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Abstract─ Linear systems generated by finite 
element method (FEM) always have a symmetrical 
sparse system matrix, which requires a large 
amount of computation and memory effort to 
access its zero elements. To address this problem, 
a fully-sparse storing scheme is proposed to store 
only nonzero symmetrical elements of the sparse 
system matrix. Meanwhile, for some ill-
conditioned system matrixes, conventional 
iterative solution methods may incur such 
problems as slow convergence and even failure of 
convergence. To solve this problem, we further 
develop a fast convergent preconditioned bi-
conjugate gradient method (PBCG) based on a real 
incomplete Cholesky factorization preconditioner. 
Numerical experiments show that the proposed 
method accelerates the convergence and is 
applicable for the large-scale complex linear 
systems. 
  
Index Terms─ Bi-conjugate gradient method, 
complex sparse linear system, incomplete 
Cholesky factorization preconditioner. 
 

SYMBOLS 
nn×C   nn×  complex matrix 

nC   n  complex vector 
nn×R   nn×  real matrix 

nR   n  real vector 
∗A   conjugate matrix 

1−A   inverse matrix 
∗x   conjugate vector 
∗α   conjugate complex number 

ε   error 
⋅   Euclidean norm 

),( ⋅⋅   Euclidean product 

iters  number of iterations 
time  time of iterations, unit is second 
 

I. INTRODUCTION 
Many electromagnetic numerical evaluations 

are involved in solving large-scale complex linear 
systems. Direct methods generally require heavy 
storage and computation load. As alternative 
approaches, high-performance iterative methods 
have been attracting more and more attentions in 
solving the complex linear system in recent years. 
However, if the complex linear system is of very 
high dimension or its system matrix is ill-
conditioned, iterative methods may incur such 
problems as slow convergence and even failure of 
convergence. Fortunately, these problems can be 
addressed by appropriate preconditioning methods 
[1-3]. One most frequently used preconditioned 
method is the incomplete Cholesky factorization 
algorithm. In this paper, a real incomplete 
Cholesky factorization algorithm is extended into 
the complex field, and a complex incomplete 
preconditioned bi-conjugate gradient method is 
proposed to solve the complex large scale linear 
systems.  

The efficiency of solving large-scale sparse 
complex linear systems, also, depends on storing 
methods for system matrixes. In order to save 
storage space and access the elements 
conveniently, we introduce a fully-sparse storing 
scheme that stores only nonzero symmetrical 
elements of system matrix by a chain pattern. 
Compared with current popular storing methods, 
the proposed method has the least storing scale 
and is obviously advantageous for large-scale 
sparse matrixes especially. 

The contents of this paper include the fully-
sparse storing scheme, complex incomplete 
preconditioned bi-conjugate gradient method, 
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algorithmic implementation, and numerical 
experiments, which demonstrate both applicability 
and effectiveness of the proposed method. 
 
II. FULLY-SPARSE STORING SCHEME 

An efficient fully-sparse storing scheme is 
presented for storing the system matrix by 
exploiting its properties of sparsity and symmetry. 
In this fully-sparse database, only nonzero 
symmetrical elements of system matrix are stored 
by using a chain pattern. Both single chain and 
double chain are applicable in the dynamic 
database. In this section, the sparse storage scheme 
based on a single chain pattern is presented. 
Extension to double chain is straightforward. 

For a symmetric sparse matrix nn×∈CA , four 
one-dimension arrays are necessary to store and 
manage its nonzero elements. These arrays are 
defined as follows: 

(1) Real array named DATA stores nonzero 
elements of lower triangle part of matrix A , row 
by row.  

(2) Integer array named JCOL stores column 
numbers of the nonzero elements in the array 
DATA.  

(3) Integer array named LINK stores index 
numbers of the nonzero elements. For instance, in 
some row the index number of the ith nonzero 
element is the address of next nonzero element in 
the array DATA. If the ith nonzero element is the 
last element stored in this row, then LINK(i)=0. 

(4) Integer array named HEAD stores address 
of first nonzero element of every row in the array 
DATA. 

For example, if a symmetric sparse 
matrix 55C ×∈A  is expressed in equation (1), the 
four storing arrays in the full-sparse database are 
shown in Table 1. 
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Table 1: Full-sparse storing arrays 
NE 1 2 3 4 5 6 7 8 

DATA 11a  21a  22a  33a  41a  44a  52a  55a  
JCOL 1 1 2 3 1 4 2 5 
LINK 0 3 0 0 6 0 8 0 
HEAD 1 2 4 5 7    

 
In this full-sparse database, all nonzero 

elements can be accessed conveniently. Basic 
dynamic operations are realized easily by simple 
searching, inserting, and deleting arithmetic. It is 
worth mentioning that the advantage of the 
proposed fully-sparse storing database is even 
significant for large-scale sparse matrix. 

