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Abstract ─ In this paper, a periodic weakly conditionally 
stable -pseudospectral time domain (WCS-PSTD) 
method is presented to simulate photonic crystal in 
Terahertz frequency range. The time step size in this 
method is only determined by the mesh length z-  and 
the spatial discretization along the z direction only needs 
two cells per minimum wavelength. The 3D formulas of 
the method are presented and the time stability condition 
of the method is demonstrated. Numerical results show 
that this method is more efficient than the periodic finite 
difference time domain (FDTD  method in terms of 
computer memory and computation time. 
 
Index Terms ─ Finite difference time domain, 
pseudospectral method, time stability condition, weakly 
conditionally stable. 
 

I. INTRODUCTION 
Terahertz THz) wave has significant transmission 

loss in free space, so the design and fabrication of 
controlling device for THz frequency radiation are 
imperative. Photonic crystal as a novel artificial material 
has photonic band gaps characteristic [1, 2]. It can be 
used to control the transmission of THz wave. Therefore, 
study on the photonic crystal has important effect on the 
development of Terahertz technique. 

The finite-difference time-domain (FDTD) method 
is one of the most effective tools for the analysis of the 
photonic crystal [3, 4]. However, because the cross-
section of the photonic crystal is circular, staircase 
approximation is used to model the curved surface. To 
decrease the approximation error, the cells’ size must be 
very small compared with the wavelength. These fine 
cells reduce the time step size in the FDTD method, and 
hence, the FDTD method is computationally expensive. 
In addition, in the THz frequency region, the longitudinal 
direction of the photonic crystal is electrically large 
structure in most cases. Applying the FDTD method to 
simulate electrically large object, to decrease the 
dispersion error, a large number of cells (typically 10-20 
cells per wavelength) are required. This stringent 
requirement severely limits the length of the photonic 

crystal solvable and increases the computation time 
inevitably. 

Recently, a new weakly conditionally stable-
pseudospectral time domain (WCS-PSTD) method [5] 
which is based on the hybrid implicit explicit difference 
technique [6-9] and the pseudospectral scheme [10-12] 
is presented. In this method, the time step size is not 
confined by fine cells and is extremely useful for 
problems with very fine structures along one or two 
directions. Meanwhile, this method allows a coarse 
spatial discretization that only needs two cells per 
minimum wavelength. Thus, for the simulation of the 
object which has fine and electrically large structures 
simultaneously, the WCS-PSTD algorithm is more 
efficient than the FDTD method in terms of computer 
memory and computation time. However, for the 
simulation of the photonic crystal which has periodic 
structures, the WCS-PSTD method needs to cope with 
the periodic boundary. 

To solve this problem, this paper presents a periodic 
WCS-PSTD method which introduces the periodic 
boundary in the conventional WCS-PSTD method [5]. It 
also combines the hybrid implicit explicit difference 
technique with the pseudospectral scheme. The time step 
size in this method is not confined by fine cells and the 
space discretization along electrically large direction 
only needs two cells per minimum wavelength. The 3D 
formulas of the periodic WCS-PSTD method are 
presented, and final updating equations are given. The 
time stability condition and space discretization 
limitation of the method are discussed. When this 
method is applied to simulate photonic crystal, high 
computational efficiency is obtained and less computer 
memory is required, which is demonstrated through 
numerical examples by comparing with the periodic 
FDTD method. 

By using the periodic WCS-PSTD method to 
simulate the photonic crystal, some useful conclusions 
are obtained. The simulation result shows that the 
photonic crystal has obvious band gap characteristic. The 
frequency and bandwidth of the band gap have relation 
with the permittivity of the photonic crystal. As the 
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increase of the permittivity, the frequency of the band 
gap decreases and the relative bandwidth of the band gap 
becomes wider. Besides, the smaller the radius and 
period length of the photonic crystal are, the higher the 
frequency range of the band gap. The relative bandwidth 
of the band gap reaches maximum value when the ratio 
between the diameter of the photonic crystal and the 
period length is 0.6. 
 

II. FORMULATIONS 
Figure 1 shows a schematic view of the photonic 

crystal under study. The cross-section of the photonic 
crystal is circular and needs to use very small cells to 
staircase approximation, as shown in Fig. 2. The length 
(L) of the photonic crystal is much larger than the 
wavelength in the THz frequency region. Typically, it is 
20-30 times the wavelength. So, the photonic crystal is a 
complicated structure which has fine size (along the x 
and y direction) and electrically large size (along the z 
direction) simultaneously. 
 

 
 
Fig. 1. Schematic view of photonic crystal. 
 

 
 
Fig. 2. The staircase approximation of the photonic 
crystal’s cross-section. 
 

