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Abstract ─ The ultra-wide band characteristic basis 

function method (UCBFM) is an efficient approach to 

calculate wideband radar cross section (RCS) of 

objects, but its calculation errors at lower frequency 

points are great and the reduced matrix at each 

frequency point needs to be reconstructed, which are 

very time-consuming. To solve these problems, an 

effective numerical method for fast calculating 

wideband RCS of objects by combining improved 

UCBFM (IUCBFM) and best uniform approximation is 

proposed. This method improves the construction of the 

ultra-wide band characteristic basis functions (UCBFs) 

through solving the secondary level characteristic basis 

functions (SCBFs). In consideration of the mutual 

coupling effects among sub-blocks, the improved 

UCBFs contain more current information characteristics, 

which greatly improve the calculation precision at 

lower frequency points. Moreover, to avoid the 

reconstruction of reduced matrix at each frequency 

point, the best uniform approximation technology is 

used to fast predict the surface current at any frequency 

point in the given frequency band and further realize 

the fast calculation of wideband RCS of objects. 

Compared with traditional UCBFM, the method in this 

paper significantly improves the calculation accuracy 

and efficiency. Numerical results demonstrate that the 

proposed method is accurate and efficient. 

Index Terms ─ Best uniform approximation, Method of 

Moments (MoM), Ultra-wide band Characteristic Basis 

Function Method (UCBFM), wideband radar cross 

section. 

I. INTRODUCTION 
Accurate prediction of wideband radar cross 

section (RCS) of objects is of great significance to the 

studies of high-resolution radar imaging technology, 

anti-stealth and target identification. One of the most 

popular methods for radar cross sections (RCS) 

prediction is the frequency domain integral equation 

solved using method of moments (MoM) [1], but it 

places a heavy burden on memory and solving time 

when dealing with electrically large problems. 

Moreover, each frequency point in the given frequency 

band needs to be calculated one by one, it will be time-

consuming. With the successive proposal of efficient 

methods, for example, fast multipole method (FMM) 

[2], multilevel fast multipole method (MLFMM) [3,4], 

adaptive integration method (AIM) [5], adaptive cross 

approximation (ACA) algorithm [6], and characteristic 

basis function method (CBFM) [7-9], the calculation 

efficiency by these methods at single frequency point is 

greatly improved. However, if the RCS is highly 

frequency dependent, one needs to do the calculations 

at finer increment of frequency to obtain an accurate 

representation of the frequency response, which must 

be computationally intensive. Thus, how to utilize the 

information carried by few frequency points to obtain 

wideband RCS in the given frequency band is of great 

importance. Therefore, scholars put forward many 

efficient methods. In [10], MLFMM is combined with 

impedance interpolation technology to analyze the 

wideband electromagnetic scattering problems. In 

[11], MLFMM is combined with the best uniform 

approximation to calculate the wideband RCS of objects. 

However, all the above methods still rely on an iteration 

method to solve linear equations, which needs to face 

unpredictable problems of convergence rate. In [12-14], 

asymptotic waveform evaluation (AWE) technology 

is used to analyze the wideband electromagnetic 

scattering problems and achieves good results. But this 

technology needed to store dense impedance matrix and 
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frequency derivative of impedance matrixes, which 

enlarged the memory requirement. So in [15], AWE 

based on the CBFM (AWE-CBFM), is proposed to 

analyze the wideband electromagnetic scattering 

problems. In [16], adaptive modified CBFM combined 

with model-based parameter estimation technology 

(AMCBFM-MBPE) is proposed to analyze the wideband 

and wide-angle electromagnetic scattering problems. 

Though the above two methods utilized CBFM to 

accelerate the solving speed of interpolation point and 

reduce memory consumption, these two methods need 

to recalculate the characteristic basis functions (CBFs) 

at each interpolation point. Hence, in [17], an ultra-wide 

band characteristic basis function method (UCBFM) is 

proposed to analyze the wideband electromagnetic 

scattering problems, without having the construction 

of CBFs for each frequency repeatedly. The CBFs 

constructed at the highest frequency point, termed ultra-

wide band characteristic basis functions (UCBFs), 

entail the electromagnetic behavior at lower frequency 

range; thus, it follows that they can also be employed at 

lower frequency points without going through the time 

consuming step of constructing them again. However, 

the calculation errors of the RCS by UCBFM are great 

at lower frequency points; its universality is not strong. 

The lower accuracy at lower frequency points can be 

explained that the procedure are employed at lower 

frequency points using the discretization carried out at 

the highest frequency, this could lead to an increase of 

the condition number when calculating the impedance 

matrix [17]. Moreover, the corresponding reduced matrix 

at each frequency point still needs to be reconstructed, 

which is time-consuming. 

