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Abstract ─ A new 2-D Direction of Arrival (DOA) 
estimation algorithm in the presence of mutual 
coupling for the Uniform Rectangular Array 
(URA) based on Matrix Pencil (MP) method is 
presented. By setting a group of elements as 
auxiliary on each side of the URA, it can 
accurately estimate the DOAs using a single 
snapshot of data and the effect of mutual coupling 
can be eliminated by the inherent mechanism of 
the proposed method. Theoretical analysis and 
simulation results demonstrated the effectiveness 
of the proposed algorithm. 
  
Index Terms ─  2-D DOA estimation, Matrix 
pencil, Mutual coupling, URA.. 
 
 

I. INTRODUCTION 
The study of adaptive antennas in radar and 

wireless communications has been an attractive 
research topic for several decades. Furthermore, 
direction of arrival estimation is an important 
feature of adaptive antenna arrays. MUltiple 
SIgnal Classification   (MUSIC), Estimation of 
Signal Parameters via Rotational Invariance 
Techniques (ESPRIT) [1] and MP [2-5] are some 
popular conventional methods of DOA estimation. 

In array signal processing, most adaptive 
algorithms assume that the array elements are 
isotropic sensors; thus the mutual coupling effects 
are ignored. However, in practical applications, 
each array element receives signals reradiated 
from other sensors within the array and the 

performance of an adaptive antenna array is 
drastically affected by the existence of the mutual 
coupling effect between antenna elements [6-8]. 
Such an effect needs to be removed in order to 
achieve a high performance in an actual system 
[8]. Many efforts have been made to reduce or 
compensate for this effect on Uniform Linear 
Array (ULA) and Uniform Circular Array (UCA) 
[8-14]. But few authors have dealt with 2-D cases 
and considered the effect of mutual coupling or 
any other array errors [15-16]. 

Some studies have stated that using auxiliary 
elements can reduce the effect of mutual coupling 
[16–17]. It was shown in [14] and [16], that by 
providing a modest number of auxiliary array 
elements, the MUSIC algorithm can be adopted 
directly for DOA estimation in ULA and URA and 
the approach is resilient against a well-known 
mutual coupling model with some unknown 
parameters. But, these proposed algorithms suffer 
from two major drawbacks: first, the MUSIC 
algorithm is based on the covariance matrix and it 
requires independent identically-distributed 
secondary data to estimate the covariance matrix; 
also the estimation of the covariance matrix 
requires the storage and processing of the 
secondary data. This is computationally intensive, 
requiring many calculations in real time. The 
second is that in the proposed algorithm there may 
be some blind angles caused by some particular 
combinations of mutual coupling coefficients 
which should be avoided while designing the array 
[14].  
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In this paper, a simple solution is presented to 
settle the coupling problem of URA in 2-D DOA 
estimation based on the MP algorithm. This 
algorithm can overcome the drawbacks of 
statistical techniques.  Because it is based on the 
spatial samples of the data and the analysis is done 
on a snapshot-by-snapshot basis, non-stationary 
environments can be handled easily [2]. It is 
proposed that the array elements on the boundary 
of URA should be of auxiliary elements and only 
use the output of the rest array to estimate the 
DOA of incoming signals. Through this process, 
the MP algorithm can be directly applied for 2-D 
DOA estimation. 
 

II. 2-D MATRIX PENCIL METHOD 
The DOA estimation of several signals which 

simultaneously impinge on a two-dimensional 
planar array can also be performed using the 
Matrix Pencil method. Consider a URA consisting 
of M×N equally spaced elements in rows and 
columns. The space between neighboring columns 
is dx and that of neighboring rows is dy. The array 
receives P narrow band signals, sp(t) , from 
unknown directions, (θp, φp), p=1, 2,…, P,  as 
shown in Fig. 1.   

 

 
 
Fig. 1.  URA with M×N elements. 
 
 
 
 
 
 

Hence, the voltage x(m, n) induced at the feed 
point of the antenna elements  of the URA which 
can be modeled by  summing the complex  
exponentials, i.e., 
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where rp is the complex amplitude of pth 
signal and n(m,n) is the additive noise,  

Basically, in 2-D MP method, 2-D problem is 
divided into two 1-D problems. Solved for each 
pole in each dimension and paired together to get 
the correct DOA angles. The formulation of the 2-
D matrix pencil method was discussed in detail in 
[4]. The noiseless data matrix x(m,n) can be 
written as follows: 
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The data matrix X can be enhanced and 
written in Hankel block matrix structure as 
follows: 
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Two matrices of D1 and D2 are defined in order 
to extract the poles associated with the one 
dimension. D1 is obtained from X by deleting the 
last row and D2 is obtained from X by deleting the 
first row. One can also write 
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              ].,...,,[ 21 PrrrdiagR              (10) 
where diag [•]  represents a P × P  diagonal 

matrix. Now, consider the matrix pencil 
       .} 20112 YIR{YYDD                   (11) 
while I is the P × P  identity matrix. It was 

shown in [3] that this problem can be reduced to 
an ordinary eigenvalue problem such that 

