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Abstract – To improve the reliability of simulation
results, uncertainty analysis methods were developed in
the Electromagnetic Compatibility (EMC) field. Random
variables are used to describe random events. The more
random variables you have, the less efficient the simu-
lation is. Therefore, many high-accuracy methods have
the problem of dimensional disaster, which means the
calculation efficiency decreases exponentially with the
increase of the number of random variables. A random
variable reduction strategy based on sensitivity analysis
method is proposed in this paper, so as to improve the
computational efficiency of the global uncertainty analy-
sis method.

Index Terms – dimensional disaster, electromagnetic
compatibility, random variable, sensitivity analysis
method, uncertainty analysis method.

I. INTRODUCTION
To describe random events and unknown parameters

in a practical engineering environment, the uncertainty
analysis method is becoming popular in the EMC field.
The random variable model is used to describe the actual
uncertainty factors instead of the deterministic values.

Uncertainty analysis methods can be divided into
two categories. In one class, some of the methods need
to change the original solver, such as the Perturba-
tion Method [1], the Stochastic Galerkin Method [2, 3],
and the Stochastic Testing Method [4]. In general, to
describe complex electromagnetic compatibility prob-
lems in practical engineering environment, the finite ele-
ment analysis method is used to construct model parame-
ters, and then commercial simulation software is needed.
The software is not open source, and cannot change the

original internal solver. Therefore, this class of uncer-
tainty analysis method is not competitive in the EMC
field.

Another class of methods does not need to change
solver, represented by the Monte Carlo Method [5, 6],
the Stochastic Reduced Order Models [7], the Moment
Method [8], and the Stochastic Collocation Method
(SCM) [9, 10]. They are suitable for different EMC sim-
ulation situations. The Monte Carlo Method has high
accuracy and low computational efficiency. It is suit-
able for uncertainty analysis with a short simulation
time. For complex problems, it will lose competitive-
ness because of its low computational efficiency. The
advantage of the Stochastic Reduced Order Models and
the Moment Method is high computational efficiency.
However, in most cases, their accuracy is not as good
as other methods. The Stochastic Reduced Order Mod-
els have low accuracy due to the lack of an appropri-
ate convergence criterion. The Moment Method assumes
that the simulation input and simulation output are
linear, which leads to its low accuracy. The advan-
tages of the SCM combine computational efficiency and
accuracy, but it is trapped in the problem of dimen-
sion disaster. This means that the number of colloca-
tion points increases exponentially with the number of
random variables. Many scholars have improved the
SCM to alleviate the dimension disaster problem slightly
[11]. To completely solve this problem, it is still nec-
essary to fundamentally reduce the number of random
variables.

Based on the thoughts of the Moment Method, this
paper proposes a fast sensitivity calculation method,
which directly transfers the random variables with low
sensitivity to the average values. It can be predicted
that the longer single EMC simulation time, the more
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significant the improvement of computing efficiency
will be.

II. SENSITIVITY ANALYSIS BASED ON
THE RICHARDSON EXTRAPOLATION

METHOD
When the EMC simulation model is in the form of

random variables, the output will present uncertainty.
The contribution of each random variable to the uncer-
tainty of simulation output is different. If the contribu-
tion can be expressed quantitatively, the random variable
with a smaller contribution can be replaced by its aver-
age value, so as to achieve the reduction of the random
variables.

The contribution can be described by means of sen-
sitivity analysis, while all uncertainty analysis methods
can realize sensitivity analysis by calculating standard
deviation. It should be noted that the sensitivity analysis
method proposed in this paper is a pre-processing step
of the uncertainty analysis method, so its solving speed
must be far better than that of the uncertainty analysis
method, otherwise, the reduction of random variables
will be meaningless.

In the Moment Method, the sensitivity analysis of
each random variable is used to estimate variance values.
The sensitivity calculation process is shown below:

S(i) =
dyξ

dξi

=
UEMC

(
ξ1, · · · ,ξi +δi, · · · ,ξn

)
δi

−
UEMC

(
ξ1, · · · ,ξi, · · · ,ξn

)
δi

.

