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Abstract ─ A frequently used Q factor measurement 

procedure consists of determining the values of the input 

reflection coefficient vs. frequency with the use of a 

network analyzer, and processing the measured values 

with a data-fitting procedure to evaluate the location and 

the size of the corresponding Q-circle. That information 

is then used to compute the value of the loaded and 

unloaded Q factors and the coupling coefficient of the 

resonator being tested. This paper describes a novel method 

of post-processing the measured data, which also provides 

information on the uncertainty of the obtained results. 

Numerical examples show that this a-posteriori procedure 

can not only provide the uncertainty estimates but also 

improve the accuracy of results, even in the presence of 

a significant level of random measurement noise. 

Index Terms ─ Least squares data fitting, measurement 

uncertainty, Q-circle, unloaded Q factor, Smith chart.  

I. INTRODUCTION
The Q factors of microwave resonators are 

conveniently determined using network analyzers that 

can accurately measure the amplitude and phase of 

scattering parameters. The topic that will be discussed 

here is the Q factor measurement of microwave one-port 

resonators. In particular, the numerical processing of the 

measured values of the complex reflection coefficient Γ 

as a function of frequency will be described, with an 

emphasis on estimating the uncertainties of the loaded 

and unloaded Q factors due to small random errors that 

are inextricably present in a measured set of data. 

When the reflection coefficient of a high-Q resonator 

is plotted on a Smith chart as a function of frequency, its 

path describes an almost-perfect circle [1]. By analyzing 

the size and orientation of the Q-circle, it is possible to 

determine the loaded QL and unloaded Q0 factors [2]. 

The majority of Q-factor measurements are based on 

analyzing the measured scattering parameter data [3]. 

Some analysis methods utilize only the amplitude of the 

measured data [4]-[6]. The accuracy of results can be 

further improved by including the phase of the reflection 

coefficient as well, thus treating the reflection coefficient 

as a complex number. When numerical data of the 

reflection coefficient are available as a function of 

frequency, it becomes possible to least-squares fit these 

points to a theoretical prediction of the model, as was 

done in [7]-[9], in order to determine the loaded and 

unloaded Q factors with great precision. 

The novelty of the data processing proposed here 

is that it compares the measured complex reflection 

coefficient data vs. frequency, with the data generated by 

the equivalent circuit model. Such comparison enables 

one to estimate the random uncertainty of the loaded and 

unloaded Q factors, as will be explained in Section IV. 

The uncertainty of a scientific measurement consists 

of two parts: random uncertainty and systematic 

uncertainty. The systematic uncertainty is caused by the 

imperfections of the equipment used in measurements. 

The present paper does not deal with systematic 

uncertainty, but assumes that the measuring equipment 

provides reliable data. Instead, the paper addresses 

random uncertainty, which may be determined by 

numerical processing of the measured data. 

In an attempt to measure as accurately as possible, 

it quickly becomes clear that it is impossible to repeat 

any measurement exactly. The problem becomes: how 

many decimal points can be considered reliable? For real 

numbers, the uncertainty is expressed with the standard 

deviation , which implies that by repeating the same 

measurement many times, about 67% of results will fall 

within the specified uncertainty [10]. 

As shown in Fig. 1, Γd, known as the detuned 

reflection coefficient, is the limiting value of Γ that 

would be reached when the frequency tends to infinity, 

or to zero. The point ΓL is on the diametrically opposite 

side of the Q circle from Γd., and indicates the location 

of the loaded resonant frequency fL. 

To develop a consistent procedure for data 

processing, an equivalent circuit is postulated which 

approximates the behavior of complex reflection 

coefficient Γ as a function of frequency. An important 

step of data processing is to determine the center Γc, the 

diameter d of the Q-circle, and the two points on the 

circle, denoted ΓL and Γd. 
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Fig. 1. Smith chart and the Q-circle (solid line). 

