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Abstract ─ Accurate modeling of microwave 

transmission lines is very important in microwave 

communication and radar systems, especially at high 

frequencies. A compact finite-difference frequency-

domain method (FDFD) is presented to analyze the 

propagation characteristics of microwave transmission 

lines with rough conductor surface. Equations in the 

Maxwell system are discretized with difference method 

in the cross-section of the microwave transmission line, 

and rough surface of microwave transmission lines is 

replaced by complex surface impedance from the 

conductivity Gradient Model. The eigen equations of 

the electromagnetic field components are formed and 

solved to obtain the propagation constants for a given 

frequency. The presented method reduces the computer 

storage effectively in ensuring simulation accuracy 

without the direct modeling for surface roughness, which 

can be applied in the modeling of complex microwave 

circuits. 

Index Terms ─ Conductor surface roughness, Finite-

Difference Frequency-Domain (FDFD), surface 

impedance boundary conditions, transmission lines. 

I. INTRODUCTION
The surface roughness is necessary in manufacture 

to add the adhesion between the conductor trace and 

dielectric substrate for planar transmission lines, which 

will increase transmission loss further. Therefore, 

accurate characterization the effect of surface roughness 

in microwave transmission lines is beneficial in analysis 

and design of microwave circuits, in particular at high 

frequencies, such as in millimeter waves.  

In 1993, Detlev Hollmann computed the transmission 

loss in full-waves with finite-difference time-domain 

(FDTD) method [1], and the conductor loss as well as the 

loss from the conductor rough surface are considered. 

The FDTD approaches required large memory space and 

high CPU time, and the phase constants need to be set as 

an input parameter and the eigen frequencies of interest 

need to be found via discrete Fourier transform. A 2-D 

full-wave finite-difference frequency-domain (FDFD) 

method combined with the surface impedance boundary 

condition has been applied for the analysis of dispersion 

characteristics of lossy metal waveguides [2],[3]. For 

quasi-TEM applications to a wide variety of transmission 

line structures, a FDFD solver provides an efficient 

solution for conductor current distributions involving 

both skin effect and proximity effect [4]. However, all 

the six field components need to be calculated to yield 

an eigenvalue equation. Other than the FDFD method 

which uses a six field matrix, the compact 2-D full-wave 

finite-difference frequency-domain method is much 

more efficient to calculate the propagation constants of 

microwave transmission lines [5],[6], which only involves 

four transverse field components.  

A compact 2-D finite difference frequency domain 

with surface impedance boundary condition has been 

applied to analyze the propagation characteristics of 

surface smooth conductor with finite conductivity 

[7],[8], however, the propagation characteristics of 

microwave transmission line with rough surface has not 

been demonstrated accurately yet. In this paper, a 

compact finite-difference frequency-domain approach 

combined with a complex surface impedance of the 

conductivity Gradient Model is presented to analyze the 

propagation characteristics of waveguide and microstrip 

line with rough conductor surfaces. 

II. THEORIES

A. Surface impedance for rough surface

For a rough surface in y-z-plane, a continuous

transition of macroscopic conductivity (x) from 0 to 

bulk perpendicular to the surface can be utilized to model 

surface roughness in the Gradient Model [9]. Taking this 

Gradient Model approach, the field distributions and the 

skin effect in rough conductor surfaces can be deduced 

from Maxwell’s equation with the location dependent 

conductivity, and this results in a differential equation 

in one dimension for magnetic field component By(x) 

only [10]. Without loss of generality, the solution for 

the magnetic field By distribution for a given RMS-

roughness Rq=1μm and a frequency f=1GHz is shown in 

Fig. 1 in comparison to the magnetic field for an ideally 
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smooth surface at position x=0. Moreover, the current 

density distribution Jz(x) can be calculated from By(x) 

using Ampère’s law. The magnitude of the current 

density for a rough surface and a perfect smooth surface 

are also shown in Fig. 1. The current density shows an 

abrupt step to its maximum value and declines in the 

conductor for a smooth surface, while the current density 

for a rough surface delivers a smooth response between 

dielectric and conductor [11]. 

