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Abstract—Numerical simulation of cardiac propagation is a 

valuable tool for biomedical research. Due to the inhomogeneous, 

anisotropic conductive anatomy and complex nonlinear ionic 

current, numerical modeling of electrical activities in the heart is 

computationally demanding. Here, model order reduction is used 

to reduce the simulation time with a minimal effect on the 

accuracy. The semi-implicit finite difference method is used to 

discretize the governing equation of the monodomain (reaction-

diffusion) model. The dynamic mode decomposition (DMD) is used 

in combination with the Galerkin projection to reduce the order  

of the original system. The reduced-order model is obtained by 

projecting the original system onto a subspace spanned by DMD 

basis vectors. Numerical results confirm the model order reduction 

decreases the simulation time by a factor of 5.96 while modifying 

the computed activation time, maximum time derivative and 

conduction velocity by 1.24%, 0.129%, and 0.639%, respectively. 

Keywords—Dynamic Mode Decomposition, Finite Difference 

Method, Galerkin Projection, Model Order Reduction, 

Monodomain, Transmembrane Potential. 

I. INTRODUCTION 

Numerical modeling of cardiac electrical activities now 
plays a vital role in the search of effective treatments for 
arrhythmias. The action potential or transmembrane potential 
propagating in the heart generates an electric field that gives 
rise to the electrocardiogram recorded on the surface of a  
human body. This propagation is commonly simulated using 
the cardiac monodomain model that consists of a temporal 
derivative, a spatial Laplacian, and a nonlinear ionic current 
term [1]. A realistic three-dimensional cardiac tissue has a 
conductivity tensor (3×3 matrix) that varies continuously 
according to the fiber orientation in the tissue, so a numerical 
instead of an analytical solution is required. The numerical 
solution on appropriate spatial and temporal scales then requires 
finding multiple unknowns, including the transmembrane 
potential and ionic current components, at a large number of 
nodes that form a dense grid. 

The transmembrane potentials at all the nodes form a high-
dimensional or high-order state vector. As the computational 
complexity and solution time are proportional to the order of 
the state vector, researchers have developed order reduction 
techniques to improve computational efficiency through the 
definition of a new state vector with a lower order [2]. Among 
all such techniques, the dynamic mode decomposition (DMD) 
based approach has been chosen for its recent success in solving 

nonlinear problems in other scientific fields, e.g., fluid 
mechanics [3]. It involves only standard matrix computations 
and can capture frequency features of the dynamic systems  
[3–5]. DMD basis functions are constructed from the spatial 
distributions of the unknown of interest at specific time instants, 
known as the snapshots, which are obtained from an original 
full-order simulation. A truncated series of these basis functions 
encapsulate the characteristic dynamics of the original system. 
The reduced-order surrogate models are obtained by a Galerkin 
projection of the original system onto the vector space formed 
by DMD basis functions. DMD, in conjunction with the 
Galerkin projection, transforms the original full-order system, 
the discretized monodomain model in the present case, into  
a lower dimensional system, and subsequently reduces the 
computational cost. The root-mean-square (RMS) error of the 
transmembrane potential for the DMD-Galerkin order reduction 
will be examined together with its effect on solution time, 
activation time, maximum time derivative, and conduction 
velocity. To our knowledge, this is the first time computational 
performance results are presented for the application of model 
order reduction to finite difference modeling of cardiac 
propagation.   

II. CARDIAC MONODOMAIN MODEL 

The cardiac monodomain model derived from current 
continuity is described by a nonlinear reaction-diffusion partial 
differential equation,  

