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Abstract – The purpose of this article is to present
a wider frame to treat the quasi-static limit of
Maxwell’s equations. We discuss the fact that
there exists not one but indeed two dual Galilean
limits, the electric and the magnetic one. We start
by a re-examination of the gauge conditions and
their compatibility with Lorentz and Galilean co-
variance. By means of a dimensional analysis on
fields and potentials we first emphasize the cor-
rect scaling yielding the equations in the two lim-
its. With this particular point of view, the gauge
conditions of classical electromagnetism are con-
tinuity equations whose range of validity depend
on the relativistic or Galilean nature of the under-
lying phenomenon and have little to do with math-
ematical closure assumptions taken without phys-
ical motivations. We then present the analysis of
the quasi-static models in terms of characteristic
times and visualize their domains of validity in a
suitable diagram. We conclude by few words on
the Galilean electrodynamics for moving media,
underlying the transformation laws for fields and
potentials which are valid in the different limits.

Index Terms – Dimensional analysis, gauge con-
ditions, quasi-static approximation of Maxwell’s
eqs, transformation laws in moving frames.

I. INTRODUCTION
A detailed electromagnetic analysis of elec-

trotechnical devices often relies on theoretical and
numerical tools applied to approximated low fre-
quency models of Maxwell’s equations. These
quasi-static models are obtained from the full set
of Maxwell’s equations by neglecting particular
couplings of electric and magnetic quantities, de-
pending on the system dimensions, time constants,
values of the coefficients appearing in the physical
laws, etc. The electroquasistatic (EQS) approxi-

mation usually fits when high-voltage technology
and microelectronics are involved, as the capaci-
tive and resistive effects prevail over the inductive
ones. The magnetoquasistatic (MQS) approxima-
tion must be adopted when inductive effects have
to be taken into account, as it occurs in transform-
ers or electrical machine design. These models are
known as Galilean limits (GL) of classical electro-
magnetism [1, 2, 3].

In this publication, we present a wider frame to
state the validity of the quasi-static model versus
the particular electromagnetic phenomenon under
exam. By relying on a dimensional analysis first
and on the characteristic times secondly, we start
by reasoning in terms of field equations. We then
extend the analysis to scalar and vector poten-
tials and to the gauge conditions normally inferred
to ensure potential’s uniqueness. We conclude
by few words on the Galilean electrodynamics of
moving media, and remark that the transformation
laws of fields and potentials from a moving refer-
ence to a fixed one depend on the Galilean limit
characterizing the considered problem.

Dimensional analysis is a tool historically well
established in the field of fluid mechanics and
other fields of physics [4] that allows to simplify
a problem by reducing the number of system pa-
rameters (Newton in 1686 and Maxwell in 1865
played a major role in establishing modern use
of dimensional analysis by distinguishing mass,
length, and time as fundamental units, while refer-
ring to other units as derived). Dimensional anal-
ysis is based on the fact that a physical law must
be independent of the units used to measure the
physical variables. As direct applications, it can
be used to check equations (they must have the
same dimensions in the left and in the right hand
sides) as well as the consistency of derived mod-
els, as in the present paper. Moreover, it can be
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used to reason on complex physical situations by
analyzing reduced models (a model of a few cen-
timeters can give insight on the dynamics of jet
airplane, for example). The main difficulty with
dimensional analysis is the selection of the funda-
mental parameters for a given problem. In Sec-
tions II and III, we apply dimensional analysis to
derive the Galilean quasi-static models and in Sec-
tion IV, we explain how the scalings characterizing
these models can be deduced on the basis of fun-
damental physical parameters by applying the fa-
mous Pi theorem of Vaschy-Buckingham [5].

