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Abstract ─ Electric-LC resonators (ELCs) metamaterials, 

as a kind of common structures, have been extensively 

investigated from microwave to terahertz frequencies. In 

this paper, we present a LC circuit model to analyze 

electric-LC resonator. With the reliable and closed 

formulas of the effective inductance and capacitance, 

the expressions of electric and magnetic resonance 

frequencies were obtained, which is suitable to discuss 

the resonance characteristic under the normal incidence 

case. Meanwhile, the mutual relationships among the 

permittivity, permeability, refractive index, and structure 

parameters can be explored by using the obtained 

expressions. Numerical simulations and theoretical 

calculations reveal that the width and length of the gaps 

are some of the critical parameters determining the 

resonator frequency of the example metamaterial. This 

study provides valuable information for designing the 

desired left-hand metamaterial at some specific frequency 

points. 

Index Terms ─ Circuit model, metamaterial, resonator. 

I. INTRODUCTION
In the past few years, research on metamaterials, 

especially on left-handed metamaterials (LHMs), has 

attracted considerable attention from microwave to 

optical frequencies due to their exotic intriguing physical 

properties that don’t exist in natural materials. The 

electromagnetic response of a specific metamaterial can 

be predicted via retrieved the effective permittivity 

and permeability [1]. The intriguing features of the 

metamaterials by a combination of artificial “electric 

atoms” and “magnetic atoms” have conceptualized many 

novel devices such as perfect absorbers [2-6], invisible 

cloak [7, 8], superlens [9, 10], and so on.  

As is generally known, the development of research 

on metamaterials is usually connected with design. Over 

the last decade, various kinds of artificial LHMs 

were proposed and investigated either for in-plane or 

normal incidence [11-14]. Meanwhile, some theoretical 

approaches, such as equivalent circuit theory [15-17] and 

effective medium theory [18, 19], have been exploited 

to explain the physical mechanism. These theoretical 

analysis methods have significant effects on the design 

and analysis of the LHMs. However, they still not 

manage to offer the specific principles for selecting 

structural parameters of the desired LHMs. As a matter 

of fact, it is more important for engineers to understand 

the relationship between the structure parameters and the 

resonant frequency.  

In this communication, we utilized a LC circuit 

model to reveal the influences of the structure parameters 

on the resonance frequency. It must be pointed that the 

proposed LHM has a structural similarity to the ELC 

resonator introduced in Ref. [20], but given that the 

major aim of this paper is excavating the physical 

mechanism. We use the LC circuit to analyze the achieved 

numerical simulation response. By this method, a distinct 

and intuitive understanding of the parametric response of 

ELC was obtained, which can lead to guidelines for the 

optimization of the related metamaterial structures.  

II. SIMULATION AND THEORY
The proposed ELC unit cell is illustrated in Fig. 1 

(a). The metallic pattern is printed on one side of a 

FR4 substrate with the relative permittivity εr = 4.4 and 

tanδ = 0.02. The metallization is copper with a thickness 

of t = 17 µm. The other geometrical dimensions are shown 

in Fig. 1 (a).  

The simulations were performed using the full-wave 
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finite element solver. As Refs. [21, 22], a theoretical 

model for normal-to-side incidence is developed based 

on an artificial waveguide with two ideal magnetic 

conductor vertical planes and two ideal electric conductor 

horizontal planes at boundaries [Fig. 1 (b)], which is 

equivalent to an infinite layer medium illuminated by 

a normal incident plane wave. The transmission and 

reflection characteristics of electromagnetic waves can 

be conveniently obtained by evaluating the S parameters. 

Then, by the standard algorithm [23], effective 

electromagnetic parameters of LHM were retrieved.  

Fig. 1. (a) Schematic representation of unit cell of the 

ELC structure. (b) Side view. The geometry of ELC are 

as follows: la=11 mm, lb=10 mm, lc=2.5 mm, w=1 mm, 

k=0.5 mm, g=0.8 mm, a=3.2 mm, b=3.6 mm, d=0.2 mm, 

h=0.8 mm. 

The retrieved effective parameters of the LHM 

structure are plotted in Fig. 2. There is one double-

negative passband due to the magnetic resonance. 

Figures 2 (a) and 2 (b) show that the effective permittivity 

is negative in 3.45 GHz while the frequency range of 

negative effective permeability is 3.053.6 GHz, much 

narrower than the negative effective permittivity range. 

Fig. 2 (c) clearly shows that the negative refractive index 

band is between 3.3 GHz and 4 GHz, and negative 

refraction bandwidth is 600 MHz. But note that in the 

frequency range between 3.4 and 3.6 GHz, where both 

the effective permeability and permittivity are negative, 

a LH band is anticipated. 