            
∂𝑉𝑚

∂𝑡
=

1

𝐶𝑚
 {
1

𝛽
[∇ ∙ (𝜎̿ ∇𝑉𝑚) + 𝐼𝑠]  − ∑ 𝐼𝑖𝑜𝑛 },            (1) 

where 𝑉𝑚 is the transmembrane potential (the difference 

between the intracellular and interstitial potentials), 𝐶𝑚 is the 
cell membrane capacitance per unit area, 𝛽 is the membrane 

area per unit volume, and 𝜎̿ denotes the inhomogeneous, 

anisotropic intracellular conductivity tensor. 𝐼𝑠 is the source 
current that initiates the activation, and Σ𝐼𝑖𝑜𝑛 represents the  
total ionic current through the membrane. The monodomain 
equation involves a temporal derivative and a Laplacian with 
spatial derivatives, ∇ ∙ (𝜎 ∇𝑉𝑚). The Laplacian is approximated 
with the second-order finite difference technique [6]. Temporal 
discretization is achieved with the semi-implicit or implicit-
explicit scheme. Using an implicit method for the Laplacian and 
an explicit method for the ionic current, it avoids both the 
stability limit of the explicit technique and costly nonlinear 
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matrix inversion in a fully implicit method. The spatial and 
temporal discretization leads to a system of linear algebraic 

equations that can be put in a matrix form, [𝐴] 𝑥̅ = 𝑏̅, as: 

{[𝐼] −  
𝜃∆𝑡

𝐶𝑚𝛽
[𝐷𝑜]}⏟          

[𝐴]

𝑉̅𝑚
𝑛+1⏟
𝑥̅

=

    𝑉̅𝑚
𝑛 +

(1−𝜃)∆𝑡

𝐶𝑚𝛽
[𝐷𝑜]𝑉̅𝑚

𝑛 + ∆𝑡[
1

𝐶𝑚𝛽
𝐼𝑠̅
 𝑛+1 −

1

𝐶𝑚
∑𝐼̅̅ ̅̅ 𝑖𝑜𝑛

𝑛
]

⏟                              
𝑏̅

,         (2) 

where [𝐼] is the identity matrix, 0  𝜃  1 is a temporal 
discretization constant, ∆𝑡 is the time step size, and the bar 
denotes a vector containing the corresponding quantity’s values 
at all the nodes. [𝐷𝑜]𝑉̅𝑚 is the finite difference approximation of 
the Laplacian, and 𝑛 is the time step index. To obtain the value 
of 𝑉̅𝑚 at time step 𝑛+1 from that at previous step 𝑛, Equation (2) 
is solved using an iterative conjugate gradient technique with 
Jacobi preconditioner. The operator splitting has also been 
implemented in which the time derivative is considered as the 
sum of several components, and the update of the Laplacian and 
ionic current term are performed in alternate steps with different 
time step sizes ∆𝑡 and ∆𝑡𝑖  = ∆𝑡/5, respectively [7]. A smaller 
time step is used for the ionic current to capture its faster 
temporal variation. The primary objective of this work is to 
reduce the size of 𝑉̅𝑚, by projecting it onto a low-dimensional 
subspace.   

III. DYNAMIC MODE DECOMPOSITION 

The reduced-order DMD basis functions are constructed 
from the training sets or snapshot matrix, which is obtained 
from a simulation using the original full model. Each column in 
this matrix is a snapshot consisting of the solution of the state 

vector 𝑉𝑚 at a given time instant. The trajectories of the original 
model at discrete time instants are represented by the rows of 
the snapshot matrix. The snapshots together capture all the 
desired spatial and temporal variations for the reduced-order 
model. For the DMD analysis, a set of 𝑀 equidistant snapshots 
(i.e., a snapshot matrix of dimension  ℝ𝑁×𝑀) is considered, 
where 𝑁 is the number of state variables. Two zero-mean data 

matrices are obtained from the snapshot matrix, 𝑥̅(𝑡i), 𝑖 = 1,𝑀: 

𝑿 = [𝑥̅(𝑡1), 𝑥̅(𝑡2), …… , 𝑥̅(𝑡𝑀−1)]; 

                        𝒀 = [𝑥̅(𝑡2), 𝑥̅(𝑡3), …… , 𝑥̅(𝑡𝑀)].                     (3) 

Next, a matrix 𝑨 is constructed from the singular value 
decomposition (SVD) of 𝑿 as: 