 
III. BI-CONJUGATE GRADIENT 

METHOD 
Conventional iterative methods such as the 

conjugate gradient (CG) method [4] and the 
preconditioned conjugate gradient (PCG) method 
[5, 6] are based on real linear systems. When it 
comes to complex linear systems, new iterative 
methods are still open to be developed. In this 
section, a new method for solving symmetrical 
complex linear systems is proposed by regaining 
the basic concept of the bi-conjugate gradient 
method (BCG) for solving nonsymmetrical 
complex linear systems. 

For symmetrical complex linear 
systems bAx = , the modified BCG consists of the 
following steps: 
Step 1: Set 0=i , input matrix nn×∈ CA , 
vector nC∈b , initial vector n

i C∈x and error 
criterion ε , compute ii Axbr −= , ∗= ii rr̂ , ii rp = , 
and ii rp ˆˆ = ; 
Step 2: Increase index i  by 1 and calculate: 

),ˆ(),ˆ( iiiii Apprr=α , iiii pxx α+=+1 ,  

iiii Aprr α−=+1 , iiii pArr ˆˆˆ 1
∗∗

+ −= α ; 
),ˆ(),ˆ( 11 iiiii rrrr ++=β , iiii prp β+= ++ 11 ,  

iiii prp ˆˆˆ 11
∗

++ += β ; 
Step 3: Compare br 1+i  withε , if ε<+ br 1i , 
jump out from the loop and output 1+ix , otherwise, 
go to step 2. 

Compared with the traditional CG method in 
the real number field, the modified BCG method 
has two advantages: 
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(1) It calculates only one matrix-vector 
product, not two like the CG method in each 
iteration. 

(2) It converges about 5-6 times faster than the 
CG method. 

 
IV. PRECONDITIONED BI-

CONJUGATE GRADIENT METHOD 
Preconditioned iterative methods [7] obtain 

the ability of solving linear systems accurately 
within a few iterations. For large-scale linear 
systems with symmetric system matrices, an 
efficient solving scheme is the preconditioned 
conjugate gradient (PCG) method. Traditional 
PCG methods are usually available for real linear 
systems, not for linear complex systems in FEM 
solution of electromagnetic scattering problems. 
Therefore, valid iterative methods for complex 
linear systems are needed. Based on a real 
preconditioned conjugate gradient algorithm, we 
design a complex preconditioned bi-conjugate 
gradient algorithm for solving complex linear 
systems. The details are as follows: 
Step 1: Set 0=k , input complex matrix nn×∈ CA , 
preconditioned matrix nn×∈ CM , vector nC∈b , 
initial vector n

k C∈x  and error criterion ε , 
compute 

kk Axbr −= , kk rMz 1−= ,  

kk zp =+1 , ∗= kk rr̂ ,  
∗

++ = 11ˆ kk pp , ),ˆ( kkk zr=ρ ; 
Step 2: Increase k  by 1 and calculate:  

kApw = , ),ˆ(1 wpkkk −= ρα ,  

kkkk pxx α+= −1 , wrr kkk α−= −1 ,  

kkkk pArr ˆˆ 1
∗∗∗

− −= α , kk rMz 1−= ,  
),ˆ( kkk zr=ρ , 1−= kkk ρρβ ,  

kkkk pzp β+=+1 , kkkk pzp ˆˆ 1
∗∗

+ += β ;  
Step 3: Compare kρ  with ερ0 , if ερρ 0>k , 
jump out from the loop and output kx , otherwise 
go to Step 2.  

In iterations, the orthogonal vectors and 
Euclidean products are calculated with the 
preconditioned matrix M instead of matrix A 
because the preconditioned matrix M is well-
conditioned and easy to be inversed. 

 

V. A COMPLEX INCOMPLETE 
CHOLESKY FACTORIZATION 

PRECONDITIONER 
The complex system matrix from FEM is 

always symmetric and sparse, so is the 
preconditioned matrix. In order that the 
preconditioned matrix M is easily inversed in 
simple storing structure, the sparse structure 
between matrix A and preconditioning 
matrix M should be the same or approximately the 
same. In some preconditioned methods [8-10], the 
sparse structure of preconditioning matrix M is 
designed by abandoning all possible non-diagonal 
filling elements (zero-filling mode) during the 
incomplete factorization. Considering that nonzero 
elements of preconditioning matrix M and 
matrix A can be stored in the same sparse database, 
the zero-filling Cholesky factorization method is 
used widely as an efficient preconditioner. 

