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Abstract—Whistler mode waves, which exist in a magnetized 

plasma, are prevalent in the Earth's magnetosphere in the 

extremely low frequency (ELF) and very low frequency (VLF) 

bands (100 Hz - 30 kHz). Due to the impact of whistler mode waves 

on space weather processes, it is important to accurately predict 

the propagation trajectory of these waves and their properties. 

Numerical raytracing determines the power flow path of the 

whistler mode waves in the anisotropic medium of the 

magnetosphere based on local calculation of the refractive index. 

In the majority of previous work, magnetospheric raytracing has 

been implemented assuming a cold background plasma (0 K). 

However, a more accurate description of the magnetospheric 

plasma includes a background temperature of about 1 eV (11600 

K). We present solutions to the dispersion relation that include the 

effects of finite electron and ion temperatures on the wave 

refractive index using a warm plasma formulation. Finite 

temperature effects of the background plasma are shown to be 

most significant for highly oblique wave normal angles where the 

refractive index is bounded to smaller values than in the ideal cold 

plasma approximation.  

Keywords—oblique whistler waves, radiation belts, raytracing, 

warm plasma, whistler mode. 

I. INTRODUCTION  

Whistler mode waves are electromagnetic plasma waves that 
exists in a magnetized plasma, typically with plasma frequency 
much greater than electron cyclotron frequency. They are 
characterized by group and phase velocities much less than the 
speed of light with significant dispersion and a polarization that 
is generally right hand elliptically polarized [1]. Whistler mode 
waves are prominent in certain laboratory plasma applications 
and also play a key role in the energy dynamics of the near-Earth 
space environment, which we focus on here. Due to the plasma 
medium therein and the dominant effect of the geomagnetic 
field, this region is termed the magnetosphere and hosts a variety 
of whistler mode waves from diverse sources including 
manmade transmitters, atmospheric lightning, and local plasma 
instabilities. The medium is highly anisotropic making the 
prediction of wave trajectories analytically intractable outside of 
special cases. The power flow path of whistler mode waves can 
be determined using numerical raytracing. The magnetosphere 
contains two distinct populations of plasma, the background low 
temperature plasma with densities of 1 - 5000 cm-3 and a much 
smaller population of hot plasma with densities below 1 cm-3 but 

energies in the 10 keV – 1 MeV range. (The hot plasma 
population is often called the radiation belts.) The hot plasma 
drives instabilities, but the background low temperature plasma 
determines the propagation characteristics of waves. The 
majority of the previous work on magnetospheric raytracing  
was performed assuming an ideally cold background plasma. 
However, observations show that the magnetospheric 
background exhibits finite temperatures of around 1 eV or 
greater [2]. In this work we investigate how refractive index 
surfaces change with the inclusion of finite background 
temperature to electrons and ions. Finite temperature effects 
become important for highly oblique whistler mode waves. For 
highly oblique waves near the resonance cone (limit of cold 
plasma solutions), the warm plasma formulations can be 
approximated by quasi-electrostatic or electrostatic models for 
frequencies below the half cyclotron frequency but at higher 
frequencies the models diverge. The results suggest that warm 
plasma raytracing codes are able to capture the important wave 
characteristics for all wave normal angles and are therefore more 
robust than quasi-electrostatic assumptions and not significantly 
more computationally expensive than cold plasma raytracing.   

 

II. WARM PLASMA MODEL 

A. Refractive Index Surfaces 

Numerical ray tracing is the process of determining the 
power flow path of a whistler wave by solving the Haselgrove 
equations [3] under a WKB assumption. The medium properties 
enter the formulation through the refractive index, µ, which is a 
strong function of wave normal angle θ, which is the angle 
between the wave normal vector and the geomagnetic field. 
Under the ideal cold plasma assumption the dispersion relation 
is fourth order in µ: 
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where the parameters A0, B0, and C0 are cold plasma parameters 
defined below [4,5]. With the inclusion of finite temperature, the 
dispersion relation becomes sixth order: 
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where temperature Ts of each plasma species, s, is captured in:  
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Where kB is the Boltzmann constant, ms is the mass and c is the 

speed of light. Since in most cases 01 AAqT  , the first term in 

(2) only becomes significant in cases where µ is large. This 
occurs for highly oblique wave normal angles near the so called 
resonance cone for which the cold plasma assumption yields 
µ→∞. If more than one plasma species (i.e., electron and ions) 
has finite temperature, then (1) becomes a summation over the 
species s: 