              𝑨 = 𝒖𝑇𝒀𝒗𝑺−1,                         (4) 

where 𝒖 and 𝒗 are respectively the left and right singular 
vectors, and 𝑺 is a diagonal matrix with the singular values of 
𝑿. The reduced-order DMD basis functions are finally obtained 
from the eigen-decomposition of 𝑨,  

                              = 𝒖𝑾,                                        (5) 

where  consists of the DMD basis functions and 𝑾 is made 
up of the eigenvectors of 𝑨. Despite the nonlinearity of the 

monodomain model, the magnitudes of the complex eigenvalues 
decrease fast. The truncated series of the normalized eigenvectors 
corresponding to eigenvalues with the largest magnitudes give 
the reduced-order basis functions. By including the eigenvectors 
with the largest eigenvalues, the reduced-order basis functions 
preserve the most important dynamics of the original system. 
The normalization of the DMD basis functions was found to 
provide a better approximation of the original system [8]. It is 
interesting to note that the generations of the snapshot matrix 
and reduced-order basis functions are implemented in an offline 
stage.      

IV. REDUCED-ORDER MODEL FROM GALERKIN 

PROJECTION METHOD 

The full-order monodomain model is projected onto the 
subspace of DMD basis functions by performing the Galerkin 

projection technique in two steps. The state vector 𝑉𝑚, consisting 
of the transmembrane potential values at all the nodes, is first 
approximated as a linear combination of the reduced-order 
DMD modes,  

                                   𝑉𝑚  ≈ (𝑞̅ = 𝑧̅),                                (6) 

where 𝑧̅ ∈  ℝ𝑑×1 represents the reduced-order state vector. 
Now, the number of unknowns or dimension is effectively 
reduced from 𝑁 to 𝑑, with 𝑑 << 𝑁, leading to a reduction in 
the number of equations. 

With only spatial discretization, the monodomain equation, 

with 𝑉𝑚 approximated by 𝑞̅, turns into a system of nonlinear 

ordinary differential equations, 
𝑑𝑞̅

𝑑𝑡
= 𝑓̅(𝑞̅; 𝑡), where the unknown 

in each equation is the value of 𝑞̅ at each node. In the second 
step, the Galerkin orthogonality condition is enforced such that 
the residual of the full-order model is orthogonal to the reduced-
order DMD modal matrix ,  

                              T  ( 𝑓̅ (𝑞̅; 𝑡) −
𝑑𝑞̅

𝑑𝑡
) = 0.                         (7) 

The above two steps lead to the following DMD-Galerkin 

reduced-order model equation for the state vector 𝑧̅, 

                                   
𝑑𝑧̅

𝑑𝑡
= T 𝑓(𝑧̅; 𝑡).           (8) 

The semi-implicit method used for the original full-order 
model can also be used to perform the temporal discretization 
in (8). 

V. RESULTS AND DISCUSSION 

The three-dimensional cardiac tissue was 0.5 cm in 𝑥 
(horizontal) direction and 0.1667 cm in 𝑦 and 𝑧 (vertical) 
direction, as depicted in Fig. 1. Tissue fibers were assumed to 
lie in planes whose normal was at 20o to the 𝑧-axis, and the  
fiber angle with respect to the 𝑥-axis varied linearly in the 
normal direction with a rotation of 180o per centimeter. The 
conductivities longitudinal and transversal to the fiber are  
0.174 S/m and 0.0193 S/m, respectively. The continuously 
inhomogeneous conductivity tensor (with respect to the 𝑥-𝑦-𝑧 
coordinate system) was assigned according to the fiber 
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orientation, and the derivatives of the conductivity tensor 
elements were evaluated analytically. The ionic current was 
computed as the sum of six different types of currents using the 
Luo-Rudy model. A 72×72×72 grid with 373,248 nodes (i.e., a 
dimension of 373,248) and a 1-ms point source with a constant 
magnitude and located at a vertex were used. A period of 12 ms 
was simulated with ∆𝑡 = 0.005 ms. Equation (2) was implemented 
with 𝜃 = 0.5. Results were obtained with and without operator 
splitting.   