In the FDTD method, the small cell sizes 1x-  and 
1y-  will confine the time step size t-  and result in a  

large number of computation time. To remove the 
confine of the fine space increment on the time step size, 
the periodic WCS-PSTD method uses a hybrid implicit 
explicit difference technique to replace the explicit 
difference along the x and y directions. The 3D formulas 
for the periodic WCS-PSTD method are as follows: 
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<Second procedure> 
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where n  and t-  are the index and size of time step. 
The calculation for one discrete time step is 

performed using two procedures in the periodic WCS-
PSTD method. The first procedure is based on Eqs. (1.1)-
(1.6), and the second procedure is based on Eqs. (2.1)-
(2.6). It can be seen from these equations that for the 
spatial derivatives x.  and ,y.  a hybrid implicit explicit 
difference technique is used; thus, the equations (1.1), 
(1.3), (1.5), (1.6), (2.2)-(2.4) and (2.6) can’t be 

calculated directly, because they all include the unknown 
components defined at the same time step. For example, 
updating of 1 2n

xE �  component, as shown in Eq. (1.1), 
needs the unknown 1 2n

zH �  components at the same time 
step; thus the 1 2n

xE � component has to be updated 
implicitly. By substituting Eq. (1.6) into Eq. (1.1), the 
equation for 1 2n

xE �  component is given as: 
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Because the periodic WCS-PSTD method applies 
the hybrid implicit explicit difference technique to the 
derivatives x.  and ,y.  its time step size will have no 
relation with the spatial increments x-  and .y-  This 
will be demonstrated in the next section. 

In the FDTD method, to decrease the dispersion 
error resulted from the spatial finite difference, spatial 
discretization should satisfy the condition that 10-20 
cells per wavelength are required. This stringent 
requirement causes a large number of cells along the z 
direction in the simulation of the photonic crystal, 
because the longitudinal direction of the photonic crystal 
is often larger than the wavelength. It not only severely 
increases the memory requirement, but also increases the 
computation time. 

To overcome the limit of the wavelength on the 
space discretization ,z- the periodic WCS-PSTD method 
uses a Fourier transform algorithm instead of finite 
difference to represent the spatial derivative .z.  This 
allows a coarse spatial discretization along z direction 
that only two nodes per minimum wavelength are 
required (the demonstration will be shown in the next 
section). For other spatial derivatives x.  and ,y.  it also 
applies centered second-order finite differences as that in 
the standard FDTD method. Thus, the equation for 

1 2n
xE �  component can be obtained as follows: 
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 (4) 
where, ˆ 1,j � �  2 2

1 4 ,t y� - -2 ��  y-  is the spatial 
increment along y direction; i, j, and k denote the indices 
of spatial increments respectively along x, y, and z 
directions; 1  and 1�1  represent the Fourier transforms 
and inverse Fourier transforms which were described in 
detail in references [13]. 

After 1 2n
xE � component is obtained by using 

equation (4), component 1 2n
zH �  is explicitly updated 

straightforward as follows: 
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 (5) 
By following the same procedure, the equation for 1 2n

zE �  
component can be obtained as follows: 
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where, 2 2
2 4 ,t x� - -2 ��  x-  is the spatial increment 

along x direction. 
Because the photonic crystal has periodic structure 

along the x direction, the computation of 1 2n
zE �  

component at the periodic boundary needs to be 
modified as follows: 
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here, 1i �  and I  denote the meshes at the periodic 
boundary respectively. 

The computations for other components 1 2 ,n
yH �  

1,n
yE � 1,n

zE � 1n
xH �  and 1n

zH �  can be obtained by following 
the same procedure and will not be discussed in detail. 

It should be noted that, in contrast to the standard 
Yee’s algorithm, the periodic WCS-PSTD method does 
not require a spatially staggered grid along the z 
direction, because Fourier transforms operation is 
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global. It means that the field components xE  and ,yH  
yE  and xH  are located at the same nodes in the periodic 

WCS-PSTD method, as shown in Fig. 3. 
 

 
 
Fig. 3. Spatial grid of the field components in the 
periodic WCS-PSTD method. 
 