(∑ 𝑞𝑠
𝑇𝐴1𝑠𝑠 )𝜇6 + (𝐴0 + ∑ 𝑞𝑠

𝑇𝐵1𝑠𝑠 )𝜇4 + (𝐵0 +
∑ 𝑞𝑠

𝑇𝐶1𝑠𝑠 )𝜇2 + 𝐶0 = 0.                                                          (4)  

The remaining parameters are defined below. The dielectric 
tensor can be defined as having a cold and warm component:  

𝑲 = 𝑲𝟎 + 𝝉𝑲𝟏. 

The elements of the cold tensor K0 are the well-known 

formulations from magneto-ionic theory:  
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[
 
 
 
 1 −

𝑋

1 − 𝑌2

𝑖𝑋𝑌

1 − 𝑌2
0

−𝑖𝑋𝑌

1 − 𝑌2
1 −

𝑋

1 − 𝑌2
0

0 0 1 − 𝑋]
 
 
 
 

, 

𝑋𝑠 = 
𝜔𝑝𝑠

2

𝜔2
, 
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𝜔𝑐𝑠
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where ω is the wave frequency and ωps and ωcs are the plasma 

frequency and cyclotron frequency, respectively for each 

particle species. The element of the finite temperature tensor K1 

tensor are: 
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From the tensor components, the coefficients in (4) can be 

defined as: 
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Details of derivation of above expressions are provided in  
[4, 5] and references therein. Fig. 1 shows the refractive index 
surface for an example case of 3 kHz wave at the geomagnetic 
equator two Earth radii from the surface (L = 2) for various 
electron and ion temperatures as well as the cold plasma case. It 
is seen that the finite temperature effects cause the refractive 
index surface to deviate from the cold plasma value only for 
highly oblique angles near the resonance cone. The magnitude 
of refractive index is seen to decrease with temperature.   

 

  

 

Fig. 1. Refractive index surfaces at the magnetic equator for the cold plasma 

and finite temperatures for ions and electrons. The refractive indeex is “open” 
under the cold plasma assumption but closed surfaces when temperature effects 

are included [5]. Note the disparate scale of the vertical and horizontal axes. 

The resonance cone angle is 89.1∘. 

III. COMPARISON WITH QUASI-ELECTROSTATIC AND 

ELECTROSTATIC APPROXIMATIONS 

There has recently been interest in estimating the refractive 

index for highly oblique whistler mode waves where cold 

plasma theory is inadequate. Ma et al. [6] have employed  

a quasi-electrostatic assumption and shown reasonable 
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agreement with spacecraft observations. We perform a 

comparison of refractive index values obtained under warm 

plasma assumptions, quasi electrostatic and electrostatic 

assumptions. Quasi-electrostatic and electrostatic refractive 

index models of whistler mode refractive index have been 

presented by Horne and Sazhin [8]. In that work two plasma 

populations were considered: a finite temperature background 

plasma at 1 eV and a smaller hot plasma population at 200 eV. 

In the electrostatic and quasi-electrostatic simplified models  

of Horne and Sazhin [8], the two plasma populations each 

contribute to the refractive index calculation. The warm plasma 

formulations presented here take the more traditional approach 

from whistler mode raytracing where the background plasma 

determines the refractive index and wave trajectory and a hot 

plasma distribution can later be introduced to calculate 

resonance effects like wave growth or damping. For this reason 

and due to the fact that the hot plasma of the radiation belts is 

very dynamic and hard to generalize, we perform comparisons 

of the models using the background 1 eV plasma only. Figs.  