II. EQUIVALENT CIRCUIT

The equivalent circuit, shown in Fig. 2, closely 

follows the one described in [9]. The “unloaded” resonator 

is represented by a parallel LCR resonant circuit described 

by the unloaded resonant frequency f0, by the unloaded 

Q factor Q0, and by the conductance G0. The coupling 

discontinuity between the resonator and the transmission 

line leading to the network analyzer is modeled by 

the resistor Rs and the reactance Xs. The lossless 

transmission line has the characteristic impedance Rc and 

the phase delay . The network analyzer is represented 

by an ideal Thevenin source matched to the characteristic 

impedance of the transmission line. It is shown in [8] and 

[9] that for Q0 values higher than 100, the values of Rs,

Xs, and  do not significantly influence the results of data

fitting, as long as Rs/Rc<<1, Xs/Rc<1, and < 90.

Fig. 2. The equivalent circuit with a parallel LCR 

resonator. 

Within a limited frequency bandwidth, it is possible 

to describe the behavior of microwave networks with 

the help of lumped-element equivalent circuits. For that 

reason, the first step in measuring the Q factor is the so-

called pruning process, where one selects a narrow range 

of frequencies within which the effect of resonance is 

most pronounced. 

This typically happens around the minimum of the 

reflection coefficient magnitude. Within this range, the 

complex reflection coefficient on the Smith chart closely 

follows a circular path. It is prudent to select the pruned 

range such that no more than one-half of the circular arc 

is showing. Further away from the resonant frequency, 

the path departs more and more from an ideal circle, and 

the underlying assumptions are less and less justified. 

Thus, such data is best discarded, so that only a portion 

of the true Q circle is retained. 

For the high-Q measurement, the “unloaded’ part of 

the equivalent circuit, characterized by f0, Q0, and G0, 

varies its impedance Z0 much faster than the “external” 

part of the equivalent circuit, specified by Rs, Xs, and . 

For a resonator with a Q of 100, the pruned bandwidth 

is only about one percent wide. Within this narrow 

bandwidth, the behavior of the entire network can be 

understood more easily by assuming the values of Rs, Xs, 

and  to be constant, independent of frequency. When 

the unloaded Q is much higher than 100, this assumption 

becomes even more justified. 

Input impedance Z0 of the unloaded resonator in Fig. 

2 is represented by the LCR lumped-element resonant 

circuit, conveniently expressed as follows: 

 





0

0 0

1
.

(1 )
Z

G jQ
(1) 

In the above, the frequency variable  is: 


 

  
 

0

0

.
ff

f f
(2) 

For numerical processing of data it is important to 

normalize the frequency, which was done above by 

dividing f by f0. However, the exact value of unloaded 

resonant frequency f0 is not known at the beginning of 

data processing. The practical solution is to normalize 

the frequency variable to the value fn, the closest point  

to the center of the Smith chart. Within the narrow 

bandwidth in the vicinity of f0, the approximate expression 

for the frequency variable becomes: 




2 .n

n

f f

f
(3) 

The closest point to the center of the Smith chart is 

also the minimum of the reflection coefficient magnitude, 

as for instance in Fig. 3. 

It is also convenient to normalize the impedances by 

dividing their values by the value of the characteristic 

impedance Rc. The normalized values will be denoted by 

lower-case symbols, like rs=Rs/Rc, xs=Xs/Rc, r0=1/(G0Rc), 

etc. 
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Fig. 3. Pruned region of frequencies (blue circles), and 

the discarded data (red dots). The random noise level is 

1%. 
 

When the measurement is performed through a 

known length of the transmission line, e.g., a coaxial 

connector, the measured impedance from port 2 has  

to be transformed to port 1, before applying the post-

processing procedures to be described here. The 

corresponding measured reflection coefficient at port 1 

is the following function of the normalized frequency  

[9]: 

  





  


1 .
1

j

d

L

de

jQ
  (4) 

Note that the phase angle γ above is not intended to 

have anything in common with the complex propagation 

constant. Also note that QL in (4) is the loaded Q factor 

and the frequency variable  is normalized to the loaded 

resonant frequency. Fortunately, the higher the value of 

Q0 is, the smaller the difference between fn and f0, or 

between fn and fL.  