II. GALILEAN LIMITS OF
MAXWELL’S EQUATIONS

An electromagnetic phenomenon happens in
a spatial arena of extension � in a duration τ .
The arena is a continuous medium with constitu-
tive properties ε, μ, and σ, which are supposed
to be constant for simplicity (otherwise they are
time and space dependent tensors). Applying
the Vaschy-Buckingham theorem of dimensional
analysis, we can construct dimensionless parame-
ters which would characterize the electromagnetic
response of the continuous medium. As we will
deal with Galilean approximations, we introduce
the typical velocity v of the system with modulus
|v| = �/τ and we compare it with the light celer-
ity in the continuous medium cm = 1/

√
εμ. The

Galilean limit (quasi-static approximation) corre-
sponds to |v| � cm. This assumption is not suffi-
cient to choose between the MQS or the EQS ap-
proximations. Let us set E = eE and B = bB,
where e, b are reference quantities and E , B are
non-dimensional quantities of order 1. We just re-
call that in dimensional analysis the spatial (resp.
time) differentiation ∂xE (resp. ∂tE) is equivalent
to e

�
(resp. e

τ
). Moreover, we adopt the notation

a ∼ b to say that the quantities a and b have the
same magnitude order, whereas a � b when a and
b are approximatively equal.

In the empty space, Faraday’s law and the ex-
pression of |v| yield

∇× E = −∂tB,
e

�
∼ b

τ
, e ∼ |v| b. (1)

The generalized Ampère’s law and the expression
of cm, which equals the light speed c = 1/

√
ε0μ0,

result in

∇×H = −∂tD,
b

μ0�
∼ ε0e

τ
, b ∼ |v|

c2
e. (2)

Thus, two scalings appear, the first e ∼ |v| b and
the second b ∼ |v|

c2
e. In the relativistic regime,

i.e. |v| ∼ c, the two scalings are the same. In
the Galilean regime, i.e. |v| � c, the two scal-
ings are different and if one replaces the expres-
sion of b given in (2) into the expression of e given
in (1), we gets |v| ∼ c which is in contradiction
with the Galilean assumption |v| � c. This means
that in the Galilean regime, the two scalings are
not simultaneously valid, thus the Faraday’s and
generalized Ampère’s laws cannot be coupled. To
choose the scaling, we have to look at the sources
(charges or currents) of the electromagnetic phe-
nomenon under consideration. Let us suppose to
be once again in the empty space. The Gauss’s
theorem yields

∇ · D = ρ,
ε0e

�
∼ ρ, (3)

and Ampère’s theorem results in

∇× H = J,
b

μ0�
∼ J. (4)

Then, “dividing” (4) by (3), we get

b
μ0�

c ε0e
�

∼ J

cρ
,

J

cρ
∼ b

c ε0μ0e
,

J

cρ
∼ c b

e
. (5)

Therefore, if J � ρ c, that is when the dielectric
effect of charges is negligible, we obtain e � c b
and the MQS approximation is the correct one. On
the contrary, if J � ρ c, that is when the conduct-
ing effect is negligible, we get e � c b and the
EQS approximation has to be adopted. In fact, the
conditions |v| � c and e � c b are compatible
with the MQS scaling e ∼ |v| b (with the EQS
scaling we would obtain c b � c b that is a non-
sense). On the contrary, the conditions |v| � c
and e � c b are compatible with the EQS scaling
c b ∼ |v|

c
e (with the MQS scaling we would ob-

tain |v| b � c b, thus |v| � c against the Galilean
regime assumption |v| � c). From the above
considerations, slowly time varying fields can be
described by either the Galilean electric limit of
Maxwell’s equations given by

∇× E � 0, ∇× H = J + ∂tD,
∇ · D = ρ, ∂tρ + ∇ · J = 0,

(6)

or the Galilean magnetic limit given by

∇× E = −∂tB, ∇× H � J,
∇ · B = 0, ∇ · J = 0,

(7)
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or the Galilean stationary limit of Maxwell’s equa-
tions, also known as quasi-stationary conduction
(QSC) approximation, where no time derivative
appears at very low frequencies

∇× E � 0, ∇× H � J,
∇ · D = ρ, ∇ · B = 0.

(8)

All models have to be completed with classical
constitutive relations and suitable boundary and
initial conditions. The internal consistency of
models (6) and (7) by using the Jefimenko form
[7] of the solutions to the wave equation for fields
works out neatly. It can be easily shown that the
two scalings (1) and (2) obtained here by dimen-
sional analysis are in agreement with those ex-
pressed in terms of fields and time scalings given
in [6]. Note however that the existence of two
Galilean limits is not so obvious if we naively
take the limit c → +∞ in equations (6) and (7)
(see [3] for the details). The two limits can be
traced back to the possibility of keeping either
one of the two constants ε0, μ0 finite, while the
second one “approaches to zero”, even if we are
aware of the fact that these two physical quanti-
ties never tend to zero in real life. As explained
in the conclusion of [1], we may understand the
magnetic limit by keeping μ0 only, and by writ-
ing ε0 = 1/(μ0 c2) where c approaches infinity;
for the electric limit, we reverse the role of μ0 and
ε0. One can anyway be bothered by the presence
of light speed c in the above expressions despite
we are considering phenomena where |v| � c. In
Galilean electromagnetism, the appearing veloc-
ity is cu = 1/