(1)

Among them, ξi represents the mean value of ran-
dom variable ξi, and UEMC

(
ξ1, · · · ,ξi, · · · ,ξn

)
repre-

sents the EMC simulation result at a certain point
(ξ1,ξi, · · · ,ξn). δi is a small perturbation, and S(i) is the
sensitivity analysis result corresponding to random vari-
able ξi. Its principle is to transform the differential for-
mula into a difference formula.

The selection of perturbation is based on the uni-
form distribution. Suppose that the uncertainty parameter
is k (ξi) = A+B×ξi, where ξi is the uniform distribution
variable of the interval [-1,1] . In this case, the perturba-

tion is δi =
B
A

. However, not all uncertain parameters are
in the form of uniform distribution, thus it is necessary
to convert them into an equivalent uniform distribution.
It is assumed that the mean value of uncertain parame-
ters is kM , the variance of that is kσ . The equation can be
converted as follow:

{
kM = A

kσ =
1
3

B2.
(2)

Therefore, the perturbation is δi =

√
3kσ

kM
.

Reference [8] mentions that the Moment Method
does not achieve very good accuracy, which is mainly
due to the following two reasons. On one hand, the
Moment Method assumes that the input and output are
in a linear relationship, which leads to calculation error
of sensitivity S(i) in formula (1). On the other hand, this
formula only considers the disturbance quantity when
it is greater than the average value, the sensitivity esti-
mated does not represent the whole situation at this time.
To solve this nonlinear problem, the Richardson extrap-
olation method is proposed to improve the different pro-
cesses in formula (1), as shown below:

ISpos(i) =
dyξ

dξi

= 2×
UEMC

(
ξ1, · · · ,ξi +

δi

2
, · · · ,ξn

)
δi

2

−2×
UEMC

(
ξ1, · · · ,ξi, · · · ,ξn

)
δi

2

−
UEMC

(
ξ1, · · · ,ξi +δi, · · · ,ξn

)
δi

+
UEMC

(
ξ1, · · · ,ξi, · · · ,ξn

)
δi

,

(3)

ISneg(i) =
dyξ

dξi

= 2×
UEMC

(
ξ1, · · · ,ξi −

δi

2
, · · · ,ξn

)
δi

2

−2×
UEMC

(
ξ1, · · · ,ξi, · · · ,ξn

)
δi

2

−
UEMC

(
ξ1, · · · ,ξi −δi, · · · ,ξn

)
δi

+
UEMC

(
ξ1, · · · ,ξi, · · · ,ξn

)
δi

.

(4)

The proposed algorithm considers both sides, that is,
there are positive sensitivity ISpos(i) and negative sen-
sitivity ISneg(i). The mathematical derivation of the
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Richardson extrapolation method is as follows. The com-
plete calculation formula corresponding to formula (1)
is:

dyξ

dξi
=

UEMC

(
ξ1, · · · ,ξi +δi, · · · ,ξn

)
δi

−
UEMC

(
ξ1, · · · ,ξi, · · · ,ξn

)
δi

− δi

2
× y′′

ξ
+o(δi) .

(5)

When using formula (1) to calculate sensitivity, the error

is
δi

2
× y′′

ξ
.

By changing the perturbation in formula (5) into
δi

2
,

formula (6) can be obtained:

dyξ

dξi
=

UEMC

(
ξ1, · · · ,ξi +

δi

2
, · · · ,ξn

)
δi

2

−
UEMC

(
ξ1, · · · ,ξi, · · · ,ξn

)
δi

2

− δi

4
× y′′

ξ
+o(δi) .

(6)

Multiplying formula (6) by 2 and subtracting formula
(5), formula (7) is presented:

dyξ

dξi
= 2×

UEMC

(
ξ1, · · · ,ξi +

δi

2
, · · · ,ξn

)
δi

2

−2×
UEMC

(
ξ1, · · · ,ξi, · · · ,ξn

)
δi

2

−
UEMC

(
ξ1, · · · ,ξi +δi, · · · ,ξn

)
δi

+
UEMC

(
ξ1, · · · ,ξi, · · · ,ξn

)
δi

+o(δi) .

(7)

By means of approximation, formula (3) results. Simi-
larly, negative sensitivity shown in formula (4) can also
be derived. Obviously, the approximate error is o(δi),

which is better than
δi

2
× y′′

ξ
in formula (5).