In (4), d is the diameter of the Q-circle. At 

frequencies much higher or much lower than fn, the value 

of  tends toward infinity and the reflection coefficient 

tends toward a limiting point Γd. Within the pruned range, 

the phase angle γ is: 

    
   

 

12tan .
1

s

s

x

r
  (5) 

The coupling coefficient, denoted by the symbol , 

relates the loaded Q with the unloaded Q as follows: 

  0 (1 ).LQ Q   (6) 

The behavior of the input reflection coefficient for 

the equivalent circuit in Fig. 2 can be conveniently 

described by the Möbius (also called bilinear) 

transformation: 

 






 



1 2
1

3

( ) .
1

a a

a
  (7) 

The graphical property of transformation (7) is to 

transform straight lines into circles, which makes it well 

suited for describing the measured Q-circles. The three 

complex constants a1 to a3 in (7) specify a continuous 

analytic function which approximates the behavior of the 

measured data in a least-squares sense. The details of 

determining the three complex coefficients from the set 

of measured reflection coefficient data can be found in 

[9]. Figure 4 is an exaggerated illustration of how a set 

of noisy data is approximated by a smooth circular arc, 

defined by (7). 

The a-posteriori procedure proposed here starts  

after the elements of the equivalent circuit have been 

determined by some of the published procedures for the 

Q-factor measurement. The values of the elements in the 

equivalent circuit have been selected so that the input 

impedance, computed by the standard circuit analysis, 

very closely agrees with the actual impedance measured 

by the network analyzer. The uncertainty of the Q-factor 

measurement is then construed from the amount of the 

disagreement between the measured and the computed 

values, as will be explained in Section IV. 
 

 
 

Fig. 4. Approximating noisy reflection coefficient data 

with the continuous function. 

 

III. A-POSTERIORI ACCURACY 

IMPROVEMENTS 
The knowledge of the element values in the 

equivalent circuit makes it possible to estimate more 

accurately the unloaded resonant frequency f0, and the 

unloaded Q factor Q0. One starts with the measured 

values of the input reflection coefficient Γ1 at port 1. 

Transforming the measured reflection coefficient into 

the corresponding (normalized) impedance z1, one can 

subtract from it the known value of zs=rs+jxs to obtain the 

value of the (normalized) input impedance z0 at port 0 as  
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a function of frequency: 







0
0

0

( ) ,
1

r
z

jQ
(8) 

where  is now normalized to the unloaded resonant 

frequency f0. The corresponding reflection coefficient of 

the unloaded resonator is: 


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
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Therefore, the three coefficients in the Möbius 

transformation for Γ0 are: 

0 0 0
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1
; ; .
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a

Q r Q
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r r r


   
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(10) 

The unloaded reflection coefficient Γ0 at port 0 now 

describes a circle centered on the real axis, as shown in 

Fig. 5. This plot has been created from the validation file 

“v14.txt,” that was computed for the element values 

given in Table 1. 

The value of r0 follows from a02. Furthermore, 

realizing that a01 is a complex conjugate of a03, the more 

accurate value of Q0 is found to be:  




0 01 03

02

2
.

1
Q a a

a
(11) 

The accurate value of the unloaded resonant 

frequency f0 can be obtained from the knowledge of Γ0 

as a function of frequency. The resonance occurs where 

Γ0 crosses the real axis. Using the analytic form (9) 

again, a simple interpolation provides a value of f0 which 

perfectly agrees with the known value of the validation 

data file “v14.txt.” It should be mentioned that an accurate 

knowledge of the unloaded Q factor and the unloaded 

resonant frequency is very important, for instance in 

measuring the permittivity of the homogeneous and 

inhomogeneous dielectric materials filling microwave 

cavities [12, 13]. 

Fig. 5. The Smith chart showing the reflection coefficient 

Γ0 of the unloaded resonator at port 0 (over coupled case). 