√
ε0μ0. This velocity is indepen-

dent of specific units (same value with Gaussian
or SI units) and arises from using only action-at-
a-distance forces in which an instantaneous prop-
agation is assumed [8]. It can thus be considered
as a fundamental constant in nature. We are used
to identify cu with c the speed of light in vacuum
because these velocities have the same numerical
value. We have to remember that the speeds cu

and c emerge from different physical considera-
tions (Maxwell indeed has been the first one who
stated cu = c in 1862) but we are not going to de-
velop this point here.

III. POTENTIALS AND GAUGE CONDI-
-TIONS IN THE GALILEAN REGIME

We now focus on the magnetic vector potential
A and the scalar electric one V associated to E

and B by the well-known relations

E = −∂tA −∇V, B = ∇× A. (9)

The equations of classical electromagnetism in
terms of potentials are

(
1

c2
∂tt − Δ)

(
A
V

)
=

(
μ0 J
ρ/ε0

)

and their quasi-static approximation for |v| � c
yields

−ΔA � μ0J, −ΔV � ρ/ε0. (10)

In terms of magnitude orders, let us write again
A = aA and V = VV , then “dividing” in (10) the
first equation by the second one, we get

a

V
∼ J

ρ c2
,

c a

V
∼ J

ρ c
. (11)

As already seen, in the MQS approximation J �
ρ c so c a � V (in fact, the correct scaling is
V ≈ |v| a) and in the EQS approximation J � ρ c

so c a � V (and the correct scaling is a ≈ |v|
c2
V).

Let us look back to (9): B = ∇× A gives always
b ∼ a

�
whereas E = −∂tA−∇V yields e ∼ a

τ
+ V

�
.

On the one hand, when c a � V, with |v| � c,

|v| a � V,
�

τ
a � V,

a

τ
� V

�
, (12)

so e ∼ V

�
, thus E = −∇V which is compatible

with the EQS model where ∇ × E = 0. On the
other hand, if c a � V,

a � V but |v| � c,
a

τ
∼ V

�
, (13)

so E = −∂tA −∇V is compatible with the MQS
equation ∇× E = −∂tB. Let us finally consider
the well-known gauge conditions usually adopted
in the QS context for A and V . From the Lorenz
condition ∇·A+ 1

c2
∂tV = 0 we get c a+ |v|

c
V ∼ 0.

In the MQS approximation, the Lorenz condition
becomes the Coulomb one (∇ ·A = 0) as c a � V

and |v| � c. But in the EQS limit, as c a � V

but |v| � c, the two terms ∇ · A and 1
c2

∂tV have
the same magnitude order, and thus Lorenz gauge
condition holds. Coulomb and Lorenz conditions
in the empty space are in reality a particular case
of a more general condition, that reads

∇ · A + με∂tV = −μσV, (14)

valid in a medium with electric permittivity ε and
magnetic permeability μ, introduced by Stratton
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[9] in 1941 to cope with the propagation of electro-
magnetic waves in Ohmic conductors with electric
conductivity σ �= 0.

IV. THE GALILEAN REGIME AND
ITS CHARACTERISTIC TIMES

Quasi-static models are valid when τem = �/c,
the light transit time in the medium, is small com-
pared to τ (cf. Table 1).

Table 1: Range of the characteristic time τ for the
different models derived from Maxwell’s eqs

Full set of Quasi-static Static
Maxwell’s eq. regime regime
0 ≤ τ ≤ τem τem ≤ τ ≤ τm, τe τ ≥ τm, τe

Together with τem, we need to define three
other quantities, namely �� = 1

σ

√
ε
μ

= 1
ση

, the
constitutive length (η is the medium impedance),
τe = ε/σ, the electric charge diffusion time (i.e.,
the characteristic time with which the unpaired
electric charge decays in a conductor), and τm =
μσ�2 , the current density diffusion time (i.e., the
characteristic time with which the current density
and hence the magnetic field penetrates in a con-
ductor). A natural question arises: “where do
these quantities come from ?”. Moreover, “which
is the role of these constants in the definition of the
quasi-static regimes ?”.