A comprehensive index of both sides can be
obtained by adding absolute values directly.

IS(i) =
∣∣ISpos(i)

∣∣+ ∣∣ISneg(i)
∣∣ . (8)

The contribution of each random variable is represented
by the percentage as follow:

P(i) =
IS(i)

N
∑

i=1
IS(i)

. (9)

III. ALGORITHM VALIDATION
This section presents a benchmark calculating

example in [10] to verify the accuracy of random variable
reduction algorithm. It is a crosstalk simulation example
with 6 uncertain parameters shown in Fig. 1. There is
crosstalk source voltage Um(ξ ), the height of two paral-
lel cables h1(ξ ) and h2(ξ ), length of parallel cables l(ξ ),
resistance value at load side R1(ξ ) and R2(ξ ).

Um(ξ ) = 1.05+0.05×ξ1 V, (10)
h1(ξ ) = 0.04× (1.1+0.1×ξ2)m, (11)

h2(ξ ) = 0.03× (1.15+0.15×ξ3)m, (12)
l(ξ ) = 1.1+0.1×ξ4 m, (13)

R1(ξ ) = 50× (1.05+0.05×ξ5)Ω, (14)
R2(ξ ) = 50× (1.04+0.04×ξ6)Ω. (15)

Among them,ξ1, ξ2, ξ3, ξ4, ξ5 and ξ6 are all uniform
distribution random variables in the interval [-1,1]. The
horizontal distance between the two cables is 0.05m, and
the frequency of crosstalk results is in 50MHz. The other
detailed information of the model is completely consis-
tent with reference [10].

Table 1 shows the sensitivity calculation results of
the random variables. It can be seen that the sum weight
of the random variables ξ5 and ξ6 is only 1.7%, thus the
average values can be adopted to replace them, as shown
below.

R1(ξ5 = 0) = 50×1.05 = 52.5Ω, (16)
R2(ξ6 = 0) = 50×1.04 = 52Ω. (17)

In this case, there are only four random variables left in
the simplified EMC model.

Fig. 1. Benchmark calculating example in [10].

Table 1: Sensitivity analysis results of random variables
Variable Sensitivity

ξ1 22%
ξ2 16.9%
ξ3 24.3%
ξ4 35.1%
ξ5 1%
ξ6 0.7%
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Taking the SCM as an example, the uncertainty anal-
ysis results of voltage crosstalk in load side are calcu-
lated in both original model and simplified model respec-
tively. According to the SCM, uniform distribution ran-
dom variable in the interval [-1,1] is corresponding to the
Legende orthogonal polynomial. If the probability den-
sity function is arbitrary, the chaotic polynomial form
can be obtained by the three-term polynomial recursive
formula in the Stieltjes Procedure. For details, please
refer to literature [12].

Zero points of the 7th-order Legendre orthogonal
polynomial are considered as the collocation points, they
are shown as follows.

Pξi = {0.9491,0.7415,0.4058,0,

−0.4058,−0.7415,−0.9491}.
(18)

In multiple random variables situation, the selection of
collocation points takes the form of tensor product:

Pξi ⊗Pξi ⊗Pξi ⊗Pξi ⊗Pξi ⊗Pξi . (19)

Multivariate Lagrange interpolation at the collocation
points is implemented, the result in the form of random
variables polynomial will be obtained.Through statisti-
cal sampling, the final uncertainty analysis results can be
got, such as expectation, standard deviation and proba-
bility density curve.

Figures 2 and 3 show the Probability Distribution
Function (PDF) results and the Cumulative Distribu-
tion Function (CDF) results of crosstalk voltage values
respectively. The results of 4-variables model and orig-
inal model variables model are given at the same time.
It is clearly seen that two curves are almost exactly
the same in both Figs. 2 and 3, and it means that
the reduction has no impact on accuracy. For quanti-
tative comparison, the mean value calculated by orig-
inal model is 0.01506 V, and the standard deviation is
9.8058×10−4 V. For 4-variables model, the mean value
is 0.01506 V and the standard deviation is 9.7870 ×
10−4 V.