IV. A-POSTERIORI DETERMINATION OF

UNCERTAINTIES 
After the values of reflection coefficient Γ have been 

measured, and the measured data have been processed 

to find the parameters of the equivalent circuit model, it 

becomes possible to compare the measured values of the 

reflection coefficient with the ones that the equivalent 

circuit predicts. The disagreement between the measured 

and the predicted values can be quantified by computing 

the standard deviation between the measured values of Γ 

and those predicted by the equivalent circuit. This way, 

each individual measured frequency point is checked to 

see how well it agrees with the postulated model. 

The flowchart of the proposed procedure is 

summarized in Fig. 6. The starting point consists of 

the measured reflection coefficient values vs. frequency. 

They typically form three long columns of data: the 

frequency, the real part of Γ, and the imaginary part of Γ. 

The number of rows may vary from one hundred to more 

than one thousand. These are called the raw measured 

data. 

Fig. 6. The flowchart of the a-posteriori procedure. 

The first step of data processing is the so-called 

pruning. The user is supposed to select a number of 

points on each side of the minimum of the reflection 

coefficient magnitude. For a reliable result, between 25 

to 50 points are recommended. These are the measured 

data Γm that will be used for numerical processing. An 

example of pruning is illustrated in Fig. 3. 

The second step of the procedure is to perform the 

least-squares data fit on a circle in the complex plane. 

The size and the position of the circle is described 

by three complex coefficients a1 to a3. These three 

coefficients describe the continuous function (7), which 

is represented by a solid line in Fig. 4. 

The third step of data processing is to determine 
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the values of the equivalent circuit elements shown in 

Fig. 2. Afterwards, one can evaluate the (normalized) 

input impedance z2() at port 2. The input reflection 

coefficient is then obtained from z2 as follows: 

 
 

 
2

2

1
.

1
com

z

z







 


(12) 

Now it becomes possible to statistically compare 

the equivalent circuit points Γcom() with the measured 

points Γm(), and estimate the uncertainty of the quantities 

of interest, like the unloaded Q factor, the coupling 

coefficient, etc. 

A. Uncertainty of d

The diameter d of the Q-circle is important for

determining the coupling coefficient . From (4), d is 

found as follows: 

       ( ) 1 ( ) .L dd jQ (13) 

The absolute value was used because d must be a 

real, positive number. For Γ() one substitutes the actual 

measured points of the reflection coefficient within the 

pruned region. Although there is only one value of 

diameter d which fits the measured data in the least 

squares sense, d() is formally represented above as a 

function of the frequency variable . The results of (13) 

vary slightly as a function of frequency, because each 

measurement instrument has its uncertainty limits which 

we want to quantize here. This is accomplished by 

substituting the measured values Γ() in the above 

equation, and evaluating the corresponding standard 

deviation (d) [10]. 

B. Uncertainty of QL

From (4) one obtains:





 
 1

1.
( )

j

L

d

de
j Q (14) 

Since QL is supposed to be a constant and real 

number, we need only the imaginary part of both sides 

of the equation. Then, by taking the derivative with 

respect to  we get: 

 

 


 
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From (4) one realizes that the needed complex 

constant in the numerator is obtained when  is zero, 

namely:    1 0j
dde . 

Although it would be possible to evaluate the error 

estimate of QL by performing numerical derivatives on 

the measured data of the reflection coefficient, more 

accurate results are obtained by taking the derivative of 

the continuous function (7): 

 




 

 
   
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a a ade
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By substituting the measured reflection coefficient 

data Γ1() in the above expression, one obtains an estimate 

of the standard deviation (QL) [10].  

C. Uncertainty of Q0

From (8) and (9), it is possible to express Q0 in terms

of Γ0() as follows: 

   


 

 
   
    

0 01 02 03
0 22

0 03

2
( ) Im .

( 1) 1

r a a a
Q

a
  (17) 

The above expression provides the way to verify how 

well the measured values (after subtracting the coupling 

resistance and reactance) fit the circular behavior of the 

kind shown in Fig. 5. This is performed for all the pruned 

frequency points. The standard deviation with respect to 

the Q0 value from (11) yields the estimated uncertainty 

(Q0). 