Fig. 1. Magnitude of magnetic field and current density 

for an ideal smooth surface and a rough surface.  

The surface impedance with smooth non-ideal 

conductor is [12]: 
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where  and δ are the intrinsic conductivity and skin-

effect depth, respectively. We can see from (1) that 

s sX R  for conductors with smooth surface, as By and 

Jz  show the same x-dependency in Fig. 1. 

For conductor with rough surface, however, real and 

imaginary part will not be equal ( s sX R ), as By and Jz 

do not show the same x-dependency (Fig. 1). The ratio 

of Ez and By in (1) must therefore be expressed by the 

responses of By and Jz obtained with the conductivity 

Gradient Model [11]. 

With the Maxwell equations, we have: 
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The surface impedance for conductor with rough 

surface can be derived directly [11]:  
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Figure 2 shows typical frequency responses of its 

real and imaginary part in comparison to those of a 

smooth surface. 

Fig. 2. Real and imaginary part of the surface impedance 

of copper for a rough surface with 1um RMS-roughness 

and a smooth surface. 

With a series derivation for By and Jz [13], the 

surface impedance condition with rough conductor 

surface can be obtained, which can be convenient 

incorporated into conductor boundary condition in the 

FDFD method to characterize the effects of rough 

surface for microwave transmission lines. 

B. A compact 2-D full-wave finite-difference frequency-

domain method

Inside the transmission lines, the transverse field 

components can be expressed by eliminating the 

longitudinal components from the Maxwell curl discrete 

equation as follows [5]: 
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where   is the propagation constant and k is the wave 

number in the free space, x  and y  are the mesh sizes 

in x- and y-direction, respectively. 

Equation (5) shows that one component of E (or 

H) field can be represented by seven components of

neighbor H (or E) field. Equation (5) is not applicable

to deal the components on the non-ideal conductor

boundary. The fields on the boundary must be computed

with special boundary conditions.

Considering the finite conductivity of non-ideal 

conductor, the relationship between the tangential 

electric field and the tangential magnetic field on the 

boundary is related with the surface impedance boundary 

conditions (SIBCs): 

tan tan
ˆ .sE n HZ  (6) 

For conductor with smooth surface, the surface 

impedance Zs  is determined through formula (1). If 

at high frequencies, the conductor surface roughness 

need to be considered, the surface impedance for rough 

surfaces can be calculated with formula (4).  

With the SIBCs and eliminating the longitudinal 

components from the applied Maxwell discrete equations, 

as shown in Fig. 3 (a), Ex (i, j), Ey (i, j) and Hy (i, j) on the 

lower boundary satisfy the following formula: 
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In Fig. 3 (b), applying the SIBC on the left boundary 

with the non-ideal conductor, we have: 
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Fig. 3. Transverse field components on boundary surface: 

(a) Ex, Ey, and Hy on lower boundary, and (b) Ex, Ey, and

Hx on left boundary.

Similarly, the field components on the top boundary 

and the right boundary can be obtained by applying the 

SIBCs directly. 

From the equations for inner nodes and surface 

nodes, we can conclude an eigenvalue problem as: 

    ,A X X  (9) 

where   [ , , , ]T

x y x yX E E H H ,
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j
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,   

is the phase constant, and α is the attenuation constant 

caused by the mental loss.  A is a sparse coefficient matrix, 

and the eigen solution of  A delivers the propagation

constant. 
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III. NUMERICAL RESULTS 
In this section, a waveguide and a shielded 

microstrip line are provided to illustrate the efficiency of 

the proposed method.  

 

A. Waveguide 

With the FDFD method, the propagation constants 

for waveguide in different frequencies can be obtained. 