Full set of Maxwell’s eq. MQS Statics

τ

τ0

0 τem

τem τm

τe

EQSFull set of Maxwell’s eq. Statics

τe

τm

Fig. 1. Case τm > τe (up) and τm < τe (down).

To understand their origin and importance, we
perform a dimensional analysis of the Stratton
condition (14), that yields

a

�
+ με

V

τ
∼ μσV, I + II ∼ III.

By computing three dimensionless ratios, namely
II/I , III/I, and III/II, we see appearing the
characteristic time constants:

II
I

∼ |v|
c

V

ca
= τem

τ
V

ca
, III

II
∼ τ

τe

,
III
I

∼ �
�∗

V

ca
= τm

τem

V

ca
= τem

τe

V

ca

(here c denotes cu = 1/
√

με). We start by re-
marking that τem =

√
τeτm, i.e. τem defines the

geometric mean of the previously defined quanti-
ties τe and τm. The three time constants can be
arranged in two different ways, either τm > τe or
τm < τe (Fig. 1).

In order to underline the dependence of τm and
τe on the length �, it is better to consider a two-
dimensional visualization, where one axis reflects
the effect of τ and the other that of �, as firstly pro-
posed in [10]. We thus consider the plane (x, y)
where x := log(τ/τem) and y := log(�/�∗) and
we separate it in sectors by remarking that

τ = τem, log(τ/τem) = log(1) (x = 0),
τ = τe, log(τ/τem) = log(�∗/�) (y = −x),
τ = τm, log(τ/τem) = log(�/�∗) (y = x).

The Galilean regime, characterized by τem � τ ,
is located where x > 0 on the plane (x, y) of
Fig. 2. On the one hand, the expansion b ∼
(τm/τ)b + (τem/τ)2b, resulting from the gener-
alized Ampere’s theorem, with the MQS scaling
e ∼ |v|b, has to be truncated at the first term in
(τm/τ) as the second term in (τem/τ)2 is negligi-
ble (this means J � ∂tD). On the other hand, in
the expansion b ∼ (τ/τe)b + b, resulting from the
generalized Ampere’s theorem, with the EQS scal-
ing e ∼ (c2/|v|)b, the first term in (τ/τe) is neg-
ligible with respect to the second one (this means
J � ∂tD).

τem/τx = log (             )

τm /τem

τ = τe

τ=τm

Special

Special

Galilean

relativity

relativity
Galilean

Galilean

Galilean

y = log (               )

MQS

EQS

QSC

QSC

Fig. 2. Graphical representation of electromag-
netic model validity.

Let us go back to the gauge condition valid-
ity. From Stratton condition with the MQS scaling
(V ≈ |v|a) we get a + (τem/τ)2a ∼ (τm/τ)a,
with the term in (τem/τ)2 negligible with respect
to the term in (τm/τ). Stratton’s condition results
in ∇ · A � −μσV , as indicated in Table 2. If the
EQS scaling (a ≈ (|v|/c2)V) is adopted, we get
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a + a ∼ (τem/τe)(V/c), thus the right-hand side
in Stratton’s condition is negligible with respect
to the left-hand side. Stratton’s condition yields
∇ · A + με∂tV � 0, as indicated in Table 2.

Table 2 : Model versus gauge condition validity

Model gauge condition
Special relativity ∇ · A + με∂tV = −μσV

Galilean EQS ∇ · A + με∂tV � 0

Galilean MQS ∇ · A � −μσV

Galilean QSC ∇ · A � −μσV

The dimensional analysis of Stratton condition
allows to introduce τem, τe and τm. In reality,
these three quantities appear as soon as we repre-
sent τ and � in terms of the fundamental physical
parameters ε, μ and σ. In the MKSA system, that
is expressed in terms of mass M (Kg), length L
(m), time T (s) and current I (A), the variables’
dimensions, denoted with square brackets, are

[μ] = [L][M ][T ]−2[I]−2,
[ε] = [L]−3[M ]−1[T ]4[I]2,

[σ] = [L]−3[M ]−1[T ]3[I]2.