In consideration of the calculation errors by 

UCBFM are great at lower frequency points and the 

reduced matrix at each frequency point shall be 

reconstructed. An improved ultra-wide characteristic 

basis function method (IUCBFM) is presented in this 

paper. This approach fully considers the mutual 

coupling effects among sub-blocks, the secondary level 

characteristic basis functions (SCBFs) are calculated 

after the primary characteristic basis function (PCBFs) 

are obtained. Because IUCBFM considers the mutual 

coupling effects among sub-blocks, improved UCBFs 

(IUCBFs) contain more current information 

characteristics and have a stronger universality. Thus, 

it could greatly improve the calculation accuracy at 

lower frequency points. Furthermore, to avoid the 

reconstruction of reduced matrix at each frequency 

point, IUCBFM is combined with the best uniform 

approximation technology to quickly predict the surface 

current at any frequency point within the frequency 

band and further realize the calculation of wideband 

RCS of objects. The numerical results indicate that 

compared with traditional UCBFM, the method in this 

paper has significant improvements in calculation 

accuracy and efficiency. 

II. THE UCBFM
The UCBFM firstly divides the object into M  

blocks. Refer to the literature [18], the optimized 

selection of the number of dividing blocks is 
1/3

0.9 ,M N  where N is the total number of the RWG 

basis functions. Then, it establishes a model at the 

highest frequency point .hf  Multi-angle plane wave 

excitations are set to irradiate each block. Suppose N  

and N respectively represent the numbers of plane 

wave excitations in directions of   and ,  in total 

pws 2N N N  (two polarization modes are considered), 

noted as pws .
N

ihE To obtain PCBFs of each block, one 

must solve the following system: 
pws( ) ,

NCBF

ii h ih ihf  Z J E (1) 

where, 
iiZ is an 

iiN N  self-impedance matrix of 

block i , for 1,2, , ,i M  
iN  represents the number 

of the unknown numbers in block ;i pwsN

ihE  is an 

pwsiN N  excitation matrix; and CBF

ihJ is the PCBFs 

matrix of dimension 
pws .iN N  

Typically, the number of plane waves we have 

used to generate the CBFs would exceed the number of 

degrees of freedom (DoFs) associated with the block, to 

eliminate the redundant information in CBF

ihJ caused by 

overestimation, an orthogonalization procedure based 

on singular value decomposition (SVD) method is used 

to reduce the final number of CBFs, only those whose 

relative singular values above a certain threshold, for 

example, 1.0E-3, are retained as UCBFs. Suppose there 

are K  UCBFs for each block after SVD, where K  is 

always smaller than 
pws .N  The surface current can be 

expressed as a liner combination of the UCBFs as 

follows: 

1 1

( ) ,k

M K
CBFk

m m

m k

f J
 

J (2) 

where, kCBF

mJ  represents the 
thk  UCBFs of block ;m

and ( )k

m f  represents the unknown weight coefficients. 

Galerkin method is used to convert the traditional MoM 

equation into a linear equation about coefficient matrix 

( ).f  We can get a KM KM  reduced matrix: 

( ) ( ) ( ),f f f Z V
R R (3) 

where, T( ) ( )R

i iV f f J E , for 1,2,3, , ;i M  and T 

represents transposition. ( )fZ
R  represents the reduced 

impedance matrix of dimension KM KM . Its detailed 

calculation expression can be expressed as below: 
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T( ) ( ) ,R

ij jZ f f  J Z J
i  

(4) 

where, ( )j fZ
i

 represents the impedance matrix between 

blocks i and j at frequency .f Because the dimensionality 

of ( )fZ
R  is small, ( )f  can be obtained by directly 

solving Eq. (3). Then, ( )f  is substituted into Eq. (2). 

In this way, the surface current J  at any frequency f  

can be obtained. Though UCBFs can be reused at each 

frequency point, when f changes, the impedance matrix 

( )j fZ
i  needs to be recalculated and ( )fZ

R also needs 

to be reconstructed. It can be seen from Eq. (4) that 

numerous vector–matrix–vector products are present in 

the reduced matrix calculation process. Thus, it is not 

advisable to reconstruct the reduced matrix at each 

frequency point. 

III. THE IUCBFM
To improve the calculation accuracy of UCBFM at 

lower frequency points, the construction of UCBFs is 

improved by considering the mutual coupling effects 

among sub-blocks. A model is established at the highest 

frequency point 
hf in the given frequency band and the 

number of plane wave excitations is reduced. For each 

plane wave excitation, the SCBFs are calculated after 

the PCBFs are obtained. The PCBFs of block i  can be 

solved by the following formula: 

,P

ii i iZ J E (5) 

where, Ε
i  

represents the excitation vector of block i , 

for 1,2,3 ;i M  Z
ii

 represents the self-impedance of 

block i , with dimensionality of .i iN N  The PCBFs of 

block i  can be obtained by directly solving Eq. (5). 