If a matrix nn×∈ CA is symmetric, its 
incomplete Cholesky factorization formula is 
written as 

RLLA += T ,                                   (2) 
where the matrix L is a lower triangle matrix and 
matrix R is a residual matrix [11]. The 
matrix TLLM = is defined as a preconditioned 
matrix. During the incomplete Cholesky 
factorization, the filling elements of residual 
matrix R can be designed in advance, so it is easy 
to ensure the same sparse structure of matrix L as 
matrix A . As a well-condition approximate of 
matrix A , matrix M is the main driving factor for 
the rapid convergence of preconditioned iterative 
method. 

Based on a real incomplete Cholesky 
factorization algorithm in [12], a complex 
incomplete Cholesky preconditioner is proposed 
by the zero-filling mode. During the complex 
incomplete Cholesky factorization, some diagonal 
elements are modified to possess the diagonal 
predomination of preconditioned matrix. The 
algorithm detail is expressed as follows. 

Input system matrix nn
nnija ×

× ∈= C)(A  and 

output preconditioned matrix TLLM = (lower 
triangle matrix nn

nnijl ×
× ∈= C)(L ). 

1. 1111 al =  
2.  For 2=i  to n  do 
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3.  If 01 ≠ia  then 1111 lal ii =  
4.  End do 
5.  For 2=k  to n  do 

6.  If ∑
−

=

≥
1

1

2
k

t
ktkk ga then ∑

−

=

−=
1

1

2
k

t
ktkkkk lal ,  

else kkkk al = (modifying diagonal elements) 
7.  For 1+= ki  to n  do 

8.  If 0≠ika  then )(1 1

1
∑

−

=

∗
∗ −=

k

t
ktitik

kk
ik lla

l
l  

9.  End do 
10. End do 
 
VI. NUMERICAL EXPERIMENTS 
In this section, in order to verify the accuracy 

and efficiency of the proposed complex 
preconditioned bi-conjugate gradient algorithm, 
we implement the algorithm in eight classical 
experiments. 

(1) 2-D scattering model of radar cover, 6-
node curve triangle vector element, 6 unknowns in 
every element, 6532 unknowns in total.  

(2) 2-D scattering model of aerofoil, 8-node 
curve quadrangle vector element, 8 unknowns in 
every element, 10442 unknowns in total. 

(3) 3-D scattering model of nose, 10-node 
curve tetrahedron vector element, 20 unknowns in 
every element, 45228 unknowns in total. 

(4) 3-D scattering model of rudder, 20-node 
curve hexahedron vector element, 54 unknowns in 
every element, 129812 unknowns in total. 

(5) 3-D scattering model of elevator, 20-node 
curve hexahedron vector element, 54 unknowns in 
every element, 103236 unknowns in total. 

(6) 3-D scattering model of leading edge, 8-
node curve quadrangle shell vector element, 28 
unknowns in every element, 51682 unknowns in 
total. 

(7) 3-D scattering model of trailing edge, 8-
node curve quadrangle shell vector element, 28 
unknowns in every element, 46844 unknowns in 
total. 

(8) 3-D penetrating model of radome, 20-node 
curve hexahedron vector element, 48 unknowns in 
every element, 87762 unknowns in total. 

In Table 2, we show storing scales of system 
matrixes in the above numerical experiments by 
the fully-sparse storing scheme. The results 
suggest that the sparse proportion decreases 

gradually with increasing the scale of system 
matrix. Therefore, the fully-sparse storing scheme 
profits the large-scale sparse matrix. 

 
Table 2: Storage scale comparison 

Ex Unknowns 
 

Nonzero elements 
stored 

Sparse proportion 
(‰) 

1 6532 121430 2.846 
2 10442 210874 1.934 
3 45228 2544691 1.244 
4 129812 11762106 0.698 
5 103236 7684181 0.721 
6 51682 2978082 1.115 
7 46844 2701257 1.231 
8 87762 6870334 0.892 

Note: Sparse proportion is a ratio of nonzero 
elements stored in all elements. 
 

In Table 3, we compare the computation 
efficiency of complex preconditioned bi-conjugate 
gradient (PBCG) method with other iterative 
methods. All complex linear systems are obtained 
from the above experiments. The results show that 
the proposed complex PBCG method converges 
with much fewer iterations and less time than 
other methods. 
 