III. STABILITY AND NUMERICAL 
DISPERSION ANALYSIS 

The relations between field components of Eqs. (1) 
and (2) can be represented in a matrix form as follows: 
 3 4 3 41 2 ,n nE U F U� �  (8) 
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operator with respect to .m  

By substituting Eq. (9) into Eq. (8), it obtains: 
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5  indicates growth factor. By applying the forward 
Fourier transforms to both sides of equation (10), it 

obtains equation (11), where,
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For a nontrivial solution of (11), the determinant of 
the coefficient matrix in (11) should be zero. It can be 
obtained: 

 � �
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By solving equation (12), the growth factor 5  is 
obtained: 
 1 1,�5  (13) 
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According to the stability condition during field 
advancement, the module of growth factor 5  cannot be 

larger than 1. In equation (14), the relation 2,3 1�5  can 

be obtained when the condition 2 2R N7  is satisfied. xD  
and yD  represent the first derivative operator with 
respect to x and y. They are approximated by centered 
second-order finite differences. So it has the relations 
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22 24 ,

2
zab t

z c
-% " 9 8 - 9#  -$ !




 (16) 

where, 1c � ��  is the speed of light in the medium. 
It can be seen from Eq. (16) that the maximum time 

step size in the periodic WCS-PSTD method is only 
determined by the cell size .z-  This is very useful when 
the object of analysis has fine scale dimensions along the 
x and y directions. 

By substituting the expression j te -� �5 into equation 
(12), the dispersion relation for the periodic WCS-PSTD 
method can be obtained as follows: 
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where, � �22 ,z zr c tk� -  � �� �2
sin 2 ,x xr c t k x x� - - -  

� �� �2
sin 2 .y yr c t k y y� - - - It can be seen from 

equation (17) that the numerical dispersion error of the 
periodic WCS-PSTD method has no relation with the 
spatial cell size .z-  It is only decided by the cell sizes

,x-  ,y-  and the time step size .t-  As a result, the 
spatial cell size z-  is not confined by the wavelength. 
It only needs to satisfy the Nyquist sampling theorem 
that only two nodes per minimum wavelength are  

required along the z direction. 
It concludes from above analysis that in the periodic 

WCS-PSTD method, the time step size t-  is only 
determined by the spatial increment ,z-  and spatial 
increment z-  only needs to satisfy with the condition: 

minimum 2.z- 9 �  This will be very useful in the 
simulation of the photonic crystal, because the photonic 
crystal has very fine scale along x and y directions and is 
electrically large along z direction. For solving this 
problem the periodic WCS-PSTD method is more 
efficient than the periodic FDTD method in terms of 
computer memory and computation time, which will be 
demonstrated in next section. 
 

IV. SIMULATION AND ANALYSIS 
To demonstrate the accuracy and efficiency of the 

periodic WCS-PSTD method, the photonic crystal 
shown in Fig. 1 is simulated. The radius (r) and length 
(L) of the photonic crystal are 20 um and 3000 um, 
respectively. The period length of the photonic crystal is 
T=100 um. The material of the photonic crystal is silicon 
with dielectric constant 11.7.r ��  A uniform plane wave 
polarized along the x direction is normally incident on 
the photonic crystal. The propagation direction of the 
wave is along the y direction. The time dependence of 
the excitation function is as follows: 

 
2

0
2
1

4 ( )
( ) exp[ ],x

t t
E t

t
�

� �


 (18) 

where, 0t  and 1t  are constants, and both equal to 1� 10-12s. 
In such a case, the highest frequency of interest is 2 THz and 
the minimum wavelength of the source is about 150 um. 

The periodic WCS-PSTD method is used to 
simulate the transmitted field at the back of the photonic 
crystal. For comparison, the results calculated by the 
periodic FDTD method are also shown. Because the 
structure has circular cross-section, it is discretized by 
using staircase approximation, as shown in Fig. 2. To 
guarantee the computational accuracy, the circle is 
discretized by using 20� 20 cells, so the cell sizes 1x-  
and 1y-  are both equal to 2 um, corresponding to 1/75 
of the minimum wavelength. In other computation 
domain, 2x-  and 2y-  are 3 um and 15 um, respectively. 
Along the z direction, for the periodic FDTD method, 
considering the limit of the wavelength on the space 
discretization, the space increment z-  is selected to be 
15 um, corresponding to 1/10 of the minimum 
wavelength. While for the periodic WCS-PSTD method, 
space increment z-  can be increased to 75 um, 
corresponding to 1/2 of the minimum wavelength. To cut 
off the outer boundary, periodic boundary condition is 
applied along the x direction and convolutional perfectly 
matched layer (CPML) that are ten cells thick are applied 
along the y and z directions. Thus, for the periodic FDTD 
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and periodic WCS-PSTD methods, the total mesh 
numbers are 40 110 240� �  and 40 110 80,� �  respectively. 
The time step size in the periodic FDTD method is: 

2 2 2

6 6 6
1 1 11

2 10 2 10 15 10
t c � � �

% " % " % "- � � �#  #  #  � � �$ ! $ ! $ !
34.69 10 ps,�� �

which is the maximum time step size to ensure the 
numerical stability. In the periodic WCS-PSTD method, 
the time step size that is only determined by cell size z-  

is selected to be
62 75 10t

c

�� �
- � �


3159 10�� ps, which 

is 34 times as that of the periodic FDTD method. 
Figure 4 depicts the transmitted field xE  calculated 

by using the periodic FDTD method and the periodic 
WCS-PSTD method. It can be seen from this figure that 
the results of these two methods agree very well with 
each other, which shows the periodic WCS-PSTD 
method has high computational accuracy. 
 