The waveguide is an empty rectangular copper waveguide 

with the size of a×b=19.05mm×9mm, and with the 

conductivity σ=5.8×107S/m. The computational domain 

for the cross section of waveguide comprises a grid of 

10×5 cells in the FDFD simulation. The computed results 

of propagation constant for TE10 mode of waveguide 

with smooth surface are compared with the analytical 

perturbation method [12] with good correction as shown 

in Fig. 4. 

 

 
   (a) 

 
   (b) 

 

Fig. 4. The propagation of waveguide considering 

conductor surface roughness: (a) attenuation constant, 

and (b) phase constant. 

 

As shown in Fig. 4 (a), under other parameters 

invariably, attenuation constant tends to 0 when the 

frequency is below cutoff frequency, and as the frequency 

increases, attenuation constant keeps decreasing in the 

cutoff region when f tends to fmin [14]. The surface 

impedance is dominant when f>fmin, so attenuation constant 

increases as frequency increases. Under other parameters 

invariably, the attenuation constant monotonically rises 

as the surface roughness increases in Fig. 4 (a). As shown 

in Fig. 4 (b), the differences between phase constants of 

waveguide with smooth surface and roughness surface 

are negligible.  
 

B. Shielded microstrip line  

Consider a shielded microstrip line as defined in Fig. 

5 with a trace width w=3.81mm on top of a dielectric 

layer with εr=2.2, tanδ=0, and the height h=2.7mm. The 

conductor of trace and ground plane is with a conductivity 

σ=5.8×107S/m and the thickness is negligible. The width 

and height for the shielded metallic box are a=9.525mm 

and b=4.5mm, respectively. The cross section of the 

shielded microstrip line is meshed with total 10×5 cells 

in the FDFD simulation. The computed results obtained 

by our proposed method are given in Fig. 6. Numerical 

results of propagation constant of microstrip line with 

smooth surface are compared with the results of CST 

Microwave Studio and a good agreement is achieved. 

Under other parameters invariably, the attenuation 

constant monotonically rises as the frequency increases 

in Fig. 6 (a), and the roughness of surface increases from 

0 to 1um, the value of attenuation constants increase, 

especially at higher frequencies. As shown in Fig. 6 (b), 

the differences between phase constant of shielded 

microstrip with line smooth surface and roughness 

surfaces are too small to be distinguished. 
 

ground plane

w

a

b

hdielectric layer:

signal strip

 
 

Fig. 5. The cross section of a shielded microstrip line.  
 

Compared to the 2-D FDFD with six components in 

[3], the dimension of the coefficient matrix [A] in (9) is 

reduced to two thirds, because only four transverse field 

components are contained in the compact 2-D FDFD. 

The comparison of efficiency in calculation the 

propagation constants for the shielded microstrip line 

[Fig. 5] are shown in Table 1. The calculations are carried 

out on Intel (R) I7 2.7GHz laptop using Matlab R2017b.  
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We can see that the CPU time can be reduced considerably 

as compared to the case in which six field components 

are comprised, since the cutting down order of the 

coefficient matrix largely for solving the eigenvalue 

problem in the proposed method. 

(a) 

(b) 

Fig. 6. The propagation of a shielded microstrip line 

considering conductor surface roughness: (a) attenuation 

constant, and (b) phase constant. 

Table 1: Comparison of this method and the method in 

[3] for the second example

This Method Method in [3] 

Dimension of matrix 236 354 

Number of non-zero 

elements 
1222 883 

CPU time (s) 1.54 6.40 

IV. CONCLUSION
In the paper, a compact 2D full-wave FDFD method 

combined with complex surface impedance of the 

conductivity Gradient Model has been applied for the 

dispersion characteristics of microwave transmission 

lines with roughness surface. Accurate results of 

attenuation constants and phase constants of waveguide 

and shielded microstrip line with roughness surface 

have been obtained by using the proposed method. The 

proposed method will be a powerful tool to calculate the 

propagation constants for microwave transmission lines 

with roughness surface, especially at high frequencies. 