When a plane electromagnetic wave incident on the 

unit cell with its wave vector is parallel to the plane of 

the ELC and the magnetic field is perpendicular to the 

ELC, currents I flow around ELC will be induced. From 

the equivalent circuit [Fig. 3 (a)], the self-inductance (L1) 

in the middle conducting strip has the form [24, 25]: 
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and the calculation expression of effective capacitance 

between the two metal arms is as follows: 
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Then, the electric resonant frequency can be given by:
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Fig. 2. Retrieved effective parameters of ELC: (a) 

complex permittivity, (b) complex permeability, and (c) 

complex refractive index. 

The circuit model of magnetic resonance is shown 

in Fig. 3 (b), which is similar to the circuit model of 
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electric resonance model. The inductance 
'

2L  for an ELC 

unit is: 

 
'

2 04L ab l ,                    (5) 

where l is the periodicity of this ELC array in the  

y direction. The magnetic resonance frequency can  

be described as 1 2m m mf L C , where capacitance 

m eC C . According to Eqs. (1-3), we can deduce that: 

 
1 1

2
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f
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Equations (4) and (6) indicate that not only 

structural parameters a, b, la, lc but also k and d have an 

important impact on the electric and magnetic resonant 

frequencies of the ELC resonator, and they can be 

employed to understand the working mechanism of the 

LHM metamaterials. 
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Fig. 3. Equivalent circuits for: (a) electric resonance, and 

(b) magnetic resonance. 

 

III. RESULT AND DISCUSSION 
To better understand the resonant mechanism and 

gain physical insight into this ELC resonator, now we 

use the derived equivalent circuit model to investigate 

the influence of the constitutive structural parameters on 

the resonant frequencies, and to reveal some strategies 

for designing metamaterials. According to the Eqs. (4) 

and (6), it can find that all the structural parameters have 

a significant impact on the resonant frequencies of the 

metamaterial. Due to there are six factors affecting the 

resonant frequencies, for simplicity but without losing 

generality, we select two parameters a and lc to research 

this proposed ELC resonator. Other factors have similar 

results.  

The retrieved equivalent parameters of the ELC 

resonator are shown in Fig. 4. In the simulation, the wire 

length a varies from 3.1 mm to 3.25 mm. Figure 4 (a) 

shows the influence of the length a on the real part of the 

permittivity. It can find that the electrical resonance fe 

shifts to the lower frequency with increasing the wire 

length, displaying an exact linear relation as indicated  

by Eq. (4). The permeability µ and refractive index n 

dependence of the wire length a shown in Figs. 4 (b) and 

(c) have a similar behavior as observed in the Fig. 4 (a). 

In order to show clearly the effect of the value of length 

a, we plot the dependence of the resonance frequency on 

a in Fig. 4 (d). It is clear that the electric and magnetic 

resonance is inversely proportional to the length of a. 

From Eqs. (4) and (6), the electric and magnetic resonant 

frequencies are inversely proportional to the length a  

of the wires. Resonance frequencies are determined by 

numerical simulation with various parameter a show a 

good agreement with the formulas (4) and (6). 
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Fig. 4. The real part of the equivalent parameters for 

length variation of metallic wire a. (a) Permittivity, (b) 

permeability, (c) refractive index, and (d) electric resonant 

frequencies and magnetic resonant frequencies as a 

function of a. Dashed line denoted the linear dependence 

of the wire length a for the resonant frequency predicted 

by relations (4) and (6). 

Figure 5 displays the effect of the length lc on the 

electric and magnetic resonance frequencies. The length 

lc is varied from1.5 mm to 3.5 mm. From Fig. 5 (a), we 

can see that the electric resonance peak values decrease 

as increasing of length lc. According to the Eqs. (3) and 

(4), the increase of metallic wire length lc leads to the 

inductance L2 of the arms and the capacitance of the gap 

between the two arms decrease.  

It is believed that the value of the magnetic 

resonance frequency fm is inversely proportional to the 

length lc, and the result is presented in Fig. 5 (b). As 

expected by Eq. (6), the length lc of the metal wire increase 

causes a reduction of the resonance frequency. Figures 5 

(c) and 5 (d) show a similar behavior as observed in Figs.

4 (c) and 4 (d).
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Fig. 5. The real part of the equivalent parameters for 

length variation of metallic wire lc. (a) Permittivity, (b) 

permeability, (c) refractive index, and (d) electric resonant 

frequencies and magnetic resonant frequencies as a 

function of lc. Dashed line denoted the linear dependence 

of the wire length a for the resonant frequency predicted 

by relations (4) and (6).  

IV. CONCLUSION
In summary, we have utilized an equivalent circuit 

model to analyze the ELC resonator. From the derived 

approximate relationship for the electric and magnetic 

resonant frequencies as a function of the structural 

parameters, influence on metallic wire width a and lc 

were analyzed. It is shown that the simulation results 

are satisfactory agreement theoretical analysis using LC 

circuit model for the proposed ELC resonator. With 

this circuit model and analytical method, it is easy to 

understand the physical mechanism and may provide 

helpful guidance in the future developments of more 

advanced metamaterial devices for microwave 

applications. 
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