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Abstract – For a typical frequency modulated continuous
wave automotive radar system, a design using a novel
leaky-wave antenna is proposed that has a simple, cheap
and easy manufacturing structure whose performance is
compared with two different antenna arrays. The soft-
ware used were MATLAB and CST Microwave Studio.
The first antenna system was an inset-fed patch array,
and the second antenna system was a circular patch array
with a Buttler beamforming network as a beam scanning
mechanism. The simulation results of the three proposed
designs are obtained using the range-Doppler method for
multi-target scenarios. The proposed leaky-wave antenna
excels the antenna arrays, which offer cheaper and sim-
pler solutions for the automotive industry.

Index Terms – buttler beamforming network, frequency
modulated continuous wave (FMCW), inset-fed patch
antenna array, leaky-wave antenna (LWA), multi-target
detection

I. INTRODUCTION
Road safety has always been a challenging issue all

around the world. The National Highway Traffic Safety
Administration (NHTSA) is an agency that provides
annual statistics on road casualties as shown in Fig. 1
As we see, in 2019 alone there were 36,096 fatalities on
US roads [1].

Different solutions have been so far proposed to
increase road safety. But amongst the proposed methods,
frequency-modulated continuous wave (FMCW) radars
are one of the most promising solutions compared to
other types of automotive radar systems. These radars are
low-cost, simple in architecture, and have robustness in
foggy or rainy weather, which makes them more appeal-
ing compared to LIDAR or cameras. In general, there are
two types of radars: pulse radars and continuous wave
(CW) radars. In pulse radars, we transmit a very short
pulse accompanied by high average power.

Radar resolution ∆R is equal to c/2BW , where C
is the speed of light and BW is the system bandwidth.
Continuous wave radars, as the name implies, continu-
ously send radar signals toward targets, and thus provide

Fig. 1. US Road’s Fatality Rate per 100 million VMT,
1975-2019 [1].

continuous radar updates on the target. In CW radars the
peak-to-average power is quite low (a few watts) and this
factor makes such radars more economical for automo-
tive applications compared to pulse-waveform radars [2].

There are many interesting applications or aspects
of FMCW radars to be improved such as in [3], where
authors mention improving the low resolution of FSK
radars using LFM waveforms. In [3] and [4], the empha-
sis is on the design of a baseband signal processing
system for FMCW radar where a three-ramp chirp is
used to increase radar accuracy and shorten the mea-
surement time without complicating the RF front-end.
In [5] the authors have introduced a 60GHz LWA to
do a simultaneous estimation of the direction of arrival
(DOA) and ranging of objects providing 60◦ beam steer-
ing by sweeping from 50GHz to 60GHz. Human track-
ing is a vital research area. There is already a proposed
microstrip LWA for tracking humans as shown in [6].
In [7] the authors have assessed different ways of walk-
ing such as slow or fast walking using the FMCW radar
system. One of the most challenging issues of the multi-
target FMCW radar systems is the existence of ghost tar-
gets. Any radar detection other than the main targets is
considered a ghost target. It could have different causes
and so the solutions are as diverse as the types of ghost
targets themselves. For example, in [8] the ghost tar-
gets are caused by inter-radar interference and to sup-
press such ghost targets, authors use a carrier sensing
method and interference replica to suppress the ghosts.
In our proposed system there is an easy solution which
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will be discussed in section IV. The antenna used in any
radar system is one of the main factors that determine the
overall cost of the system. In this work, we have studied
the application of a comb-line leaky-wave antenna for
radar systems to explore the interesting characteristics of
these antennas. In fact, leaky-wave antennas are modified
waveguiding structures which might have modifications
such as periodic slots or stubs. They allow electromag-
netic waves to leak through them as they travel along the
structure, giving leaky-wave antennas interesting prop-
erties [9]. The mechanism of wave leakage through each
periodic slot is explained in [10]. The Floquet periodicity
theorem [11] was applied to periodic leaky-wave anten-
nas whereby the field of each slot could be expanded as a
multiplication of a periodic function by the general expo-
nential wave function of the form e− jβ ze−αz, in which β

is propagation constant and α is attenuation factor. In a
recent work [12], a periodic LWA has been used in a joint
communication radar. In [13], a circularly polarized peri-
odic LWA has been used for radar imaging.

