (+) are for SBC and HBC, respectively, 
and 
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This model is based on the series summation in (4)-(5) 
and represents reference solution if computed accurately 
where the critical issue is the specification of the number 
of terms included which increases with frequency and/or 
distance. 

III. MOM MODELING OF WEDGE 
SCATTERING 

Method of moments (MoM) is a general procedure 
and frequency domain approach for solving linear 
equations. Many problems that cannot be solved exactly
can be solved approximately by this method. The MoM 
owes its name to the process of taking moments by 
multiplying with appropriate weighting functions and 
integrating. It has been applied to a broad range of EM 
problems since the publication of the book by Harrington 
[22]. A comprehensive bibliography is too vast to be 
given here. A useful tutorial has just been published [24]. 

The MoM-based scattering model requires first 
analytical derivation of the 2D Green’s function. Then, 

both surfaces of the wedge are discretized and replaced 
with a number of neighboring segments. The segment 
lengths are specified according to the wave frequency. 
As a rough criterion, the length of each segment should 
be equal to or less than one-tenth of the wavelength for 
discretization in almost all frequency and time domain 
models. At least ten segments per wavelength is a rough 
discretization; depending on the problem at hand as 
many as several dozen segments may be required. The 
number of segments on both surfaces are N, therefore the 
total number of segments is 2N. Note that, infinite 
distances, lengths, etc. can be truncated after several 
wavelengths (usually 10 to 100) with acceptable errors. 
Although it is an infinite wedge a rough truncation with 
ten to hundred wavelengths from the tip may be enough 
for the numerical simulations, depending on the 
polarization as well as other parameters. 

Assuming that a line source illuminates the wedge, 
and currents induced on constant-length segments when 
illuminated by the source are constant, one can apply 
MoM technique and obtain the closed form matrix 
equation: 

IZV � , (10) 

where I  contains the unknown segment currents, V
denotes the incident field evaluated at the segment 

centers, and Z  is the 2N x 2N impedance matrix [25]. 
The unknown segment currents are obtained by 

solving the system in (10). Finally, direct wave from the  

source to the receiver and scattered waves from all 
segments to the receiver are added and total wave at the 
observer is obtained. 

Note that, each segment acts as a line source with 
omni-directional radiation pattern on xz-plane for the 
TM polarization. Therefore all segment currents are in 
parallel (and are perpendicular to the paper). Their 
mutual coupling (i.e., the impedance matrix) and 
scattered fields depend on only the distance. On the other 
hand, each segment acts as a short dipole for the TE 
polarization. Both their coupling and scattered fields are 
orientation (angle)-dependent. 

IV. A NOVEL MOM PROCEDURE FOR THE 
EXTRACTION OF WEDGE DIFFRACTED 

FIELDS 
Incident fields in MoM modeling are injected 

analytically using the Green’s function solution of the 

problem at hand therefore the scattered fields 
accumulated from individual source-induced segment 
currents contain only reflected and diffracted fields. The 
critical angle 0��� ��  (RSB) divides the whole 
scattering region into two; with and without reflected 
fields. As shown in Fig. 1, diffracted fields exist 
everywhere and reflected plus diffracted fields exist only 
in the region ( 00 ��� ��� ). The MoM procedure of 
the wedge scattering is implemented as follows: 

i. First, incident fields upon segments are calculated 
using the Green’s function of the problem.

ii. The impedance matrix is formed. 
iii. Then, 2N by 2N matrix system is solved and 

source-induced segment currents are obtained. 
iv. Finally, scattered fields on the chosen observation 

points are calculated from the superposition of 
segment radiations using the Green’s function. 

The diffracted-only fields can be obtained using the 
MoM procedure if reflected fields in region  
( 00 ��� ��� ) are subtracted. The reflected fields in 
region ( 00 ��� ��� ) can be extracted as follows: 
� First, infinite-plane geometry shown in Fig. 2 is 

taken into account and standard 4-step MoM 
procedure explained above is applied. The MoM-
computed scattered fields contain only reflected 
fields since there is no edge discontinuity. 

� The scattered fields obtained with this geometry are 
subtracted from the scattered fields of the wedge 
geometry in region ( 00 ��� ��� ) and reflected 
fields are all eliminated. The result yields diffracted-
only fields. 

Note that, reflected field regions are different for the 
DSI, therefore this procedure is repeated for �� �
plane and bottom-face-reflected fields are also extracted. 
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Fig. 2. Infinite-plane geometry and MoM modeling of 
scattered fields for the line source illumination. MoM-
computed scattered fields contain only reflected fields. 

Examples using this novel MoM procedure are 
shown in Figs. 3-7, where MoM-extracted diffracted 
fields for both polarizations are compared against the 
analytical reference solution as well as the uniform 
theory of diffraction (UTD) model. The total and 
diffracted fields are obtained. 