Table 3: Results of different methods ( 810−=ε ) 
Part I 

Ex CG ILU ICCG 
 iters time Iters Time iters time 
1 1711 27.63 1072 22.06 756 18.23 
2 2048 39.45 1557 33.65 1369 30.28 
3 7485 153.2 4555 119.3 3728 89.67 
4 18772 526.3 11018 371.9 7952 250.4 
5 15772 492.5 10774 327.8 6891 213.6 
6 8764 177.1 5991 124.3 4012 101.3 
7 8027 165.4 4799 121.1 3845 98.25 
8 11344 346.8 8912 244.5 6679 194.5 

 
Part II 

Ex BCG PBCG 

 iters time iters time 
1 576 6.41 115 3.07 
2 623 9.62 137 4.79 
3 2564 28.77 208 6.25 
4 6889 106.4 416 17.04 
5 5742 98.82 389 15.88 
6 2232 35.79 307 11.72 
7 2116 33.14 295 10.98 
8 4288 65.55 346 12.07 
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All results are computed with P4 3.0G CPU 
512M-memory computer. All programs are 
developed in FORTRAN90 language. 

 
VII. CONCLUSION 

For the purposes of efficient data access and 
economic data storage in solving sparse linear 
systems, we proposed a fully-sparse storing 
scheme that stores only nonzero symmetrical 
elements. To accelerate the convergence of bi-
conjugate gradient method, we developed the 
complex incomplete Cholesky factorization 
preconditioner that can improve the ill-condition 
system matrix. In view of its high efficiency on the 
large-scale complex linear systems, the complex 
PBCG method with fully-sparse storing scheme 
shows great promise as an ideal solver for large-
scale electromagnetic computation. 

 
ACKNOWLEDGMENT 

This work was supported by Postdoctoral 
Science Foundation of China (W016312) and 
Science and Technology Innovation Foundation of 
Northwestern Polytechnical University 
(W016143). 

 
REFERENCES 

[1] D. S. Kershaw, “The incomplete Cholesky 
conjugate gradient method for the iterative solution 
of systems of linear equation group,” J. of Comp. 
Phys., vol. 26, pp. 43-65, 1978. 

[2] I. S. Duff and G.A. Meurant, “The effect of 
ordering on preconditioned conjugate gradients,” 
BIT., vol. 29, no. 4, pp. 635-657, 1989. 

[3] J. W. Watts III., “A conjugate gradient truncated 
direct method for the iterative solution of the 
reservoir simulation pressure equation,” Society of 
Petroleum Engineer Journal, vol. 21, no. 3, pp. 
345-353, 1981. 

[4] Jin J M., The Finite Element Method in 
Electromagnetics, 2nd ed. Wiley, New York, 2002. 

[5] I. Arany, “Solving systems of elastic bar structures 
by preconditioned conjugate gradient method,” 
Computers Math. Applic., vol. 38, no. 9, pp. 125-
134, 1999. 

[6] P. Saint-Georges, G. Warzee, R. Beauwens and Y. 
Notay, “High-performance PCG solvers for FEM 
structural analysis,” Int. J. for Numer. Meth. In 
Engng., vol. 39, pp. 1313-1340, 1996. 

[7] R. Beauwens and R. Wilmet, “Conditioning 
analysis of positive definite matrices by 
approximate factorizations,” J. Camp. and Appl. 
Math., vol. 26, no. 3, pp. 257-269, 1989. 

[8] R. Beauwens, “Modified incomplete factorization 
strategies,” Proceedings of a conference on 
Preconditioned conjugate gradient methods, vol. 1, 
pp. 1-16. 1990. 

[9] Y. Notay, “DRIC: A dynamic version of RIC 
method. Numer,” Lin. Alg. with. Appl., vol. 1, no. 6, 
pp. 511-532, 1994. 

[10] R. Beaumens, “Iterative solution methods,” 
Applied numerical mathemetics, vol. 51, no. 4, pp. 
437-450, 2004. 

[11] J. P. Wu and Z. H. Wang, “Problems and 
improvements to the incomplete Cholesky 
factorization with thresholds,” Journal on 
Numerical Methods and Computer Applications, 
vol. 24, no. 3, pp. 207-214, 2003. 

[12] Y. J. Zhang and Q. Sun, “Improved ICCG method 
for large scale sparse linear equation group,” 
Journal of Computational Physics, vol. 24, no. 4, 
pp. 581-584, 2007. 

 
 

Y. J. Zhang received his degree 
in electromagnetics engineering 
and the Ph.D. degree from 
Northwestern Polytechnical 
University, Xi’an, China, in 2005 
and 2009. Since 2006, he has 
been a senior lecturer at 
Aeronautics School of 

Northwestern Polytechnical University, China. He 
has coauthored more than 20 papers appearing in 
international journals and conferences. His current 
research interests include electromagnetic 
scattering computation and fast finite element 
methods.   
 

  

754 ACES JOURNAL, VOL. 25, NO. 9, SEPTEMBER 2010