2-7 present the comparison results obtained from the above 

three methods, at the equator at 𝐿 = 4, 6  and 6.6, and for two 

frequencies normalized to the local cyclotron frequency with 

ratios  𝜔 ω𝑐⁄  of 0.4 and 0.6. The three locations were selected 

as just-inside the plasma-pause (L=4) with background density 

Ne = 200 cm-3, outside the plasma pause (L=6) with density  

Ne = 8.5 cm-3and at the geostationary orbit (L=6.6) with density 

Ne = 1 cm-3. At all locations the electron and ion temperature is 

Te =Ti = 1 eV. The three gyro-frequencies corresponding to  

the equator of 𝐿 = 4, 6 and 6.6 are 12 kHz, 4 kHz and 3 kHz 

respectively. The electrostatic and quasi electrostatic models 

are parametrized with the value 𝜆  given in (5) as the ratio 

between the squared sum of background electron plasma 

frequency and the squared electron gyro-frequency: 

                                                𝜆 =  
𝜔𝑝
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The refractive index for the quasi-electrostatic model is given 

by: 
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and where Y is defined as in the previous section and  𝜃′, defined 

as 𝜃′ =  𝜃 − 𝜃𝑅, where 𝜃 is the wave normal angle of the wave, 

𝜃𝑅 is the cold plasma resonance cone angle given as: 
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The refractive index for the electrostatic model is given by: 
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Fig. 2 shows the refractive indices calculated using the warm 

plasma, quasi electrostatic and electrostatic approximations  

at L=4 for  𝜔 ω𝑐⁄ = 0.4 plotted as a function of  𝜃′ near the 

resonance cone where the quasi-electrostatic and electrostatic 

models have validity and the cold plasma model does not 

produce a solution. For these oblique wave normal angles there 

is good agreement between the models. Electrostatic and quasi-

electrostatic models agree perfectly when the wave normal 

angles are higher than the resonance cone angle (𝜃′ >  0). The 

electrostatic approximation does not provide a solution for  

𝜃′ <  0. The warm plasma model predicts slightly lower values 

of refractive index. The near perfect agreement between the 

electrostatic and quasi-electrostatic models is a feature for all 

cases considered here though these models give divergent 

results for higher frequencies near  𝜔 ω𝑐⁄ = 0.8 [8].   

Figs. 3 and 4 show the comparison results of refractive 

indices at L = 6 and 6.6 where the background density is lower. 

From the plots, a very close agreement between warm plasma 

assumptions and quasi-electrostatic approximations can be 

observed for 𝜃′ < 𝜃𝑅. The warm plasma model again predicts 

slightly lower values of refractive index when 𝜃′ >  0 and this 

is more pronounced for the L= 6.6 location.  

Figs. 5-7 show the results obtained at the three selected 

locations for  𝜔 ω𝑐⁄ = 0.6 . In all figures, warm plasma 

approximations produce much higher refractive indices 

compared to the other two approximations. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Comparison of refractive index calculated with quasi-electrostatic, 

electrostatic and warm plasma models near the resonance cone (θ’ = 0) for  

L = 4 (𝜆 = 111 ) and 𝜔 𝜔𝑐⁄ = 0.4 .  
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Fig. 3. Comparison of refractive index calculated with quasi-electrostatic, 

electrostatic and warm plasma models near the resonance cone (θ’ = 0) for  

L = 6 (𝜆 = 42.82) and 𝜔 𝜔𝑐⁄ = 0.4 .  

IV. DISCUSSION 

Horne and Sazhin [8], perform a comparison between quasi-

electrostatic, electrostatic and what they call hot plasma 

assumptions that derive from the HOTRAY code [9]. 