D. Overall uncertainty U0 

The general measure of how well the measured data

agree with the data computed from the equivalent circuit 

can be obtained by evaluating the standard deviation of 

their difference, expressed in percents: 

 0 1 1100 ( ) ( ) .m comU std        (18) 

E. Estimating the value of 

Until now, the discussion of the a-posteriori

procedure was based on the assumption that the 

measured reflection coefficient at port 2 was identical 

with the reflection coefficient at port 1, thus assuming 

the length  of the transmission line to be zero. In an 

actual measurement with a network analyzer, the 

reference point is typically located at the input side of a 

coaxial connector, so that the remainder of the connector 

represents an additional section of the coaxial 

transmission line. For a small but finite length of the 

transmission line , the two reflection coefficients are 

related as: 

     2
2 1( ) ( ) .ie (19) 

We know the measured values of Γ2() as function 

of frequency, but Γ1() is rotated on the Smith chart by 

an unknown angle of 2. For a high-Q measurement, the 

angle  can be assumed to be constant within the pruned 

range of frequencies. As long as the value of  is smaller 

than one quarter wavelength ( < 90), it is possible to 

estimate its value by comparing the measured value of 

Γ2 with the computed value of Γ1, by using the known 

values of the (normalized) equivalent circuit elements rs 

and xs. It is convenient to use the detuned reflection 
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coefficient at port 1 for this purpose: 
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Reactance xs is obtained from Γd1 as follows: 
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Resistance rs is given by: 

 
2

1,s

s

r
d

    (22) 

where ds is the diameter of the coupling-loss circle (the 

dashed circle in Fig. 1): 

 
 
 


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1

1

1
.

1 cos

d

s

d

d   (23) 

Now it becomes possible to compare the computed value 

Γd1 at port 1 with the measured value Γd2 at port 2, and 

find for what value of  they best agree with each other. 

The difference to be minimized is: 

     2
2 1 .j

d d d e   (24) 

Figure 7 is an example of Γd plotted as a function 

of . The validation file “v14k50.txt” for this example 

corresponds to the same equivalent circuit as the file 

“v14.txt” in Table 1, with a transmission line of the 

length =50 added to the equivalent circuit. It can be 

seen that the value of Γd displays a minimum at the 

correct phase angle. 
 

 
 

Fig. 7. Function Γd vs.  shows a minimum at the 

correct value =50. 

 

V. VALIDATION PROCEDURE 
To validate the a-posteriori procedure, two different 

situations were investigated: a strongly coupled resonator  

with a coupling coefficient =2, and a loosely coupled 

case with =0.2. The loaded Q factor for the overcoupled  

case was chosen to be QL=100, and for the undercoupled 

case to be QL=1000. After selecting the element values 

of the equivalent circuit, the values of the complex 

reflection coefficient as a function of frequency have 

been computed by straightforward circuit analysis. Table 

1 shows the assumed circuit element values of the  

two cases. The corresponding files were named “v14.txt” 

and “v13.txt.” The ideal input reflection coefficients  

for each case were evaluated for 100 frequency points. 

Afterwards, random errors were superimposed on the 

real and imaginary parts of the reflection coefficients, for 

21 gradually increasing levels. 
 

Table 1: Element values of validation files 

File name Q0 QL  rs xs  

v14.txt 300 100 2 0.2 -1 0 

v13.txt 1200 1000 0.2 0.2 0.8 0 

v14k50.txt 300 100 2 0.2 -1 50 

 
The Matlab program Q0REFL from [9] was used 

to evaluate the starting values of QL and Q0. These values 

were then analyzed by the a-posteriori procedure. As the 

validation data were generated from the known values  

of circuit elements, the actual values of Q0 and QL were 

accurately known, and could be compared with a-

posteriori estimates. The results are displayed in Figs. 8 

and 9. The horizontal axes indicate the percent level of 

the random noise added to the data, and the vertical  

axes display the percent uncertainty levels estimated by 

the a-posteriori procedure (dashed lines). The actual 

percentage errors are shown by circular dots. 
 