],...,,[ 21 Pyyydiag0Y  is the eigenvalues of: 
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+ is the Moore-Penrose pseudo-
inverse of D1. This, in turn, is defined as: 

 
                    H

11
H
11

DDDD 1)(                   (13) 
 Similarly, the data x(m;n) can be written in a 

new matrix form as follows: 
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The data matrix X' can be enhanced and 

written in Hankel block matrix structure as follow: 
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So, ],...,,[ 21 Pzzzdiag0Z  will be the 
eigenvalues of: 

                        .IDD 21                           (16)                       
where D'1 is obtained from D' by deleting the 

last row and D'2 is obtained from D' by deleting 
the first row.  

In the presence of noise, some pre-filtering 
needs to be done. Noise reduction can be     
performed via the Singular Value Decomposition 
(SVD) [18]. D and D' are decomposed using the 
SVD yielding: 

      .HH VΣUVΣUD nnnsss       (17)                      
where (•)H denotes conjugate transpose and the 

Us,  Σs and Vs
H are in the signal subspace 

corresponding to the P principal components 
whereas Un, Σn and Vn

H are in the noise subspace.  
. It was shown in [3] that, for the noisy case, 

the eigenvalues of the following matrix was the 
solution for determining yp: 
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where Us1 is obtained from Us with its the last 

row of Us deleted and Us2 is obtained by deleting 
the first row of Us. Second, D' was decomposed 
using the SVD yielding: 

       .HH VΣUVΣUD nnnsss     (19) 
Similarly, the eigenvalues of the following 

matrix is the solution for determining zp: 

                       .IUU s2s1                        (20) 
 

III. THE PROPOSED ALGORITHM 
Most DOA estimation algorithms, including 

MP assume an ideal, linear array of isotropic 
sensors. Unfortunately, such an ideal sensor is 
obviously not realizable. A practical antenna array 
is composed of the elements in some physical 
sizes. The elements sample and reradiate incident 
fields and cause mutual coupling. Mutual coupling 
severely degrades the accuracy of the DOA 
estimator [8]. Any implementation of DOA 
estimation requires a compensation for the mutual 
coupling. 

In this paper, in order to nullify the effect of 
mutual coupling, the array sensors on the 
boundary of URA are set to be auxiliary sensors 
and only the output of the rest array are used to 
estimate the DOAs. Utilizing this process, the MP 
algorithm can be directly applied for 2-D DOA 
estimation. 

Assuming that C denotes the mutual coupling 
matrix of the URA, the array’s output can be 
expressed as Cxxc  c where xc denotes the 
received signal vector in the presence of mutual 
coupling and is defined as  xc=[xc(1,1), xc(1,2),…, 
xc(1,N), xc(2,1), …, xc(2,N), …,xc(M,1),…,xc(M,N)]  

According to [19], the coupling between 
neighboring elements of a ULA is almost the same 
and the magnitude of the coupling parameters 
decreases very fast by increasing the sensor 
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spacing. Essentially, the mutual coupling 
coefficient between two far-apart elements can be 
approximated to zero. Thus, it is often sufficient to 
consider the ULA coupling model with only finite 
non-zero coefficients, and a banded symmetric 
toeplitz matrix can be used as a model for the 
mutual coupling. This model can be extended to 
the mutual coupling of URA. Because the mutual 
coupling of the URA is more complex than the 
ULA and UCA, in this paper we assume that one 
sensor is only affected by the coupling of the 8 
sensors around it [16], which is shown in Fig. 2. 

The mutual coupling matrix can be expressed 
as: 
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where C1 and C2 are N×N sub-matrices of C 
and can be given by: 
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where the symbol toeplitz{v} denotes the 
symmetric toeplitz matrix constructed by the 
vector v. In order to eliminate the effect of the 
mutual coupling, the sensors on the boundary of 
the URA are set to be auxiliary sensors.  

 

 
Fig. 2.  Scheme of mutual coupling. 

 
Now, a new matrix Dc can be formed, which is 

obtained from the output of the middle (M-2)×N  
in URA: 
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Let us define: 
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After this definition, a very important 
relationship between D and Dc is obtained as 
follows: 

                          .CDDc                            (25) 
So, two matrices of Dc1 and Dc2 are defined. 