 
 
Fig. 4. The transmitted field xE  calculated by using 
periodic FDTD method and periodic WCS-PSTD 
method. 
 

The computation time and memory requirement of 
the simulation above are summarized in Table 1. It can 
be seen from this table that both the memory requirement 
and computation time of the periodic WCS-PSTD 
method are reduced significantly compared with those of 
the periodic FDTD method. Because large spatial cell 
and large time step size are used, the memory 
requirement of the periodic WCS-PSTD method is 
reduced by 60%, and its computation time is almost 1/30 
of that of the periodic FDTD method. 
 
Table 1: Simulation time and memory requirement for 
the periodic FDTD method and periodic WCS-PSTD 
method 

 z-  
(um) 

t-  
(ps) 

Time 
(minute) 

Memory 
Requirement (Mb) 

FDTD 
method 15 0.0046 320 311.73 

WCS-PSTD 
method 75 0.159 12 115.45 

 
The transmission coefficient (Tr) of the photonic 

crystal calculated by using the periodic FDTD method 

and the periodic WCS-PSTD method are presented in 
Fig. 5. The computation formula of Tr is as follows: 
 , (19) 

here, xE  denotes the transmitted field xE  calculated by 
using the periodic FDTD method and the periodic WCS-
PSTD method; '

xE  is the magnitude of the incident wave. 
It can be seen from Fig. 5 that in the frequency range 

from 1.5 THz to 1.8 THz, the transmission coefficient Tr 
is below to -10 dB. This is a direct evidence of that the 
photonic crystal has obvious band gap in this frequency 
range. The relative bandwidth of the band gap is 18.18%. 
The distribution of the electric field xE  at frequency  
1.7 THz is shown in Fig. 6. From this figure, it can be 
seen that the incident wave is reflected completely and 
little wave penetrates the photonic crystal at this 
frequency. 
 

 
 
Fig. 5. The transmission coefficient of the photonic 
crystal calculated by using the periodic FDTD method 
and the periodic WCS-PSTD method. 
 

 
 
Fig. 6. The distribution of the electric field xE  at 
frequency 1.7 THz. 
 

It should be noted that in Fig. 5 there is a slightly 
divergence between the results of the periodic FDTD 
method and the periodic WCS-PSTD method at 1.7 THz. 
The difference between these two methods in time 
domain is too small to be neglected, as shown in Fig. 4, 
but in frequency domain, it is enlarged by the resonance 
effect of the photonic crystal at 1.7 THz. The divergence 
between these two methods is brought about by the 

'
1020logr x xT E E�
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splitting-error in the periodic WCS-PSTD method. The 
periodic WCS-PSTD method applies the hybrid implicit 
explicit difference technique. This technique will bring a 
splitting error which is proportional to the time step size. 
The detailed discussion about the splitting error of the 
hybrid implicit explicit difference technique has been 
presented in [14]. So, compared with the periodic FDTD 
method, the accuracy of the WCS-PSTD is reduced 
slightly. However, this reduction of the accuracy doesn’t 
affect the periodic WCS-PSTD method to get correct 
results. The periodic WCS-PSTD method can be used in 
the analysis which doesn’t require the accuracy strictly. 

Because the periodic WCS-PSTD method is more 
efficient than the periodic FDTD method in terms of 
computer memory and computational time, it is used to 
analyze the band gap characteristic of the photonic 
crystal in detail. 

Firstly, the relation between the frequency range of 
band gap and the radius of the photonic crystal is 
analyzed. The length and period of the photonic crystal 
is 3000 um and 100 um. The radius of the photonic 
crystal increases from 5 um to 40 um. The variations of 
the frequency range of the band gap with respect to 
radius are shown in Table 2. In this table, Rt which is 
equal to 2 r T�  represents the ratio between the 
diameter of the photonic crystal and the period length. It 
can be seen from this table that as the increase of the 
radius, the band gap of the photonic crystal moves to a 
lower frequency range. The relative bandwidth of the 
band gap has maximum value equal to 29.85% when the 
radius of the photonic crystal is 30 um. 
 