II. FMCW WAVEFORMS
A typical FMCW radar system is shown in Fig. 2

which includes the following block diagrams of the
transmitter, receiver, mixer, and analog to digital con-
verter (A/D).

In simple words, an FMCW signal is generated at
the transmitter side and sent via the transmitter antenna
toward the receiver. At the receiver’s side, after receiving
the echo signal reflected from a target, a mixer combines
the chirp signal (reference signal) and the reflected sig-
nal. A low pass filter removes the higher frequency har-
monics and keeps the intermediate frequency (IF) signal
which then goes to the analog-to-digital converter and
finally to the signal processing block for detection and
range-Doppler mapping.
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𝐵

𝑇
(𝑡 − 𝑡𝑑) + 𝑓𝐷 ,                                (2) 
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0
ftx (τ)dτ), (1)

in which, ftx (τ) is the linear chirp function of the trans-
mit frequency equal to Bτ/T while chirp could be expo-
nential, quadratic, etc. but in this work, the linear chirp
has been used. fc is the working frequency of radar, B is
the bandwidth, Atx is the signal amplitude and T is pulse
duration. On the other hand, the receiving frequency is
described in equation (2).

frx (t) =
B
T
(t − td)+ fD, (2)

where td is the time delay. A target moving with the
velocity v gives the Doppler shift described by frx as
frx (t)=−2 fc v/c. The received signal is expressed by
equation (3):

frx (t) = Arxcos(2π fc (t − td)+2π

∫ t

0
frx (τ)dτ),

= Arxcos{2π fc (t − td)+
B
T

(
1
2

t2 − tdt)+ tdt),

(3)
where Arx is the amplitude of the received signal that
is influenced by the radar cross section (RCS), the dis-
tance of the target, gains of transmitting and receiving
antennas and the power used for the transmission. As
Fig. 2 illustrates, once the FMCW signal is generated at
the transmitter’s side, a branch of this signal is injected
into the mixer that is at the receiver’s side. In this mixer,
the reference signal and the received signal (echo from
the target) are mixed or in other words, they are multi-
plied together, leading to higher-frequency components
in addition to lower-frequency ones. To suppress the
higher frequency components and get the IF signal (inter-
mediate frequency signal), a low-pass filter is used right
after the mixer. The IF signal is represented by sIF (t). If
a triangular waveform composed of two ramps (a posi-
tive and negative ramp) is used, then two beat frequen-
cies fbu and fbd will emerge after the low pass filter
(LPF) expressed by equations(4) and (5):

fbu (t) =
2R0

C
B
T

+2
fcv
C

, (4)

fbd (t) =
−2R0

C
B
T
+2

fcv
C

, (5)

The reflected signal that returnsfrom a given tar-
get looks like the transmitted signal but in fact, it is the
shifted version of the reference signal both in time and
frequency. Figure 3 illustrates the sent and the received
spectrograms (Tx and Rx chirps correspondingly). A
chirp could also be in form of a sawtooth waveform
as shown in Fig. 4. Based on this figure, we can write
the following equations of the upbeat and downbeat
frequencies:

f+b =
4∆ f R
CTs

− fD, (6)

f−b =
−4∆ f R

CTs
− fD, (7)
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Then solving for the equations (6) and (7) for R and fD,
will result in equations (8) and (9):

R =
cTs

8∆ f
( f+b − f−b )

2
, (8)

fD =−
( f+b + f−b )

2
. (9)
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1. The system design has been implemented using 
MATLAB Simulink. The main design parameters of the 
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III. THE PROPOSED RADAR STRUCTURE
The proposed 77 GHz automotive FMCW radar sys-
tem is shown in Fig. 5. The design parameters of the
RF components of this system, such as system band-
width, antenna gain, noise figure, etc. are summarized in
Table 1. The system design has been implemented using
MATLAB Simulink. The main design parameters of the
radar system are summarized in Table 1 which are cho-
sen from [3].

Fig. 5. The architecture of the multi-target FMCW auto-
motive radar.

Table 1: Design parameters of the radar system
Parameter Explanation Value
Fs Sampling frequency 150 MHz
BW Bandwidth 150 MHz
Tx Gain Transmitter’s gain 36 dB
Rx Gain Receiver’s gain 42 dB
NF Noise figure 4.5

A. FMCW signal block
This block generates FMCW signal of 77 GHz fre-

quency which is a typical frequency for automotive
applications. We could use any type of chirp including
linear, quadratic, etc. The linear chirp itself could be up,
down, or triangular. We have used both triangular and
up-chirp in our proposed radar system.