In Table 3 we summarize the physical parameter
units in the MKSA system.

Table 3 : Parameter units in the MKSA system

μ ε σ τ �

L 1 -3 -3 0 1
M 1 -1 -1 0 0
T -2 4 3 1 0
I -2 2 2 0 0

Considering the numerical part of Table 3 as
a 4 × 5 matrix, and remarking that the last two
columns of the so-defined matrix contain just one
non-zero unitary entry and that the last line is mi-
nus twice the second, the matrix rank is 3. Two
parameters (τ and �) can be expressed as functions
of three others (μ, ε and σ). To this purpose, we
seek for α, β, γ, c1, c2, and c3 reals such that the
following two ratios are dimensionless :

τ/(μαεβσγ) = O(1), �/(μc1εc2σc3) = O(1).

The first ratio yields the following linear system⎧⎪⎪⎨
⎪⎪⎩

α − 3β − 3γ = 0
α − β − γ = 0
−2α + 4β + 3γ = 1
−2α + 2β + 2γ = 0

whose solution is α = 0, β = 1, and γ = −1
(the fourth equation coincides with the second one
up to a multiplicative factor −2). We introduce
the first quantity τe = ε/σ and we have τ/τe =
O(1). For the second ratio, we have to find c1,
c2, and c3 solution of a similar linear system with
right-hand side equal to (1, 0, 0, 0)t . We thus get
c1 = −1/2, c2 = 1/2, and c3 = −1. We intro-
duce �� = (

√
ε/μ)/σ and we have �/�� = O(1).

Since �/�� = μσ�c = μσ�2(c/�), a natural choice
is to set τem = �/c and τm = μσ�2 . The quantity
τm is called magnetic diffusion time as the mag-
netic diffusion coefficient is Dm = 1/(μσ) which
has dimension [L]2[T ]−1 and τm = �2/Dm. With
these choices, τ2

em = τeτm.
We note that τ and � are fixed by the problem

features. Depending on the physical parameters
μ, ε, and σ we specify the time intervals and thus
the EQS or MQS model to use. As an example,
we consider a homogeneous system with � = 1
filled with either water or copper or corn oil, re-
spectively, with μ = μ0 and σ, ε given in Table 4.
The time intervals for τ allowing to use different
models are given in Table 4.

Table 4: Media and time ranges for the different
models [10] (the notation e±n stands for 10±n)

water copper corn oil
ε 81ε0 ε0 3.1ε0
σ 0.2 5.7e+7 5.e-11
�∗ 0.12 4.7e-11 1.e+8

τem 3.e-8 3.e-9 5.8e-9
Full eqs. [0, τem[ [0, τem[ [0, τem[

MQS [τem, 3.e-7 s[ [τem, 3.e+2 s[ −
EQS − − [τem, 5.8e-1 s[
QSC [3.e-7 s, ∞[ [ 3.e+2 s, ∞[ [ 5.8e-1 s, ∞[

V. GALILEAN ELECTRODYNAMICS
OF MOVING MEDIA

We conclude with few words on the Galilean
electrodynamics of moving media, a rather long
subject to develop deeply here even if still open
to research as many aspects have not been com-
pletely understood yet. From now on, quantities
with “primes“ are related to the moving reference
system R′ and those without are related to the
fixed reference system R. A Lorentz transforma-
tion acts on space-time coordinates as follows [11]

x′ = x − γ v t + (γ − 1)v(v·x)
|v|2

,

t′ = γ(t − v·x
c2

), γ = 1/
√

1 − |v|
c2

,
(15)

where v is the relative velocity between R′ and R
and |v| its modulus. When |v| � c (that yields
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γ ∼ 1), under the validity of the causality prin-
ciple Δx = |v|Δt � cΔt, transformations (15)
reduce to Galilean ones

x′ = x − v t, t′ = t. (16)

It can be proven that, with a suitable re-definition
of the involved fields, Galilean models (6)-(8) are
co-variant (or form invariant) under transforma-
tions (16), and this is the origin of the “Galilean
electromagnetism” terminology. For the fields, as
given by Einstein and Laub in 1908 [12], we have

E′ = γ(E + v × B) + (1 − γ)v(v·E)
|v|2 ,

B′ = γ(B − v×E
c2

) + (1 − γ)v(v·B)
|v|2 ,

D′ = γ(D + v×H
c2

) + (1 − γ)v(v·D)
|v|2 ,

H ′ = γ(H − v × D) + (1 − γ)v(v·H)
|v|2 .