A non-penetrable wedge with 60° interior angle is 
taken into account in Fig. 3. SBC (TMz case) is assumed. 
Total and diffracted fields vs. angle around the tip of the 
wedge on a circle with 5λ-radius are plotted. The wedge 
is illuminated by a line source located 10λ-distance with 
φ0=90°. Infinite wedge faces are truncated in 10λ and 

segment lengths are chosen λ/10. Total field vs. angle 

plots on the left show the three regions clearly. As 
observed, very good agreement is obtained with MoM 
modeling even with these rough discretization 
parameters. 

A non-penetrable wedge with 90° interior angle is 
used in Fig. 4. All the parameters are kept the same as in 
Fig. 3 except the illumination angle (φ0=60°). Again, 
total and diffracted fields vs. angle around the tip of the 
wedge are plotted and very good agreement is obtained 
among different models. 

The next two examples belong to the other 
polarization (HBC/TE). In Fig. 5, a non-penetrable 
wedge with 60° interior angle is taken into account. 
Infinite wedge faces are truncated in 100λ in this case 

and segment lengths are chosen λ/20. Source and 

receiver distances from the tip of the wedge are kept the 
same. The illumination angle is 50°. Total and diffracted 
fields vs. angle around the tip of the wedge on a circle 
are plotted. MoM results are compared with exact series 
representation. 

Figure 6 belongs to a non-penetrable wedge with 
120° interior angle. HBC is used. The illumination angle 
is 30°. Total and diffracted fields vs. angle around the tip 
of the wedge are plotted using three different models. 

The last example shows DSI case. Figure 7 belongs 
to a non-penetrable wedge with 90° interior angle for 
SBC case. The illumination angle is 120°. As observed, 
the agreement among the models is very good. 

Note that, different discretizations are required for the 
TM (SBC) and TE (HBC) polarizations. Approximately, 
10λ-long wedge sides are enough for the TM 
polarization and the results are in 200 by 200 matrix 
system. On the other hand, up to 100λ-long wedge sides 
(even more) may be required for the TE polarization 
where 2000 by 2000 matrix system is of interest. 
Nevertheless, both discrete systems can be solved within 
a minute with a regular student computer. 

In addition, the frequency is fixed to 30 MHz in all 
the examples. It may be any value; there is no restriction 
as long as wavelength – distance relation is mentioned. 

Fig. 3. Wedge scattering for TM/SBC: α=300°, r=50 m, 
r0=100 m, φ0=90°, and f=30 MHz; (left) total fields vs. 
angle, (right) diffracted fields vs. angle. 

Fig. 4. Wedge scattering for TM/SBC: α=270°, r=50 m, 
r0=100 m, φ0=60°, and f=30 MHz; (left) total fields vs. 
angle, (right) diffracted fields vs. angle. 

Fig. 5. Wedge scattering for TE/HBC: α=300°, r=50 m, 
r0=100 m, φ0=50°, and f=30 MHz; (left) total fields vs. 
angle, (right) diffracted fields vs. angle. 
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Fig. 6. Wedge scattering for TE/HBC: α=240°, r=50 m, 
r0=100 m, φ0=30°, and f=30 MHz; (left) total fields vs. 
angle, (right) diffracted fields vs. angle. 

Fig. 7. Wedge scattering for TM/SBC: α=270°, r=50 m, 
r0=100 m, φ0=120°, and f=30 MHz; (left) total fields vs. 
angle, (right) diffracted fields vs. angle. 

V. CONCLUSIONS 
A novel Method of Moment (MoM) modeling is 

introduced for the calculation of diffracted fields in the 
frequency domain. Electromagnetic wave scattering 
from a non-penetrable wedge is taken into account and 
the edge-diffracted fields are extracted numerically. The 
results are validated against analytical reference 
solutions as well as the uniform theory of diffraction 
(UTD). This two-step MoM approach can be used to 
obtain the diffraction coefficients of scatterers with 
arbitrary shape and decomposition (e.g., loss-free and 
lossy dielectrics, metamaterials, etc.) [26]. Higher order 
diffraction effects can also be modeled, and, for 
example, double diffraction coefficients of multiple tips 
can be obtained. 

Note that, the diffraction coefficient has a physical 
meaning only for high frequency fields and far away 
from the wedge when 10   kr , 1  kr , and !  r
[15]. This term is a high frequency asymptotic (HFA) 
notion. One needs to reach at least r=10λ-20λ in order  
to obtain some reasonable values for diffraction 
coefficients. For an object of a size of several 
wavelengths, the size of MoM space reaches to hundreds 
by hundreds even in 2D which necessitates several 
thousand segments with a rough segment discretization 
of λ/10. This is within the range of applicability with a 

regular student computer with 2-4 GB RAM memory 

and a few GHz speed. Much larger memories are 
essential in 3D MoM modeling. Fortunately, there are 
alternatives and hybridization approaches to overcome 
these problems which are beyond the scope of this paper. 
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