Unfortunately, the details of the hot plasma formulations used 

for the comparison are not clear [8]. The electrostatic and quasi-

electrostatic results shown here differ slightly from Horne and 

Sazhin [8] due to our neglect of the “hot” 200 eV population 

mentioned above. However, we note that our warm plasma 

results agree nearly exactly with the Horne and Sazhin [8] 

HOTRAY plasma results for  𝜔 ω𝑐⁄ = 0.4 at L=4, L= 6. For 

 𝜔 ω𝑐⁄ = 0.4 and L = 6.6 the agreement is still very good except 

that the HOTRAY results shows a discontinuity around the 

resonance cone angle. For the higher frequency cases  𝜔 ω𝑐⁄ =

0.6 the warm plasma model produces higher refractive index 

values compared to the HOTRAY code. For the ratio  
𝜔

Ω
= 0.8, 

the values obtained from the warm plasma assumptions are 

smaller than the values obtained from the HOTRAY code. 

For frequencies below the half gyrofrequency, like the cases 

at  𝜔 ω𝑐⁄ = 0.4  considered here, there is general agreement 

between the different models especially at the resonant cone 

angles and slightly smaller wave normal angles. Therefore, for 

analysis of oblique lower band chorus phenomena, especially 

at background densities of 200 cm-3 or higher, any of the models 

can be expected to provide reasonable results. At the same time, 

it is clear that for lower background densities and higher 

frequencies, the models discussed here do not show exact 

agreement. Specific knowledge of the hot plasma distribution 

and its density may be necessary for accurate estimates of the 

refractive index of highly oblique waves in such conditions.   

One advantage of the warm plasma formulation presented 

here is that it provides solutions for all wave normal angles and 

reduces to the well-known cold plasma solutions for moderately 

oblique and field aligned waves. Using this formulation a robust 

raytracing code can be deployed to assess whistler mode 

trajectories and properties over the full scale of the 

magnetosphere. Such a raytracing code is presented by 

Maxworth and Golkowski [5]. It can be argued that a full hot 

plasma kinetic approach to raytracing is the most accurate and 

preferable approach. However, a full kinetic approach is 

computationally expensive.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4. Comparison of refractive index calculated with quasi-electrostatic, 

electrostatic and warm plasma models near the resonance cone (θ’ = 0) for  

L = 6.6 (𝜆 = 8.96) and 𝜔 𝜔𝑐⁄ = 0.4 .  

 

 
 

 

Fig. 5. Comparison of refractive index calculated with quasi-electrostatic, 

electrostatic and warm plasma models near the resonance cone (θ’ = 0) for  

L = 4 (𝜆 = 111.95) and 𝜔 𝜔𝑐⁄ = 0.6 .  
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Fig. 6. Comparison of refractive index calculated with quasi-electrostatic, 
electrostatic and warm plasma models near the resonance cone (θ’ = 0) for  

L = 6 (𝜆 = 42.82 ) and 𝜔 𝜔𝑐⁄ = 0.6.  

 

 

 

Fig. 7. Comparison of refractive index calculated with quasi-electrostatic, 

electrostatic and warm plasma models near the resonance cone (θ’ = 0) for  

L = 6.6 (𝜆 = 8.96 ) and 𝜔 𝜔𝑐⁄ = 0.6.  

V. CONCLUSIONS 

Inclusion of finite temperature of the background plasma 
changes the refractive index for highly oblique whistler waves. 
Recent spacecraft observations show a significant presence of 
such highly oblique whistler mode waves and their role in 
radiation belt dynamics are still being assessed. A primary effort 
in space weather research is modeling energetic particle 
populations using quasi-linear diffusion codes. The upper limit 
of the refractive index surface has been identified as an 
important parameter [10]. So even if inclusion of finite 
temperature does not significantly change a typical whistler 
wave trajectory from that predicted by cold plasms theory, the 
implications of refractive index change at oblique wave normal 
angles can have far reaching effects. The warm plasma theory 
discussed here allows for calculation of the maximum refractive 
index outside the resonance cone. The warm plasma approach 
shows very similar results to quasi electrostatic and electrostatic 
approximations near the resonance cone for frequency below the 
half gyrofrequency making the model a robust choice for general 
whistler mode raytracing problems.      
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