 
 

Fig. 8. Comparison of actual errors and estimated 

uncertainties (overcoupled case, file v14.txt). 
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Each of 21 randomly distorted “measured” data 

were manually pruned and individually processed in 

order to compare the estimated uncertainty with the 

actual error of the unloaded Q factor. As long as the 

actual error is smaller than the predicted uncertainty, the 

estimation is considered correct. Since we are dealing 

with random numbers, the majority (about two thirds) of 

the actual errors should come out to be smaller than 

predicted, but a few may happen to be larger. It can 

be seen that 15 out of 21 points fall clearly below the 

dashed line in Fig. 8, in agreement with the theoretically 

probable percentage. 

The estimated uncertainties (dashed lines), when 

plotted in the log-log scale, display approximately linear 

dependence vs. the random noise that was added to the 

complex reflection coefficient. One can conclude from 

Fig. 8 that the estimated uncertainty of Q0 will be smaller 

than 1% if the added noise is also about 1% (return loss 

of 20 dB). 

When the resonator is undercoupled, the size of 

the Q-circle is relatively small, as for instance in the 

data file v13.txt, shown in Fig. 9. As the file name 

indicates, this particular input file had 0.01% random 

noise superimposed on the input data. The a-posteriori 

uncertainties for QL, Q0, and  are indicated by ± signs. 

Fig. 9. Q-circle for the undercoupled case with =0.2. 

Figure 10 compares the predicted uncertainties with 

the actual errors for the undercoupled case. Because of 

the small size of the Q-circles on the Smith chart, the 

relative accuracy of data fitting for the loosely coupled 

resonators comes out to be less accurate than for those 

that are overcoupled. It can be seen that the uncertainty 

will reach the value of 1% at a level of random noise 10 

times smaller than in the overcoupled case. This happens 

at the random noise of 0.1%, (40 dB return loss). For 

such a low level of random noise, none of the actual 

errors happens to be larger than the uncertainty estimates. 

Fig. 10. Comparison of actual errors and estimated 

uncertainties for the unloaded Q factor (undercoupled 

case, file v13.txt). 

VI. IMPLEMENTATION
The display of the new program may be seen in 

Fig. 11. The figure shows the results obtained for the 

input file “v14n1.txt,” with an added noise level of 1%. 

Although such a high level of measured noise is not 

likely to happen in a typical measurement with a network 

analyzer, it can be seen that the improved value of Q0 has 

been achieved with an error of only ±0.16%. This is 

within the estimated uncertainty of ±0.93 %. 

Fig. 11. The display of the program Q0REFLv9. 

Another new result that the old version of the 

program Q0REFL was unable to provide is the unloaded 

resonant frequency f0 (recall the interpolation associated 

with Fig. 5). In the example shown, the validation data 

file has been computed for the value of f0=1.0 GHz, 
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whereas the recovered f0 departs from that value at the 

fifth decimal place, in spite of the large noise added to 

the data.  

The open source Matlab program Q0REFLv9.m 

accepts the input data in Touchstone RI format (real and 

imaginary parts of the reflection coefficient), and it may 

be downloaded freely at [11]. 

VII. CONCLUSIONS
A systematic procedure for determining the random 

uncertainty of the reflection-type Q-factor measurement 

has been described. It consists of verifying how well the 

measured reflection coefficient fits an ideal circle on 

the Smith chart. The procedure can be summarized as 

follows. 

An equivalent circuit consisting of 5 lumped circuit 

elements and of a lossless section of a transmission line 

is postulated, which is supposed to accurately simulate 

the measured reflection coefficient of a microwave 

resonator within the pruned frequency region. The a-

posteriori processing of the measured data enables one 

to approximately determine the element values of the 

equivalent circuit and of the unloaded resonant frequency. 

Afterwards, one performs the computation of the input 

reflection coefficient for this equivalent circuit, and 

compares it statistically with the measured complex 

reflection coefficient. The procedure leads to explicit 

uncertainty estimates for the loaded and unloaded Q 

factors. 
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