Dc1 is obtained from Dc by deleting the last row 
and Dc2 is obtained from Dc by deleting the first 
row. Therefore: 
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obtained: 
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Now, the matrix pencil can be formed: 
       .CI}YR{YYλDD 201c1c2 λ          (28) 
 This problem can be reduced to an ordinary 

eigenvalue problem and ],...,,[ 21 Pyyydiag0Y  
will be the eigenvalues of: 

                        .IDD c2c1                           (29) 
Similar to Dc, a new matrix D'c can be formed, 

which is obtained from the output of the middle 
M×(N-2)  in the URA:  
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So, ],...,,[ 21 Pzzzdiag0Z  will be the 
eigenvalues   of: 

                          .IDD c2c1                        (31) 
where D'c1 is obtained from D'c by deleting the 

last row and D'c2 is obtained from D'c by deleting 
the first row.  

For the noisy case, the eigen-structure of the 
matrices Dc and D'c is found by considering the 
SVD: 

                    H
cccc

VΣUD                   (32) 
Here, Uc and Vc are unitary matrices, 

composed of the eigenvectors of DcDc
H and, 
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Dc
HDc, respectively. Σc is the singular values of 

Dc. For simplicity, it is assumed that the number of 
signals is known in this paper. After SVD of data 
matrix Dc is computed, the matrix space is divided 
into two subspaces, signal subspace and noise 
subspace. Here, the matrices Dc1 and Dc2 are 
constructed from the signal subspace matrix. So, 
the "filtered" matrix Ucs is constructed. It consists 
of the first P columns of Uc and the rest of right-
singular vectors, corresponding to the small 
singular values, are discarded. Therefore, the 
following can be written: 
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where Ucs1 is obtained from Ucs with its the last 
row of Ucs deleted and Ucs2 is obtained by deleting 
the first row of Ucs. Then, the eigenvalues of the 
following matrix is the solution for determining yp: 

                   IUU
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Similarly, D'c was decomposed using the SVD 

yielding: 
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the last row and the first row of Ucs, respectively.  
Then, the eigenvalues of the following matrix 

is the solution for determining zp: 
                   .IUU
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Most of adaptive algorithms which 
compensate mutual coupling, must be computed 
the inverse coupling matrix. That is 
computationally intensive and requires many 
calculations in the real time. The proposed 
algorithm can be directly applied for 2-D DOA 
estimation and don't use the inverse mutual 
coupling matrix. In addition, the data matrices of 
the proposed algorithm (Dc and D'c ) are as order 
of N×(M-2). But, the data matrices of the MP 
algorithm (D and D' ) are as order of 3N×(M-2). 
Hence, the proposed algorithm is faster than the 
MP algorithm. 

 
IV. NUMERICAL SIMULATIONS 

In this section, 5×5 elements z-direction 
parallel identical dipoles are used, which are 
equally spaced in rows and columns with the 
distance of λ/2, where λ is the wavelength. Each 
dipole is 0.5λ long and λ/200 in radius and all the 

elements are loaded with a terminal load of ZL = 
50 Ω. The Method of Moments (MOM) is used to 
accurately model the interactions between antenna 
elements. The array receives two signals from 
(20˚, 15˚) and (35˚, 60˚). The MP algorithm and 
the proposed algorithm use only a single snapshot. 
Table.1 shows the accuracy of DOA estimation 
using the new proposed algorithm in the presence 
of MC. 

 
Table 1: Comparing Accuracy of MP and Proposed 
Algorithm 

 
The MP method 

in the presence of 
MC 

The proposed 
algorithm in the 
presence of MC 

Signal 1 (19.89˚,13.82˚) (20.00˚,15.00˚) 
Signal 2 (32.64˚,57.87˚) (35.00˚,60.00˚)

 
In the next example, the noisy data are used. 

The Signal-to-Noise Ratio (SNR) was set at 20 
dB. 1000 independent trials are used. The scatter 
plot of the estimated elevation and azimuth angles 
with conventional MP algorithm and the proposed 
algorithm in the presence of the mutual coupling 
are shown in Figs. 3 and 4. 

  As can be seen, using the proposed 
algorithm, the error of bias is very low and 
accuracy is high and very close to ideal.  

 

 
Fig. 3. The scatter plot of direction of arrival angles of 
2 impinging signals in the absence of MC. 
 

The performance of the proposed method is 
compared with ideal MP algorithm, under 
different SNR. The variances of the estimators are 
plotted in Fig. 5. As can be seen from Fig. 5, the 
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proposed algorithm in the presence of mutual 
coupling has a close variance to the ideal MP 
method. 
 

 
 
Fig. 4. The scatter plot of direction of arrival 
angles of 2 impinging signals with the proposed 
algorithm in the presence of MC. 
 

 
Fig. 5. Comparing of the performance of MP and 
the proposed algorithm for different SNR. 

 
V. CONCLUSION 

In this paper, the problem of 2-DDOA 
estimation was studied for the URA in the 
presence of mutual coupling. By setting the 
sensors on the boundary of the URA as auxiliary 
sensors, the robustness of the proposed algorithm 
was proved to be against sensor coupling. Without 
using the mutual coupling coefficient calculation, 

this method can accurately estimate the 2-D DOAs 
only by using one snapshot of data.   
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