After the PCBFs of each block are solved, according to 

Foldy-Lax equation theory [19,20], the SCBFs on a 

block are calculated by replacing the incident field with 

the scattered fields due to the PCBFs on all blocks 

except from itself. By solving Eq. (6), we can obtain the 

first-order SCBFs. Similarly, higher-order SCBFs can 

be calculated. If the second-order SCBFs are calculated, 

these SCBFs can be calculated as: 

1

1( )

,
M

S P

i ij j

j j i 

  Z J Z J
ii

(6) 

2 1

1( )

.
M

S S

i ij j

j j i 

  Z J Z J
ii

(7) 

By solving Eq. (6) and Eq. (7), we can obtain all-

order SCBFs. Let newN and 
newN  respectively indicate 

the number of plane wave excitations in the   and   

directions in the IUCBFM. After Eq. (5), Eq. (6) and 

Eq. (7) are solved, each block can obtain 6 new newN N   

CBFs, including 2 new newN N  ,P

iJ 2 new newN N 
1S

iJ and 

2 new newN N 
2 .S

iJ  To reduce the linear dependency 

among these CBFs, we also need to use an SVD 

procedure. After the SVD procedure, the CBFs are 

retained as IUCBFs. The construction of IUCBFs fully 

considers the mutual coupling effects among sub-blocks, 

this not only enables IUCBFs to contain more current 

information characteristics but also greatly decreases 

the number of plane wave excitations, which improves 

the construction efficiency of IUCBFs. 

IV. THE BEST UNIFORM

APPROXIMATION
To avoid the reconstruction of reduced matrix at 

each frequency point, IUCBFM is combined with the 

best uniform approximation [21] to analyze the 

wideband electromagnetic scattering problems. After 

Chebyshev nodes in the given frequency band are 

solved, IUCBFM is applied to calculate the surface 

current at each Chebyshev node. There is no need to 

recalculate CBFs at each Chebyshev node, because the 

IUCBFs can be reused at each Chebyshev node. 

Finally, the best uniform approximation technology is 

used to fast predict the surface current at any frequency 

point in the frequency band and further realize the fast 

calculation of wideband RCS.  

For a given frequency band  , ,a bf f f  it 

corresponds to range of wave-number  , .a bk k k  The 

normalized transformation of k is given by: 

2 ( )
,a b

b a

k k k
k

k k

 



(8) 

According to Eq. (8), the range of k  is easy to 

obtain as  1,1 . Then, the surface current ( )I k  can be

calculated by: 

( ) ( )
( ) ,

2

b a a bk k k k k
I k I

   
  

   

(9) 

and the Chebyshev approximation for ( )I k  is given by: 

1
0

0

( ) ( )
( ) ( ) ,

2 2

n
b a a b

l l

l

k k k k k c
I k I c T k





   
   

 
 (10) 

where, 
1

2
( ) ( ),

n

l i l i

i

c I k T k
n 

   lT k is the Chebyshev 

polynomial. 

The recursion formula about  lT k  is concluded as: 

 

 

   

0

1

1 1

1

,

2 ( )l l l

T k

T k k

T k kT k T k 

 

 




 

(11) 

( 1,2 )ik i n  denotes the Chebyshev node within the 

range of normalized wave-number and its expression is: 
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0.5
cos ,i

i
k

n


 
  

   

(12) 

the corresponding wave-number  ,i a bk k k could be 

obtained by: 

( ) ( )
.

2

i b a a b

i

k k k k k
k

  
 (13) 

By solving Eq. (10), the surface current of the 

object at any frequency point in the whole wideband 

can be got and further fast calculation of wideband RCS 

can be realized. 

V. NUMBERICAL RESULTS 
To verify the validity and accuracy of the proposed 

method, three test samples are presented. All simulations 

are completed on a personal computer with an Intel(R) 

Core(TM) i3-2120 CPU with 3.3 GHz (only one core is 

used) and 4 GB RAM. The threshold of the SVD is set 

to 310 ,  and all the objects are illuminated by a normally 

incident x̂ -polarized plane wave with the incident 

direction of ( , ) (0 ,0 ).    

