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Abstract ─ Synthetic basis functions method (SBFM) is
used in this paper to analyze scattering properties of 
periodic arrays composed of composite metallic and 
dielectric structures based on EFIE-PMCHW equation.
Compared to traditional method of moment (MoM) 
based on volume integral equations (VIE) or surface 
integral equations (SIE), SBFM uses fewer synthetic 
basis functions to approximate scattering properties of a 
target which decreases the number of unknowns as well 
as memory cost significantly. Auxiliary sources are 
introduced to imitate the mutual coupling effects 
between different blocks. By solving targets’ responses 

to these auxiliary sources, scattering solution space will 
be determined. Then, singular value decomposition 
(SVD) is adopted to extract synthetic basis functions’ 

coefficients matrix from scattering solution space. For 
periodic structures, synthetic basis functions of each 
block are exactly the same which means previously 
computed coefficients matrix can be recycled; therefore, 
SBFM is of great advantages in analyzing large scale 
periodic mixed problems. 

Index Terms ─ Periodic structures, PMCHW formulation, 
scattering properties, singular value decomposition. 

I. INTRODUCTION 
Surface integral equation solvers based on MoM 

are often adopted in the field of scattering analysis. 
However, standard MoM implemented with low order 
basis functions (e.g., RWG [1]) is hardly applied to 
electrically large targets for the rapid increase of 
computational complexity and memory cost. To solve 
this problem, fast multi-pole method (FMM) [2,3] and 
its extension (multilevel fast multi-pole method, 
MLFMM [4,5]) made great progresses. These 
algorithms are based on the sub-domain basis functions, 
aiming to accelerate the computational efficiency of 
evaluating interactions among blocks. Another 
approach dealing with electrically large problems is 
reducing the number of unknowns (e.g., characteristic 
basis function method, CBFM [6] and synthetic basis 
function method, SBFM [7-9]). These approaches 

firstly divide the target into several blocks according to 
its physical and geometrical features. Then, high order 
functions, which are usually linear combinations of low 
order functions, are adopted to describe the target’s 

electromagnetic properties. 
SBFM was first put forward by Matekovits in 2001 

[7]. Not until its systematical representation was 
published in 2007 [9], this approach caught much more 
attention. Based on sub-domain decomposition, SBFM 
introduces the concept of degree of freedom (DOF) in 
its solution space to control the generation of each 
block’s synthetic basis functions. More importantly, 
synthetic basis functions can be recycled in periodic 
system which can improve the computational efficiency 
significantly. There had been many applications of 
SBFM both in radiating and scattering analysis since 
2007 [10-14]. 

Although SBFM has been put forward for more 
than ten years, researches on this approach are mainly 
laid on two kinds of applications: perfectly electric 
conducting (PEC) and dielectric structures. For 
example, paper [9] utilized EFIE and SBFM to analyze 
large complex conducting structures, while paper [14] 
applied SBFM to the scattering analysis of 
inhomogeneous dielectric bodies based on generalized 
surface integral equations (GSIE) [13,14]. However, in
this paper, emphasis is laid on the third application: 
mixed problems. SBFM is used to analyze scattering 
properties of large scale periodic structures composed 
of different kinds of mediums based on EFIE-PMCHW 
formulation. Compared to the GSIE used in paper [14],
PMCHW formulation is adopted in the process of 
addressing dielectric problems in this paper, which 
lowers the computational accuracy to some extent but 
decreases the number of unknowns drastically, and thus, 
improves the computational efficiency. What’s more,
the paper also explores principles on how to get 
synthetic basis functions’ solution space for mixed 

problems based on equivalence theorem. Compared to 
traditional analysis of mixed problems based on MoM 
and VIE or SIE, this approach not only reduces the 
number of unknowns as well as computational time 
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sharply, but also can make a compromise between 
complexity and accuracy. 

II. THEORY OF SBFM 
SBFM is an improved algorithm on the basis of 

MoM which uses synthetic basis functions to replace 
traditional low order basis functions. 

" # .f g�X (1)
Assume Equation (1) as a linear integral formula 

and X as the unknowns defined on the surface of a 
target. In traditional MoM, RWG functions are usually 
used to discretize X and to make inner product which 
leads to the following matrix equations: 
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where fn(r) stands for the RWG functions and <A,B>
represents the inner product of A and B. 

However, in SBFM, synthetic functions are 
employed in place of RWG functions which can sharply 
decrease the number of unknowns. There are three main 
steps in SBFM [9,15]. 