ACKNOWLEDGMENT 
This work was supported by the National Nature 

Science Foundation of China (Grant No. 61471293) and 

the China Scholarship Council (Grant No. 201706285142). 

REFERENCES 
[1] D. Hollmann, S. Haffa, F. Rostan, and W. Wiesbeck,

“The introduction of surface resistance in the three-

dimensional finite-difference method in frequency

domain,” IEEE Transactions on Microwave Theory

and Techniques, vol. 41, no. 5, pp. 893-895, 1993.

[2] B. Z. Wang, X. H. Wang, and W. Shao, “2D full-

wave finite-difference frequency-domain method

for lossy metal waveguide,” Microwave and Optical

Technology Letters, vol. 42, no. 2, pp. 158-161,

2004.

[3] B. K. Huang and C. F. Zhao, “Propagation

characteristics of rectangular waveguides at tera-

hertz frequencies with finite-difference frequency-

domain method,” Frequenz, vol. 68, no. 1-2, pp.

43-49, 2014.

[4] J. P. Donohoe, “A Finite-difference frequency

domain solver for quasi-TEM applications,” ACES

Journal, vol. 33, no. 10, pp. 1093-1095, 2018.

[5] Y. J. Zhao, K. L. Wu, and K. K. M. Cheng, “A 

compact 2-D full-wave finite-difference frequency-

domain method for general guided wave structures,”

IEEE Transactions on Microwave Theory and

Techniques, vol. 50, no. 7, pp. 1844-1848, 2002.

[6] Q. Li, W. Zhao, Y. J. Zhao, and W. S. Jiang,

“Dispersive characteristics analysis of lossy

microstrip with 4-component 2-D CFDFD method,”

Proceedings-2009 3rd IEEE International Sym-

posium on Microwave, Antenna, Propagation and

EMC Technologies for Wireless Communications,

MAPE 2009, Beijing China, pp. 588-592, Oct.

2009.

[7] W. Zhao, H. W. Deng, and Y. J. Zhao, “Dispersion

characteristics analysis of lossy coaxial metal

waveguide with 4-component compact 2-D FDFD

method,” ISAPE 2008-The 8th International

Symposium on Antennas, Propagation and EM

Theory Proceedings, Kunming, China, pp. 851-854,

Nov. 2008.

[8] W. Zhao, H. W. Deng, and Y. J. Zhao, “Application

of 4-component compact 2-D FDFD method in

analysis of lossy circular metal waveguide,”

Journal of Electromagnetic Waves & Applications,

HUANG, WANG: A COMPACT FDFD METHOD FOR ANALYSIS OF MICROWAVE TRANSMISSION LINES 1465



vol. 22, no. 17-18, pp. 2297-2308, 2008. 

[9] G. Gold and K. Helmreich, “A physical model

for skin effect in rough surfaces. Proceedings of

the 7th European Microwave Integrated Circuits

Conference, Amsterdam, The Netherlands, pp.

631-634, Oct. 2012.

[10] G. Gold and K. Helmreich, “Effective conductivity

concept for modeling conductor surface roughness,”

DesignCon 2014: Where the Chip Meets the Board,

Santa Clara, CA, USA, Jan. 2014.

[11] G. Gold and K. Helmreich, “Surface impedance

concept for modeling conductor roughness,” 2015.

IEEE MTT-S International Microwave Symposium, 

IMS 2015, Phoenix, AZ, USA, May 2015. 
[12] R. F. Harrington, Time-harmonic Electromagnetic

Fields. New York: McGraw-Hill, 1961.

[13] B. K. Huang and Q. Jia, “A method to extract

dielectric parameters from transmission lines with

conductor surface roughness at microwave freq-

uencies,” Progress in Electromagnetics Research

M, vol. 48, pp. 1-8, 2016.

[14] S. Ramo and J. R. Whinnery, Fields and Waves in

Modern Radio. 2nd Ed., New York: Wiley, 1953.

ACES JOURNAL, Vol. 34, No. 10, October 20191466