B. Splitter
A splitter is a three-port and non-directional com-

ponent that has the task of directing the input signal to
two different outputs. A common type of splitter is the
Wilkinson splitter.

C. Power amplifier
This component is used to boost a weak signal into

a strong signal and denoise it.

D. Transmitter/ receiver antenna
In this research, we propose the application of a

leaky-wave antenna as a substitute for antenna array
which is shown in Fig. 6 with the main dimensions sum-
marized in Table 2. As we know, the automotive indus-
try uses antenna array as a transmitting and receiving
system. leaky-wave antennas have interesting properties
that make them quite attractive for radar systems. By
using the frequency scanning property of the leaky-wave
antennas, we could control the antenna beam in different
directions as described by [10]:

sinsin (θm) = β ( f )/k0. (10)
Once the frequency changes, the propagation con-

stant changes and so does the direction of the main
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beam. The antenna proposed for this radar system
is a comb-line leaky-wave antenna with the substrate
Arlon AD 350 with permittivity εr=3.5. This comb-
line leaky-wave antenna provides a simple beamform-
ing structure and right/left-handed beam-scanning. The
antenna structure is composed of 31 stubs to introduce
periodicity and generate Floquet modes [4] and it is
excited through two ports situated at both sides of the
antenna.
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Fig. 6. Comb-line leaky-wave antenna as FMCW radar
antenna.

The design parameters for our proposed comb-line
leaky-wave antenna are summarized in Table 2. The
wavelength λ = 3.89 mm corresponds to the radar fre-
quency of 77 GHz. Microstrip width Wm is set on 1mm
which is in an appropriate range for width trace of
antenna that works in 77 GHz. Antenna length is cho-
sen to be approximately 20λ to be long enough for the
leakage factor to be small. Stub width and length are cor-
respondingly 0.5 and 2mm that are chosen by running
iterative simulations of CST software to achieve optimal
values. The period p is chosen to be smaller than wave-
length to minimize grating lobes.

Table 2: Design parameters of comb-line leaky-wave
antenna
Parameter Symbol Value (mm)
Wavelength λ 3.89
Microstrip width Wm 1
Antenna length L 75
Stub width Wstub 0.5
Stub length Lstub 2
Period p 2
Substrate thickness Hs 0.38

The following figure shows the propagation patterns
of the comb-line leaky-wave antenna that proves the fre-
quency scanning capability of it. By looking at the prop-
agation patterns we can see that the comb-line leaky-
wave antenna has both left and right-handed propaga-
tions and there are beams with decent gains at these
frequencies.

E. Propagation channel
The propagation channel is a free space medium that

is modeled by applying time delay as well as attenuation
of the transmitted FMCW signal because of the path loss

 
                        (a)                                                 (b) 

 

                      (c)                                      (d) 

 

 

Fig. 7. Radiation patterns of the proposed comb-line
leaky-wave antenna at ϕ = 0◦ showing right & left-
handed beam scanning for frequencies a = 75 GHz,
b = 77 GHz, c = 77.5 GHz and d = 79 GHz.

expressed in the following equation:
Lpl = (4πR/λ )2, (11)

where R is the propagation distance and λ the signal
wavelength.

F. Target RCS
Every target could be attributed a radar cross section

(δ ) value at a given frequency. This parameter specifies
how much the backscatter power per steradian is echoed
from the target. In our radar design we considered four
road targets that are a truck, a car, a motorcycle, and a
bike. Table 3 summarizes the RCS values considered for
the targets at 77 GHz.