A. Domain decomposition 
To reduce the number of unknowns, the first step is 

breaking the target into several geometrically small and 
simple sub-blocks. Compared to dealing with the whole 
target, it will be much easier to analyze these sub-
blocks. Notably, each sub-block should share the same 
geometrical shape for the sake of making each block’s 

synthetic basis functions the same. For periodic 
structures, a single element of the structure is usually 
defined as a sub-block. 

Suppose a target is divided into NSB blocks, as is 
shown in Fig. 1, and label each block’s surface as S 

block for the sake of simplicity. Considering the fact 
that there may be public edges between different S 
blocks, L block needs to be introduced on behalf of 
these public edges. Denote the number of L blocks is 
NLB. 

 
 S1    S2 

 
S block

L block

Complex objects

Fig. 1. Sketch map of domain decomposition. 

B. Construct synthetic basis functions 
Traditionally, low order functions (e.g., RWG) are 

used to discretize the unknowns defined on blocks. 

However, this kind of discretization usually needs 
quantities of basis functions which will greatly increase
computational complexity and memory cost. Thus, in 
SBFM, we try to approximate the unknowns with less
high order functions. High order functions, also called 
synthetic basis functions, vary with the geometrical 
features of blocks.

For S blocks, synthetic basis functions are set as 
linear combinations of a series of RWG functions: 
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where Nb is the number of RWG functions defined on 
block b and Mb refers to the number of synthetic basis 
functions defined on the block. As for NSB, it represents 
the number of S-blocks. 

Obviously, Nb is determined by the triangulation 
carried on block b while Mb is determined by SBFM’s 

truncation error which will be discussed in Section IV. 
To reach the purpose of reducing the number of 
unknowns, we want Mb<<Nb. 

For L blocks, define synthetic basis functions as 
RWG functions since RWG functions already meet the 
current continuity conditions on public edges: 
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where Nb represents the number of RWG basis 
functions defined on block b. 

C. Establish synthetic matrix equation 
Having got synthetic basis functions, Equations (2) 

and (3) can be re-written as: 
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where NSBF is the total number of unknowns in 
Equation (7), which depend on the number of synthetic 
basis functions defined on each block. While in 
traditional MoM, the total number of unknowns NMoM is 
calculated in the following equation: 
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b

N N
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For each block, the number of synthetic basis 
functions is less than that of RWG functions: Mb<<Nb.
Thus, the total number of unknowns of MoM and
SBFM meet the condition: NSBF <<NMoM, which means 
memory cost of SBFM will be much smaller than that 
of MoM. 

Further, in MoM, computational complexity and 
memory cost are O(N3) and O(N2) respectively, where 

1060 ACES JOURNAL, Vol. 30, No. 10, October 2015



N represents the number of unknowns. Since the main 
difference between MoM and SBFM is the selection of 
basal functions, the method of evaluating SBFM’s 

computational complexity and memory cost is the same 
to that of MoM. Therefore, compared to MoM, SBFM 
has great advantages both in computational complexity 
and memory cost for NSBF << NMoM. 

Compared to Equation (3), Equation (7) replaces 
all the RWG functions with the synthetic basis 
functions got in B and is called synthetic matrix 
equation. 

Taking block b1 and b2 into consideration, elements 
in Equation (7) can be calculated from that in Equation 
(3): 

" #

" #
1 2

1 2

1 2

( ), ( ')

( ), ( ') ,

m n b b

Tb b
m n b b

f

f

' ( �) *

' (' (++++++) * ) *

F r F r

F f r f r F
 (9) 

1

1 2 1 2
( ), ( ), ,

Tb
m mb b b b

g g' (' ( � ' () * ) *) *F r F f r  (10) 

where Fb represents the matrix of synthetic basis 
functions’ coefficients defined on block b: 
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Obviously, synthetic basis functions’ solution 

space influences accuracy and complexity. Thus, how 
to determine the solution space is of vital importance 
and this will be discussed in Section IV. 

III. SURFACE INTEGRAL EQUATION 
For scattering problems, SIE (e.g., EFIE and 

MFIE) are often used when it comes to PEC structures, 
with RWG functions being its basis functions. As for 
dielectric structures, VIE and volume basis functions 
(e.g., SWG [16]) are usually adopted. However, volume 
meshing usually means a large amount of unknowns 
which is unbearable for a personal computer. Compared 
to VIE, SIE can also be used to analyze homogeneous 
dielectric structures with its results being less accurate 
but much more efficient. In this paper, EFIE and 
PMCHW formulation are used to analyze PEC and 
homogenous dielectric structures respectively. Finally, 
mixed problems are also explored in the method of 
EFIE+PMCHW. 