(17)

To take the limit for |v| � c is not only sufficient
to set γ ∼ 1 in (17). Indeed, one would obtain for
example E′ = E+v×B and B′ = B−(v×E)/c2

which do not respect the group composition prop-
erty (note that the group composition property is a
key point to understand the validity of a physical
transformation). Two limits appear by choosing
|v| � c AND either e � cb,

E′ = E + v × B, B′ = B,
D′ = D + (v × H)/c2, H ′ = H,
ρ′ = ρ − v · J/c2, J ′ = J,

(18)

or e � cb,

E′ = E, B′ = B − (v × E)/c2,
D′ = D, H ′ = H − v × D,
ρ′ = ρ, J ′ = J − ρv.

(19)

Starting from (17) with γ ∼ 1, if e � cb, the term
B − (v/c) × (E/c) gives b − (|v|/c)(e/c) ∼ b,
thus we get (18). On the other hand, if e � cb, the
two terms (|v|/c) and (e/c) equilibrate each other
and have to be kept, whereas e + |v|b ∼ e and
thus (19) hold. Note that in the Galilean regime,
we make the assumption that the force F and the
charge q are invariant when going from R to R′,
i.e., F ′ = F and q′ = q. The relation F ′ = q′E′

gives F = q(E +v×B) in the magnetic limit and
F = qE in the electric.

Constitutive relations as well depend on the
considered Galilean limit. We recall that in the
moving reference R′, the constitutive relation be-
tween B and H reads B′ = μH ′. When reported

all quantities to R, in the magnetic limit, one has

H = B/μ,
D � εE + (ε − 1

μc2
)v × B,

but in the electric limit one should rather use
H � B/μ − (ε − 1

μc2
)v×E

c2
,

D = εE,

with c = cu. Similarly, for the potentials we have

A′ = A − γ vV
c2

+ (γ − 1)v(v·A)
|v|2 ,

V ′ = γ(V − v · A).
(20)

Two limits appear by choosing |v| � c AND ei-
ther a � cV , which implies A′ = A − vV

c2
,

V ′ = V , or a � cV , that yields A′ = A,
V ′ = V − v · A.

VII. REMARKS AND CONCLUSIONS
Few remarks before concluding. First, the two-

dimensional plot of Fig. 2 (Table 2 for gauge con-
dition validity) can be used as a heuristic tool to
specify the model to use. Its main advantage is
to select important terms avoiding the computa-
tion of irrelevant ones. Second, the considered
approach is local. This means that in a system
composed of different media, it can happen that
in a domain the MQS limit holds and in another
domain the EQS limit has to be considered. The
fields of the whole system cannot be computed un-
der one single limit, and we have to consider the
proper formulation according to the subdomain
features. A nice example of this situation arises
when one wishes to solve a RCL circuit, and has
to use the MQS limit outside C and the EQS limit
in C to explain how the magnetic and electric fields
are generated by the current in the circuit. Third,
the presented analysis relies on the use of dimen-
sional analysis, a classical tool in Fluid Mechan-
ics, that becomes powerful if driven by the experi-
ence of researchers (in this case, a mathematician
and a physicist of fluids). This tool allows to make
a very simple and didactic presentation of the sub-
ject, and to underline the key points when studying
a physical phenomenon, namely which are the rel-
evant parameters of the problem and thus how to
obtain a reduced model, to analyze the consistency
of the reduced model and its domain of validity.
We believe that emphasis on dimensional reason-
ing would be useful to students in many branches
of physics. We underline that analogous conclu-
sions to the ones obtained in the present paper
for the MQS limit can be obtained by asymptotic
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analysis [13] too. The EQS limit is more diffi-
cult to analyze and its asymptotic counterpart is
still missing. The applicability of the quasi-static
models was investigated firstly relying on a dimen-
sional analysis and then making a connection with
the characteristic times of the considered problem.
We have underlined as the physical parameters of
the problem as well as the sources of the fields
determine the (high frequency or low frequency)
model to use. If one works with potentials, the
gauge condition to use has to be compatible with
the problem physics.
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