Table 3: Radar cross sections of targets in at f = 77 GHz
Target Truck Car Motorcycle Bike
RCS 1000 50 25 15

G. Preamplifier
Preamplifier is a device for amplification and noise

suppression of the echo signal. In the corresponding
Simulink block, the attributed noise figure of this block
is NF = 4.5 for the ambient temperature of T = 290◦K
and the gain is 42.
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H. Signal processing
The signal processing block is composed of four

subblocks of a mixer, pulse buffer, range-Doppler
response, and range-speed estimation. The mixer mul-
tiplies the reference signal with the echo signal which
then generates IF signal. The pulse buffer block converts
scalar samples to frame structure. The range-Doppler
block receives the input IF signal and calculates the
range-Doppler map using the FFT transform. The num-
ber of FFT points is 2048 in our platform. For range pro-
cessing FFT windowing as well as Doppler processing
FFT windowing we can use any of the 5 types of win-
dows such as Hamming, Chebyshev, Hanning, Kaiser,
and Taylor. Figure 8 summarizes the signal processing
block and its subblocks.
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use triangular chirp there is a linear equation that could 
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causes some additional echoes and creates a scenario of 
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IV. SIGNAL PROCESSING AND
DETECTION

The proposed radar system was tested using 2 differ-
ent FMCW chirps of sawtooth and triangular. The cor-
responding equations of both cases were discussed in
section II (equations 4 - 9). In each case, the evalua-
tion of the radar system was done using a range-Doppler
map. In our simulations, we assume that the radar sys-
tem is installed on a reference vehicle that is moving
with a speed of 27.77 m/s and an initial range of 0 m.
The range–Doppler map gives us the relative velocity of
a vehicle in reference to the radar as well as the relative
range as equations (12) and (13) express:

∆v = vradar − vvehicle, (12)
∆R = Rradar −Rvehicle. (13)

At the first stage, the triangular FMCW chirp was
used in the radar system and the ghost target issue was
challenging in this case. Since by increasing the num-
ber of actual targets, the number of ghost targets also
increases. Based on our simulations, for example in the
four-target scenario, we observed 12 ghost targets as
shown in Fig. 9. For our proposed radar system when
we use triangular chirp there is a linear equation that
could be used to predict the number of ghost targets (G)
which is G = 3 ∗ N, in which (N) is the number of targets.
There are different methods for suppressing ghost targets
as was briefly pointed out in the introduction section.
But not every method works for every radar system. The
authors think that in the triangular chirp the down-ramp
causes some additional echoes and creates a scenario of
“mirror ghosts”. If we closely observe Fig. 9, we notice

that there are two groups of ghost targets, the ghost tar-
gets that appear right below the actual targets marked
as Group I and the ghost targets that appear on the left-
and right-hand side of the range-Doppler map marked as
Group II. The ghost targets of Group I are exactly the
mirror of actual targets with reference to the range axis
(axis of symmetry) and thus the velocities of Group I’s
ghost targets are the same, but the ranges are the opposite
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It is even more interesting to see the ghost targets
of Group II. We can observe that some actual targets’
echoes project themselves onto the left- and right-hand
side of the range-Doppler map. By looking at the ghost
targets of Group II, we can see that they emerge on the
two far ends of the map and mark very high velocities
such as 400 Km/h which can’t be attributed to any vehi-
cle, at least in the automotive perspective. Thus, they
can be easily neglected. But the ghost targets of Group I
could cause confusion in automotive scenarios since they
are exactly within the same range of values or velocities
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as actual targets are. For our proposed system there is an
easy fix and that is switching to the use of sawtooth chirp
instead of the triangular chirp. Figure 10 illustrates that
by switching to the sawtooth chirp the issue of the ghost
targets is resolved.

As a figure of merit for the range-Doppler graphs
in our radar system, we can compare the power of the
echo signal with the power of the background noise
using the right-hand side color bars in Figs. 9 and 10.
We can observe that basically our target returns have
power of about −20dB or higher which is an easily
detectable value against the background noise which is
about −80dB.

V. PERFORMANCE OF ANTENNA ARRAYS
VERSUS SINGLE LWA

In this paper, several antenna arrays were designed,
and their performances were evaluated compared to
our proposed leaky-wave antenna. The small-signal
S-parameters of each design was extracted as Touchstone
file since as we know, we can get the S-parameters of
any microwave device with n ports, as snp file where
n shows the number of ports. CST Studio Microwave
has the capability to extract the S-parameters in Touch-
stone format. For example, for our case, since we have
only 2 feeding ports, the s2p file was extracted and
directly plugged into the antenna blocks (transmitter and
receiver) of the FMCW radar’s architecture in Simulink.
In the following section we are going to introduce three
antenna systems designed for our proposed FMCW radar
system.