For PEC targets, EFIE is usually expressed as [17]: 
( ) ( ) ( )ˆ ˆ( ) ,i i i

si incn Z L n& � &J E (12) 
where L is the electric integral operator and defined as: 
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For homogenous dielectric targets, PMCHW 

formulation is compactly written as [18]: 
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where K is the magnetic integral operator and defined 
as: 
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For composite metallic and dielectric targets, SIE 
is described as [18]: 

( ) ( ) ( )

0,

( ) ( ) ( )

0,

( ) ( )

( ) ( ) ( )

0,

( ) ( )
ˆ

( ) ( )

ˆ ( )

( ) ( )
ˆ

ij

ij

n
i i i

sik sik
k k i

ij n
j j j

sjk sjk
k k j S

i j
ij inc inc S

i i i
sik sik

k k
ij

Z L K
n

Z L K

n

K Y L
n

� 2

� 2

� 2

� 3' (� 	� �) *� �&� 4
� �' (�) *� �� 5

+++++++++++++++++++++++++++++++++++� & �

' (	) *
&

�

�

J M

J M

E E

J M

( ) ( ) ( )

0,

( ) ( )

,

( ) ( )

ˆ ( )
ij

ij

n

i

n
j j j

sjk sjk
k k j S

i j
ij inc inc S

K Y L

n

� 2

�
�
�
�
�
�
�
�
�
�

� 3� 	� �� � �� � 4
� � �' (	� ) *� �� 5�
�
++++++++++++++++++++++++++++++++++� & ���

�

� J M

H H

(16) 

where Sij refers to the interface of medium i and j, J and 
M represent electric and magnetic currents on the 
interface respectively. 

Specifically, magnetic currents M and incident 
magnetic field Hinc tend to be zero when medium j is 
PEC bodies. Then, Equation (16) can be re-written as: 
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Equations (16) and (17) is called EFIE-PMCHW 
equation for composite metallic and dielectric targets. 

To solve these SIEs listed above, J and M need to 
be discretized by basis functions firstly: 
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Then, according to MoM and Galerkin principle, 
these SIEs can be transformed into the following linear 
matrix equations.
� PEC Targets 

,ZI V� (19) 
where Z is the impedance matrix and V is the exciting 
matrix: 
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where Z0 is the wave impedance of free space. 
� Dielectric Targets 
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The impedance matrix and exciting matrix will be 
obtained through Equations (22) and (23):
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where VC is the exciting matrix of PEC bodies and VD

and VM represent the exciting matrixes of dielectric 
bodies: 
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As for impedance matrix, it is calculated similar to 
that in PEC and dielectric targets. For the sake of 
simplicity, formulas of each element are not listed here 
but can be found in paper [18]: 
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In MoM, electric and magnetic currents are 
discretized by RWG functions, as is shown in Equation 
(18), while in SBFM, currents are discretized by 
synthetic basis functions, as is shown in Equation (26).

Then, all the matrix Equations (19), (21) and (24)
can be transformed into synthetic matrix equations in 
the following method: 
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where [Z]b1b2 is the impedance matrix of block b1 and b2
calculated by RWG functions. Since Equation (27)

tackles the target block by block, the scale of equation 
is much smaller than that in traditional MoM. 

Solving Equation (27), currents coefficients matrix 
corresponding to synthetic basis functions [j] will be 
available. Then, according to Equation (26), the original 
currents coefficients matrix corresponding to RWG 
functions [I] can be transformed from [j] and synthetic 
basis functions’ coefficients matrix [P]; 

,
1

, 1,2, , .
bM

b b b
k k m m B

m
I P j b N

�

� �� .BB, (28) 

Having got the coefficients of initial RWG functions, it 
is easy to do some further processing (radiating field, 
scattering properties, etc.). 

Overall, Equation (28) shows that the key of SBFM 
is determining the number of synthetic basis functions 
Mb and their coefficients matrix [P]. This will be 
discussed in Section IV. 

IV. GENERATION OF SYNTHETIC BASIS 
FUNCTIONS 

Paper [19] claims that DOF of a certain scatterer’s 

scattering field is restricted to [D∞,D1], where D1
donates the total number of RWG functions defined on 
the surface of the scatterer. Thus, it is possible to 
approximate the scattering fields’ solution space with 

fewer synthetic functions [14]. To find proper synthetic 
functions, there are two main steps: setting auxiliary 
sources and SVD. 