First, we consider the scattering problem of a PEC 

sphere with radius of 0.3 m over a frequency range of 

0.1 GHz to 1 GHz. The geometry is divided into 2346 

triangular patches with an average length of / 10  at 

1 GHz. The object is divided into 8 blocks, and each 

block is extended by 0.15   in all directions, thus 

resulting in 5250 unknowns. Referring to the literature 

[17], we construct the CBFs for the UCBFM, 20 plane 

wave excitations in directions of   and   are set, this 

approach results in a total of 800 CBFs. After SVD, 106 

UCBFs (average value) are retained on each block; the 

construction time of UCBFs is 256s. In IUCBFM, 8 

plane wave excitations in directions of   and   are set 

and the second-order SCBFs are calculated. This results 

in only 384 CBFs for each block, including 128 PCBFs, 

128 first-order SCBFs and 128 second-order SCBFs. 

Although the SVD procedure is respectively used on 

PCBFs and all-order SCBFs. After SVD, the numbers 

of ,P
J  1 ,S

J  and 2S
J  retained on each block are shown 

in Table 1. It can be seen that the second-order SCBFs 
2S

J have a strong linear correlation and have small 

influences on final current. Thus, the calculation of the 

first-order SCBFs is enough. With the decreasing 

number of incidence wave excitations and dimensionality 

of CBFs matrix, the construction time of IUCBFs is 

171s, with a higher efficiency. The   polarization 

bistatic RCS calculated at 300 MHz by UCBFM and 

IUCBFM are shown in Fig. 1. It can be seen that the 

IUCBFs contain more current information characteristics 

and have higher accuracy at lower frequency points. 

The number of UCBFs and the accuracy of the two 

methods mainly depend on the threshold of the SVD. 

The computational time and accuracy of the two 

methods at different threshold of the SVD are shown in 

Table 2. The relative error Err is defined as 

 MOM 2 2MoM 100%, I I I  where 
MOM

I  is the current 

coefficient vector computed at the frequency of 300 MHz 

by the MoM, and I  is the current coefficient vector 

computed by the UCBFM or the IUCBFM. 
2

 denotes 

vector-2 norm. Through a comparison of Err versus the 

threshold of the SVD given in Table 2, we find that the 

IUCBFM can yield a satisfactory result with a small 

threshold, and the IUCBFM has a higher efficiency. In 

consideration of the CPU time and the number of the 

UCBFs, the threshold of SVD is selected as 3
10 .  With 

a frequency step of 9 MHz, the wideband RCS obtained 

by using UCBFM and IUCBFM are shown in Fig. 2. It 

can be seen that the results at the lower frequency 

points calculated by IUCBFM are more accurate than 

those calculated by UCBFM. 

Table 1: Number of CBFs retained on each block after 

the SVD of IUCBFM 

CBFs 1 2 3 4 5 6 7 8 
P

J 52 52 52 52 52 52 52 52 
1S

J 47 47 47 47 47 47 47 47 
2S

J 0 0 0 0 0 0 0 0 
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Fig. 1. Bistatic RCS in   polarization of the PEC 

sphere at 300 MHz. 
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Fig. 2. Wideband RCS of the PEC sphere. 
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Table 2: CPU time and accuracy for varying the 

threshold 

Threshold 

of SVD 

UCBFM 

SVD 

Time (s) 

Number 

of UCBFs 

CPU 

Time (s) 

Relative 

Error (%) 

0.05 129.6 337 208.1 15.23 

0.01 129.7 510 236.9 11.23 

0.005 129.9 638 248.5 9.13 

0.001 130.1 852 289.3 7.78 

0.0008 130.2 1053 302.3 7.70 

0.0005 130.4 1261 335.1 7.68. 

Threshold 

of SVD 

IUCBFM 

SVD 

Time (s) 

Number 

of UCBFs 

CPU 

Time (s) 

Relative 

Error (%) 

0.05 43.3 294 141.5 9.12 

0.01 46.9 451 170.6 7.68 

0.005 47.8 586 192.8 4.12 

0.001 48.7 792 208.3 2.67 

0.0008 48.8 905 225.4 2.63 

0.0005 48.9 1026 254.6 2.60 

We then consider the scattering problem of a 

complex conductor with top width of 0.15 m, bottom 

width of 0.075 m, height of 0.25 m. The frequency 

range starts from 0.1 GHz and terminates at 3 GHz. The 

discretization in triangular patches is conducted at 3 GHz 

with a mean edge length of /10 , thus leading to 5084 

unknowns. The target is divided into 4 blocks in the 

axis z  direction. In UCBFM, 20 plane wave excitations 

in directions of   and   are set, 146 UCBFs are 

retained on each block. With a frequency step of 29 MHz, 

the wideband RCS of the target is calculated by 

UCBFM. When IUCBFM is used, 8 plane wave 

excitations in directions of   and   of are set and the 

first-order SCBFs are calculated. 124 IUCBFs are 

retained on each block after SVD. The wideband RCS 

of the target is calculated by combing IUCBFM and the 

best uniform approximation (IUCBFM-Chebyshev). As 

shown in Fig. 3, the results obtained by the IUCBFM-

Chebyshev with order of 10 agree well with the results 

obtained by the commercial software FEKO, which 

used the conventional MoM solver. 