The Mean Equivalent Area Method (MEAM) is
a validity evaluation method of uncertainty analysis
results. The MEAM can evaluate the accuracy of simula-
tion results by quantifying the similarity between simu-
lation results and standard data. When the MEAM value
of the simulation result is better than 0.95, its accu-
racy is considered “Excellent” [13]. For random variable
reduction problem in this paper, the uncertainty analy-
sis results of the original model are taken as the standard
data, and the uncertainty analysis results of 4-variables
model must be at the level of “Excellent”, so that the
reduction is meaningful. In Figs. 2 and 3, the MEAM
value of 4-variables model is 0.9981, which proves that
the effect of reduction is good.

According to the generalized polynomial chaos the-
ory [4], the original model requires the number of deter-

Fig. 2. PDF results of 4-variables model.

Fig. 3. CDF results of 4-variables model.

ministic simulations is 76 = 117649. As a comparison,
the number of pre-processing simulations in 4-variables
model is 4×6+1 = 25, that of deterministic simulations
is 74 = 2401 Thus, in 4-variables model, a total of 2426
deterministic simulations are required. It means that the
calculation amount of 4-variables model is only 2% of
that of the original model. It is worth noting that the
longer the single simulation time, the better the improve-
ment of computational efficiency.

In summary, by comparing the required single sim-
ulation times, it is verified that the proposed reduc-
tion method in this paper improves the efficiency of the
uncertainty analysis method. The validity of the reduc-
tion method is verified by comparing the expected value,
standard deviation and MEAM value. Thus, it is proved
that the reduction method can alleviate the dimension
disaster of the SCM to some extent.
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IV. DISCUSSION OF THE WEIGHT
THRESHOLD

In Table 1, the percentage of ξ5 and ξ6 is small,
so they can obviously be reduced. The effectiveness of
reduction has been proved in Section III. If another ran-
dom variable is reduced too, the computational efficiency
will inevitably increase, but with the risk of accuracy
decline. In this section, the weight threshold of percent-
age sum of retained random variables is quantitatively
determined. As shown in Table 1, the percentage of ξ1
and ξ2 is the next smallest, two new simplified models
are proposed. One is with the random variables ξ1, ξ3
and ξ4. The other is with ξ2, ξ3 and ξ4.

Figures 4 and 5 show PDF results and CDF results
under random variables ξ1, ξ3 and ξ4. The mean value of
the result is 0.01507 V, and the standard deviation of that
is 9.2107×10−4 V. The MEAM value is 0.9393, which
is less than 0.95, but still in the acceptable range.

Figures 6 and 7 show PDF results and CDF results
in random variables ξ2, ξ3 and ξ4. The mean value of
this model is 0.01507 V, and the standard deviation is

Fig. 4. PDF results of the model with ξ1, ξ3 and ξ4.

Fig. 5. CDF results of the model with ξ1, ξ3 and ξ4.

Fig. 6. PDF results of the model with ξ2, ξ3 and ξ4.

Fig. 7. CDF results of the model with ξ2, ξ3 and ξ4.

8.8981×10−4 V. The MEAM value is 0.9074, which has
a gap of 0.95. In this case, the error of reduction is iden-
tified as large, so it is not acceptable.

After quantitative comparison of these two simpli-
fied models, the former one is barely acceptable, while
the latter one is unacceptable. The weight threshold of
them is 22% + 24.3% + 35.1% = 81.4% and 16.9% +
24.3% + 35.1% = 76.3%. It can be seen that when the
weight threshold is below 85%, the uncertainty analy-
sis results of the reduction model are not satisfactory. To
ensure, it is better to set the weight threshold within the
range of 90% to 95% in practical application, so as to
ensure that the MEAM value can be maintained above
0.95, in an “Excellent” level.

V. CONCLUSION
Based on the Richardson extrapolation method, a

sensitivity analysis method to evaluate the contribu-
tion of random variables is proposed to improve the
EMC uncertainty simulation computational efficiency.
The effectiveness of the proposed reduction method is
verified by using a benchmark simulation example. On
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the premise of maintaining the original accuracy, the pro-
posed method greatly improves the computational effi-
ciency of the SCM, and the time required is only 2% of
the previous time. It is proved that the reduction strategy
can alleviate the dimension disaster problem of the SCM
to a certain extent. Finally, through quantitative calcu-
lation by using the MEAM, it is determined that from
90% to 95% is a reasonable selection range of weight
threshold.
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