Taking an isolated block into consideration, 
exciting voltage not only comes from the incident plane 
wave but also comes from mutual coupling effects of 
other blocks. Paper [14] points out mutual coupling 
effects can be imitated by a series of auxiliary sources 
based on equivalence theorem. Figure 2 demonstrates 
that a block is surrounded by an enclosed stereoscopic 
space, and a series of auxiliary sources (RWG 
functions) are defined on the surface of the space. By 
evaluating the block’s responses to these auxiliary 
sources, solution space will be available. Synthetic 
basis functions’ coefficients are these independent 
columns of the solution space. To extract independent 
elements, SVD will be adopted. 

Fig. 2. An isolated block is surrounded by auxiliary 
sources. 
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� PEC Targets 
Paper [9] shows the method of determining PEC’s 

solution space. Referring to this method, re-write it as: 
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where V1e represents exciting voltage caused by mutual 
coupling effects. 

It should be noticed that Equation (29) is slightly 
different with that in paper [9], but corresponds to 
Equation (12).

Similarly, for dielectric and composite structures, 
solution space can also be obtained through PMCHW 
formulation. However, in comparison to PEC bodies, 
both auxiliary electric and magnetic sources are needed 
for dielectric bodies. 
� Dielectric Targets 
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where VE1e and VH1e represent exciting voltage caused 
by auxiliary electric and magnetic sources: 
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� Composite Metallic and Dielectric Targets 
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where VC1e is exciting voltage caused by auxiliary 
electric sources around PEC bodies, VD1e and VH1e

represent exciting voltage caused by auxiliary electric 
and magnetic sources around dielectric bodies: 
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Once the solution space is got, coefficients of 
synthetic basis functions defined in Equation (4) will be 
obtained by SVD. Denote the solution space as R, then: 

1 2, ( , ,..., ),H
NR U V diag7 7 7 7 7� � (34) 

where ρi (i=1,2,…,N) represent singular values of R and
ρ1>ρ2>,…,>ρN. 

Coefficients [P] of synthetic basis functions are 
elements of column vectors of U. Set truncation error as 
ρSBF and take the top M1 columns of U as effective 
independent coefficients, where ρM1/ρ1<ρSBF. Thus, the 
number of synthetic basis functions is M1 and their 
coefficients: 

$ % $ % $ %0 111 2, ,..., .MP U U U' (� ) * (35) 

For periodic structures, coefficient space of each 
block is exactly the same since all the blocks share the 
same geometrical features. Thus, computational 
efficiency will be greatly improved. 

V. NUMERICAL RESULTS AND 
VALIDATION 

As a part of scattering analysis, bistatic RCS is 
calculated by SBFM in this section and three examples 
are given to validate the accuracy of SBFM. Besides, 
results of commercial software Feko and MoM are also 
given here for comparison. Before presenting the 
examples, it is noteworthy that all the arrays listed in 
examples are placed in the plane xoy, with the incident 
wave coming from +z and polarizing +x. Observing 
plane is set as xoz and yoz. What’s more, to fully 

validate the accuracy of SBFM, frequency of incident 
wave and truncation error are set differently. 

Example 1 shows a 5×5 array composed of PEC 
paraboloids, as is shown in Fig. 3. Row and column gap 
between elements are 2λ and focal distance and radius 
of the paraboloid are both set as 0.5λ. Frequency of 
incident wave is 3 GHz. Surface of the target is 
discretized into 5875 triangles and 8375 edges by 
setting the maximum size of meshing as 0.1λ. In SBFM, 
525 synthetic basis functions are used to analyze the 
target with truncation error ρSBF=0.1. Results of the 
example are shown in Fig. 4 and Table 1. 

Fig. 3. 5×5 PEC array of paraboloids. 
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Fig. 4. Bi-RCS of 5×5 PEC array. 

Table 1: Properties of MoM and SBFM in example 1 
Number

of 
Unknowns

RAM Cost
of 

Impedance 
Matrix

Time of 
Solving 
Matrix 

Equation

Total 
Elapsed

Time

SBFM 525 7.69 MB 0.06s 168.53s
MoM 8375 1.79 GB 260.22s 431.86s

Example 2 is a 3×3 array consisting of 9 dielectric 
rectangular grooves with relative permittivity εr=3.6, as 
is shown in Fig. 5. Size of the outer rectangle is 
0.4λ×0.4λ×0.3λ while size of the inner slot is 
0.25λ×0.25λ×0.2λ. Row and column gap are set as 0.9λ.
Frequency of incident wave is 1 GHz. There are 3582 
triangles and 5373 edges defined on the surface. Since 
both electric and magnetic currents are there on the 
surface, 10746 RWG functions in total are needed in 
MoM. By setting truncation error ρSBF=0.2, only 9 
synthetic basis function for each block and 81 for total 
are used in SBFM. Results of this example will be 
displayed in Fig. 6 and Table 2. 