Finally, a 252.3744 mm PEC NASA almond is 

considered. We present the results for the problem of 

scattering over a frequency range from 0.1 GHz to 

3 GHz. The geometry is divided into 2684 triangular 

patches with an average length of /10  at 3 GHz, thus 

resulting in 5752 unknowns. The target is divided into 4 

blocks in the axis x  direction. In UCBFM, 20 plane 

wave excitations in directions of   and   are set, 121 

UCBFs are retained on each block. In IUCBFM, 8 

plane wave excitations in directions of   and   are 

set. 102 IUCBFs are retained on each block. The 

wideband RCS calculated by using UCBFM and 

IUCBFM-Chebyshev with order of 9 are shown in 

Fig. 4. It can be seen that the results calculated by 

IUCBFM-Chebyshev have a better coincidence with 

those of FEKO. 
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Fig. 3. Wideband RCS of the composite PEC conductor. 

0.0 500.0M 1.0G 1.5G 2.0G 2.5G 3.0G

-50

-40

-30

-20

-10

0

R
C

S
/d

B
sm

f / Hz

FEKO

 UCBFM

 IUCBFM-Chebyshev(n=9)

Fig. 4. Wideband RCS of the PEC NASA almond. 

Table 3: CPU time and the relative error of the two 

methods 

Problems Method 

UCBFs 

Construction 

(s) 

Total 

Time 

(s) 

Relative 

Error 

(%) 

Problem 1: 

Sphere 

MoM --- 52142 --- 

UCBFM 256 39628 7.15 

IUCBFM 171 33469 2.95 

Problem 2: 

Composite 

Conductor 

FEKO --- --- --- 

UCBFM 268 31732 7.09 

IUCBFM- 

Chebyshev 
206 4589 3.01 

Problem 3: 

Nash 

Almond 

FEKO --- --- --- 

UCBFM 297 26641 6.91 

IUCBFM- 

Chebyshev 
198 3496 3.21 

The CPU time and the relative error of the above 

three problems using UCBFM, IUCBFM and IUCBFM-

Chebyshev are summarized in Table 3. We use the 

relative error (percent) of RCS to estimate the accuracy 

of the proposed method. The relative error is defined as: 
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pm ref

ref
1

RCS RCS1
Rel.Error(%) 100,

RCS

k k

k

N
f f

k f
N 

 
  
 
 
  (14) 

where 
pmRCS

kf
 is the RCS provided by the UCBFM, or 

the IUCBFM at the frequency of ,
k

f refRCS
kf

is the 

RCS provided by the MoM (FEKO), N is the total 

number of frequency points. Compared with the 

traditional UCBFM, IUCBFM improves the construction 

efficiency of UCBFs, but the calculation time of the 

wideband RCS does not decrease significantly. The 

reason for this is that the impedance matrix ( )j f
i

Z

should be recalculated when the f changes, and the 

reduced matrix at each frequency point needs to be 

reconstructed, there are many vector–matrix–vector 

products in the calculation of the reduced matrix, so the 

computation cost of IUCBFM is very expensive. In 

order to avoid the reconstruction of reduced matrix at 

each frequency, the IUCBFM combined with the best 

uniform approximation is used to calculate the wideband 

RCS of problem 2 and problem 3. It can be seen from 

the calculation time of problem 2 and problem 3 that, 

because the reduced matrix reconstruction at each 

frequency point is cut down, the calculation efficiency 

of IUCBFM-Chebyshev is greatly improved. 

VI. CONCLUSION
This paper puts forward an effective numerical 

method for calculating wideband RCS of objects by 

combining IUCBFM and best uniform approximation. 

This method improves the construction of UCBFs, 

the IUCBFs contain more current information 

characteristics and have a stronger universality, it 

improves the calculation accuracy at lower frequency 

points. In addition, in order to avoid the reconstruction 

of reduced matrix at each frequency point, the best 

uniform approximation technology is used to fast 

predict the surface current at any frequency point in the 

given frequency band and further realize the fast 

calculation of wideband RCS of objects. Several 

numerical results have indicated that compared with 

traditional UCBFM, the method proposed in this paper 

owns higher accuracy and efficiency. 
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