Table 2: Variations of the frequency range of the band 
gap with respect to the radius 

r (um) Rt Frequency 
Range (THz) 

Relative 
Bandwidth 

10 0.2 2.70-2.80 3.64% 
15 0.3 1.97-2.06 4.47% 
20 0.4 1.50-1.80 18.18% 
25 0.5 1.30-1.75 29.51% 
30 0.6 1.14-1.54 29.85% 
35 0.7 1.03-1.33 25.42% 
40 0.8 0.97-1.18 19.53% 

 
When it keeps the radius r=20 um unchanged and 

increases the period length of the photonic crystal from 
50 um to 200 um, the band gap of the photonic crystal 
also moves to a lower frequency range, as shown in 
Table 3. The relative bandwidth of the band gap has 
maximum value equal to 30.12% when period length of  

the photonic crystal is 66.66 um. 
From Table 2 and 3, we can see that the relative 

bandwidth of the band gap is mainly determined by the 
ratio between the diameter and the period length. It 
reaches its maximum value when the ratio is 0.6, no 
matter what the radius and period length are. 
 
Table 3: Variations of the frequency range of the band 
gap with respect to the period length 

T (um) Rt Frequency 
Range (THz) 

Relative 
Bandwidth 

50 0.8 1.94-2.37 19.95% 
60 0.7 1.78-2.32 26.34% 

66.66 0.6 1.72-2.33 30.12% 
80 0.5 1.62-2.19 29.92% 

100 0.4 1.50-1.80 18.18% 
133 0.3 1.48-1.61 4.85% 
200 0.2 1.34-1.37 3.97% 

 
In addition, the frequency range and relative 

bandwidth of the band gap also have relation with the 
dielectric constant of the photonic crystal. The variations 
of the frequency range and bandwidth with respect to 
relative dielectric constant r�  are shown in Table 4. 
Here, the geometry of the photonic crystal, including the 
period length, radius and length, are unchanged. It can 
be seen from this table that as the increase of the 
dielectric constant, the frequency of the band gap 
decreases and the relative bandwidth becomes wider. 

However, if the polarization of the incident wave is 
along the z direction, namely, the longitudinal direction 
of the photonic crystal, the band gap characteristic will 
become unobvious. The transmission coefficient of the 
photonic crystal impinged by a plane wave polarized 
along the z direction is shown in Fig. 7. In this figure, the 
transmission coefficient is above -10 dB in all the 
frequency range, which means that some incident wave 
passes through the photonic crystal and the band gap of 
the photonic crystal disappears. 
 
Table 4: Variations of the frequency range of the band 
gap with respect to relative dielectric constant 

r�  Frequency Range (THz) Relative Bandwidth 
3 2.64-2.67 1.13% 
5 2.23-2.67 7.34% 
7 1.94-2.16 10.73% 
9 1.74-2.01 14.40% 
11 1.60-1.90 17.14% 
13 1.48-1.83 21.25% 
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Fig. 7. The transmission coefficient of the photonic 
crystal impinged by a plane wave polarized along the z 
direction. 
 

To validate this, the distribution of the electric field 
zE  at the frequency 1.7 THz is depicted in Fig. 8. It can 

be seen from this figure, that at this case most of the 
incident wave penetrate the photonic crystal obviously. 
 

 
 
Fig. 8. The distribution of the electric field zE  at 
frequency 1.7 THz. 
 

It concludes from the analysis above that when the 
photonic crystal is impinged by a plane wave polarized 
along the radial direction, the photonic crystal exhibits 
obvious band gap characteristic; the smaller the radius 
and period length of the photonic crystal are, the higher 
the frequency range of the band gap. The relative 
bandwidth of the band gap reaches maximum value 
when the ratio between the diameter of the photonic 
crystal and the period length is 0.6. Besides, the 
frequency and bandwidth of the band gap have relation 
with the permittivity. As the increase of the permittivity, 
the frequency of the band gap decreases and the relative 
bandwidth of the band gap becomes wider. 
 

VI. CONCLUSION 
This paper introduces a periodic WCS-PSTD 

method which is based on the hybrid implicit explicit 
difference technique and pseudospectral scheme to 
simulate the photonic crystal. The maximum time step 
size in this method is only determined by cell size z-  

and the spatial discretization along z direction only needs 
two cells per wavelength. When this method is applied 
to simulate the photonic crystal, high computational 
efficiency is obtained and less computer memory is 
required, which is demonstrated through numerical 
examples by comparing with the periodic FDTD 
method. This method not only can be used in the 
simulation of photonic crystal, but also be useful in other 
electromagnetic problems where both fine and 
electrically large structures are used. 
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