Fig. 5. 3×3 dielectric array of grooves. 
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Fig. 6. Bi-RCS of 3×3 dielectric array. 

Table 2: Properties of MoM and SBFM in example 2 

Number
of 

Unknowns

RAM Cost
of 

Impedance 
Matrix

Time of 
Solving 
Matrix 

Equation

Total 
Elapsed

Time

SBFM 81 0.19 MB 0.001 s 571.99s
MoM 10746 3.19 GB 596.61 s 1240.96s
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Example 3 is a 3×3 composite array of monopole 
antennas. 9 blocks are included in the array with its row 
and column gap being 0.9λ, as is shown in Fig. 7. For 
each block, a PEC monopole (0.5λ in length) is placed 
on a dielectric rectangular base (0.4λ×0.4λ×0.3λ). 
Relative permittivity of the base is 2.6 and incident 
plane wave’s frequency is 1 GHz. Since both PEC and 
dielectric structures are there in the system, the process 
of meshing needs to be carried on independently. For 
PEC structures, the surface is discretized into 720 
triangles and 1080 edges while for dielectric structures, 
2574 triangles and 3861 edges are obtained. Thus, 8802 
RWG functions are needed totally in MoM. When it 
comes to SBFM, three kinds of auxiliary sources need 
to be set independently in this system: electric sources 
around PEC structures, electric and magnetic sources 
around dielectric structures. By solving the solution 
space and SVD, 44 synthetic basis functions are 
adopted for each block, where truncation error 
ρSBF=0.15. Results of this example are demonstrated in 
Fig. 8 and Table 3. 

Fig. 7. 3×3 composite array of monopole antennas. 
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Fig. 8. Bi-RCS of 3×3 composite array. 

Table 3: Properties of MoM and SBFM in example 3 
Number

of 
Unknowns

RAM Cost
of 

Impedance
Matrix

Time of 
Solving 
Matrix 

Equation

Total 
Elapsed 

Time

SBFM 396 4.41 MB 0.03 s 398.63s
MoM 8802 2.14 GB 308.63 s 575.68s

Among these Bi-RCS pictures, θ=0° and θ=180°

represent backward and forward scattering respectively. 
These examples exhibit that results of SBFM yield well 
to that of Feko and MoM except for slight differences 
in lateral scattering. Table 1-3 give computational 
properties of MoM and SBFM. In MoM, the number of 
unknowns is depend on the triangulation carried on the 
surface of the target, while in SBFM, it depends on the 
value of truncation error and auxiliary sources. 
Generally, higher truncation error means less synthetic 
basis functions and thus less memory cost. As for 
computing time, elapsed time of filling impedance 
matrix and solving matrix equation are the two main 
parts in MoM while in SBFM, except for the two parts 
listed above, elapsed time of SVD is the third part. 
Since the scale of matrix equation in SBFM is much 
smaller than that in MoM, the solving process will be 
much faster. 

Obviously, SBFM has great advantages over MoM 
in memory cost as well as computing time especially 
for periodic targets. More importantly, it is noteworthy 
that the scale of periodic array which SBFM can 
address is not restricted to what listed in the paper. To 
get the results of MoM for comparison, examples in the 
paper are relatively small scale problems since 
computational complexity and memory cost of larger 
scale problems are unbearable for a personal computer. 
Thus, compared to traditional MoM, SBFM makes it  
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possible to analyze large scale problems in personal 
computer. 

VI. CONCLUSION 
SBFM is used in this paper to analyze scattering 

properties of periodic structures based on EFIE-
PMCHW formulation. Three kinds of applications are 
introduced here: PEC, dielectric and composite metallic 
and dielectric structures. Results verify the accuracy 
and efficiency of the algorithm. Compared to traditional 
MoM, SBFM not only reduces quantities of unknowns 
and memory but also enables us to make a balance 
between accuracy and efficiency through truncation 
error. Besides, SBFM can also be combined with other 
fast approaches such as MLFMA and adaptive integral 
method (AIM) to further improve its properties. Thus, 
SBFM makes it possible to analyze large scale targets 
on a personal computer. 
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