A. Inset feed microstrip patch array
This structure is composed of an array of 77 GHz

antennas as illustrated on Fig. 11. The substrate used was
Arlon AD 350 with permittivity value of εr = 3.5.
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B. Circular patch array with Buttler beamforming
network

Buttler beamforming networks are very common
structures for beam scanning. These networks are com-
prised of branch-line couplers, crossovers, and phase
shifters. Figure 12 shows the different blocks of the But-
tler matrix. Block A is a branch-line coupler which is a
90◦ hybrid coupler, and we have four of the same cou-
plers on the structure. Block B is showing a microwave

Table 4: Design parameters of a single cell of patch array
Parameter Explanation Value (mm)
Ls Substrate length 2.07
Ws Substrate length 2.07
Lp Patch length 1.08
Wp Patch width 1.10
Li Indentation length 0.32
Wi Indentation width 0.12

crossover which simply routes the signals. Block C is
showing a 45◦ phase shifter and we have two phase
shifters on the matrix. Block D is showing the circular
patch antenna array designed for operation at 77GHz.
The ports 1 to 4, on the left side of the Buttler matrix are
the feed ports. At a given time, only one port is excited
and three other ports are terminated using 50 Ω termina-
tors.
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Fig. 12. Circular patch array with Buttler beamforming
network.

Figure sets 13 to 15 summarize the beamforming
behavior of Buttler beamforming network on the circu-
lar patch array as the structure is fed through any of the
ports 1 to 4 on plane ϕ = 0

◦
.

By paying close look to the propagation patterns, we
can observe the left-handed and right-handed beam pat-
terns. The frequency range changes from 76.5 GHz to
77.5 GHz.

At the central frequency of fc = 77 GHz the angu-
lar directions of the main beam by switching between
ports 1 to 4 are correspondingly +149

◦
, +14

◦
,−14

◦
and

−149
◦

Tables 5, 6, and 7 summarize the range-Doppler
data of the three antenna systems in the proposed FMCW
radar system. The first four columns in each table corre-
spondingly show the real velocity vreal , real range (Rreal),
real relative velocity of the target to the radar (∆vreal),
and the real relative range of the target to the radar
(∆Rreal) and these are fixed values in all three tables. The
last two columns show the estimated relative velocity and
the estimated relative range of each target. As was the
case with the inset-fed patch antenna array, we believe
by doing some antenna tuning and optimization in the
designed array, we could possibly improve the gain. In
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Fig.13. Propagation patterns of the circular patch     

array with Buttler beamforming network at 

frequency of f =76.5 GHz. 

  By paying close look to the propagation patterns, 

we can observe the left-handed and right-handed beam 

patterns. The frequency range changes from 76.5 GHz to 

77.5 GHz. 
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Fig.15. Propagation patterns of the circular 

patch array with Buttler beamforming network 

at frequency of f =77.5 GHz. 
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Fig. 13. Propagation patterns of the circular patch array
with Buttler beamforming network at frequency of f
=76.5 GHz.
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Fig.14. Propagation patterns of the circular patch 

array with Buttler beamforming network at 

frequency of f =77 GHz. 
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improve the gain. In this case, the radar returns have the 

power of -30dB to -35dB which are still detectable 

against the background noise with -80dB power. 

 

Table 5: Range-Doppler results of circular patch array 

with Buttler Beamformer 

Target 
Truck Car Motorcycl

e  

Bik

e 

𝑉𝑟𝑒𝑎𝑙 (Κm/h) 129.9 59.9 126 46.8 

𝑅𝑟𝑒𝑎𝑙 (m) 65 65 45 20 

∆𝑣𝑟𝑒𝑎𝑙 

(Κm/h) 

+32.7 −37.

2 
28.8 -50.4 

∆𝑅𝑟𝑒𝑎𝑙 (m) 65 65 45 20 

∆𝑉𝑒𝑠𝑡 (Κm/h) 
+32.1 −38.

5 
+29.8 -57.7 

∆𝑅𝑒𝑠𝑡 (m) 63.0 63 44.5 18.5 

 
Table 6: Range-Doppler results of the Inset-fed patch 

array 

Target 
Truck Car Motorcycl

e  

Bik

e 

𝑉𝑟𝑒𝑎𝑙 (Κm/h) 129.9 59.9 126 46.8 

𝑅𝑟𝑒𝑎𝑙 (m) 65 65 45 20 

Fig.15. Propagation patterns of the circular 

patch array with Buttler beamforming network 

at frequency of f =77.5 GHz. 
 