 
Fig. 1. Schematic representation of the three-dimensional cardiac tissue. 

Equidistantly distributed snapshots in the interval [0, 𝑇 =  
12 ms] were constructed from a simulation of the original full-
order monodomain solution. A specialized software library, 
Scalable Library for Eigenvalue Problem Computations [9], 
was utilized to generate the DMD basis functions in an offline 
stage. The default Krylov-Schur eigenvalue solver and thick-
restart Lanczos SVD solver of SLEPc were used to obtain the 
DMD reduced-order subspace from the snapshot matrix. The 
largest 24,480 eigenvalues of the 𝑨 matrix yielded 99.9% of the 
relative information content or energy, and the DMD subspace 
had a dimension of 24,480. The number of unknowns or state 
variables reduced by a factor of ~15 when the reduced-order 
model was used. Table I summarizes the RMS error (when 
compared the full-order and reduced-order solutions) and CPU 
time reduction for the DMD-Galerkin method. The order 
reduction decreases the CPU time by a factor of 5.96, while 
maintaining a small RMS error of 0.956 mV. For the operator 
split method, the RMS error improves to 0.762 mV, but the 
CPU time reduction factor decreases to 2.59. It is worth 
mentioning that the ionic current is updated in the operator split 
method with a smaller time step, which has an adverse effect on 
the solution time. Fig. 2 shows the close agreement between 
action potential waveforms obtained at node (36, 36, 36) with 
the full and reduced-order models using the operator split 
technique.            

Table I. RMS error and CPU time reduction factor of the DMD-Galerkin 
reduced-order model with and without operator split. 

Type of Solution  RMS Error (mV) 
CPU Time 

Reduction Factor 

Without operator split 0.956 5.96 

Operator split 0.762 2.59 

 

Activation time, maximum time derivative, and conduction 
velocity are parameters commonly used in electrophysiology 
studies. Table II gives their values computed using the full and 
reduced-order models. Specifically, maximum time derivative 

is the highest value of the time derivative of the transmembrane 
potential at node (36, 36, 36). Activation time is the specific 
time at which the maximum time derivative occurs. Conduction 
velocity is the distance between any two points divided by the 
difference between the activation times at these two points. The 
velocity was calculated for the propagation from node (36, 36, 
36) to node (37, 37, 37). As shown in Table II, using model 
order reduction modifies the activation time, maximum time 
derivative, and conduction velocity by +1.24%, +0.129%, and 
–0.639%, respectively. With the use of the operator split, the 
corresponding modifications are +0.640%, +0.0887%, and  
–0.321%.    

 

Fig. 2. Transmembrane potential for the full-order and reduced-order solutions 

with the operator split method. 

Table II. Maximum time derivative, activation time, and conduction velocity 
of the full-order and DMD-Galerkin reduced-order models. 

Parameters 

Without 

Operator Split 
Operator Split 

Full-

Order 

Reduced-

Order 

Full-

Order 

Reduced-

Order 

Activation time (ms) 4.82 4.88 4.69 4.72 

Maximum time 

derivative (V/s) 
225.44 225.73 225.58 225.78 

Conduction 

velocity (m/s) 
0.313 0.311 0.312 0.311 

 

VI. CONCLUSION 

Model order reduction based on dynamic mode 
decomposition and Galerkin projection has been implemented 
for a finite difference monodomain model of cardiac tissue. 
Computational results demonstrate that the proposed approach 
improves computational efficiency. The dimension of the 
problem and required CPU time are reduced significantly while 
introducing less than 1 mV in RMS error and less than 1.3% 
error in the computed activation time, maximum time derivative, 
and conduction velocity. Operator splitting increases the 
accuracy but reduces the improvement in the required CPU 
time. Future studies may involve the implementation of more 
robust projection methods as well as techniques that capture the 
frequency features of cardiac propagation.      
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