Port 1 Port 2 

 

Port 3 Port 4 

Port 1 Port 2 

Port 3 Port 4 

Fig. 14. Propagation patterns of the circular patch array
with Buttler beamforming network at frequency of f =77
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Fig. 15. Propagation patterns of the circular patch array
with Buttler beamforming network at frequency of f
=77.5 GHz.

this case, the radar returns have the power of −30dB to
−35dB which are still detectable against the background
noise with −80dB power.

In addition to the Tables 5, 6, and 7, the range-
Doppler data of the three proposed antenna systems have
been shown as graphs on Fig. 16. In this figure the

Table 5: Range-Doppler results of circular patch array
with Buttler Beamformer
Target Truck Car Motorcycle Bike
Vreal (Km/h) 129.9 59.9 126 46.8
Rreal (m) 65 65 45 20
∆vreal (Km/h) +32.7 −37.2 28.8 −50.4
∆Rreal (m) 65 65 45 20
∆V est (Km/h) +32.1 −38.5 +29.8 −57.7
∆Rest (m) 63.0 63 44.5 18.5

Table 6: Range-Doppler results of the Inset-fed patch
array
Target Truck Car Motorcycle Bike
Vreal (Km/h) 129.9 59.9 126 46.8
Rreal (m) 65 65 45 20
∆vreal (Km/h) +32.7 −37.2 28.8 −50.4
∆Rreal (m) 65 65 45 20
∆V est (Km/h) +29.9 −49.2 +29.9 −53.5
∆Rest (m) 59.3 59.3 40.8 22.2
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Table 7: Range-Doppler results of the Comb-line
leaky-wave antenna
Target Truck Car Motorcycle Bike
Vreal (Km/h) 129.9 59.9 126 46.8
Rreal (m) 65 65 45 20
∆vreal (Km/h) +32.7 −37.2 28.8 −50.4
∆Rreal (m) 65 65 45 20
∆V est (Km/h) +32.1 −40.6 +27.8 −55.6
∆Rest (m) 63.0 63.0 44.5 20.7

Fig. 16. Range-Doppler performance of the Buttler
beamformer network, Inset-fed patch array and comb-
line leaky-wave antenna.

horizontal axis is the speed of a target relative to the
radar (δV) and the vertical axis is the position of a tar-
get relative to the radar system (δR). There are four
curves in the figure. The blue curve is the reference
curve, the red, green, and black curves show the range-
Doppler responses of the circular patch array with But-
tler beamforming network, the inset-fed patch array, and
the comb-line leaky-wave antenna correspondingly. The
pink circles show the range-Doppler margin of 3 targets.
We can see that the Buttler beamformer’s performance is
the best but at the cost of more complexity in design. The
comb-line leaky-wave antenna has decent range-Doppler
performance and is showing a better margin than the
inset-fed patch array for target 2. Overall, the comb-line
leaky-wave antenna shows a successful performance in
range-Doppler detection of the proposed FMCW radar
system.

VI. CONCLUSION
In this work, we proposed a comb-line leaky-wave

antenna and compared the performance against the inset-
fed patch antenna array and circular patch array con-
trolled with a Buttler beamforming network. The main
contribution of this work is introducing a novel fre-
quency scanning system for the automotive industry by
using a combline leaky-wave antenna. The proposed

antenna is simple in structure and cheap to manufacture
because most importantly unlike other antenna arrays, it
does not need any phase shifters or, couplers or com-
plex beamforming networks. Based on the results in
section V, the authors believe that the functionality of
the proposed leaky-wave antenna results in acceptable
range and velocity margins for road safety and automo-
tive applications. Observing the range-Doppler map in
Fig. 9 shows that the ghost-target problem could be a crit-
ical issue in FMCW radars, especially if we use triangu-
lar chirp. The negative ramp of the triangular chirp cre-
ates images of the main targets in a symmetrical fashion
and thus artificial and unreal echoes appear on the range-
Doppler map. We discussed and categorized the ghost
targets. Ghost targets of type II can be easily ignored
because their range and velocity values are beyond real
automotive scenarios. But ghost targets of type I, emerge
exactly within the same velocity values of the genuine
target returns and have the negated range values of real
targets, which makes them significant to detect and sup-
press. The fix was using a sawtooth chirp to cancel out
the effect of the negative ramp in the triangular chirp.
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