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Abstract ─ This paper presents an overview of design 

and functionality of the essential modules proposed to 

build a wideband hyperthermia system. Description is 

provided of the waveform shaper, power amplifier and 

applicator array modules. Big data analysis is presented 

to accelerate energy localization depending on a time 

reversal technique. Simulation results are provided 

assuming a cylindrical head phantom characterized with 

wideband dispersive tissue properties, and the obtained 

field maps are shown in different planes to visualize 

energy localization process. Results reveal that wideband 

operation has the potential to enhance energy localization 

in deep tumor regions while eradicating hot spots, as 

compared to conventional narrowband systems. 

 

Index Terms ─ Big data, double-ridge horn antenna, 

hyperthermia treatment, time reversal focusing, wideband 

power amplifier. 
 

I. INTRODUCTION 
Hyperthermia is known to be a promising therapeutic 

modality for curing cancer. In electromagnetic (EM) 

hyperthermia systems, the induced EM energy is used  

to elevate the temperature of malignant tissues to 40-

45C [1, 2]. Used in adjunct with radiotherapy and 

chemotherapy, hyperthermia treatment can reduce the 

vitality of malignant tissues and increase the effectiveness 

of therapeutic plans [3, 4]. Energy localization is 

required to be achieved onto intended regions without 

affecting the surrounding healthy tissues [5]. An effective 

hyperthermia treatment planning that caters for variations 

in age, size, tumor location and tissue properties is 

challenging. Development of a patient-specific treatment 

plan can be achieved, depending on robust energy 

focusing techniques along with high flexibility in system 

technical parameters. This research aims at enhancing 

the degrees of freedom of hyperthermia treatment system 

by using various channels and adopting wideband 

operation. Elevating the number of degrees of freedom 

allows the optimization of system performance on the 

expense of augmenting the complexity of data processing  

and analysis. Progress in big data analysis however, can 

be used to alleviate the complexity of developing patient-

specific hyperthermia treatment systems. 

With exponential growth of associated data in health 

care domains, big data is gaining considerable attention 

in terms of reducing cost, enhancing performance, 

developing standards and improving patient care [6, 7]. 

Characterizing data by volume, veracity, variety and 

velocity, big data analysis accelerates innovations in 

health care units [8, 9]. The evaluation tools associated 

with big data allow shifting from population based to 

patient specific plans. Patient specific planning allows 

improving the efficacy and specificity of treatment, and 

enhances patient care and comfort.  

This research proposes a modular treatment system 

that can be used for patient specific treatment of  

brain tumors. The main modules include head model, 

applicator array, power amplifier PA array, and waveform 

shaper. The modular nature of the proposed system 

provides flexibility of system parameters to allow 

optimizing energy localization to required regions, while 

reducing associated hot spots in healthy tissues.  

From big data perspective, the volume represents the 

complexity of our system related to the parameters of 

various modules. This includes the patient head model 

that identifies the size and location of each tumor as well 

as the wideband dispersive model of brain tissues. Data 

volume is also related to the characteristics of antenna 

element of the applicator array linked with system 

channels. Each channel is also associated with a PA  

that is characterized by frequency band of operation, 

maximum power, linearity and efficiency. In order  

to ensure the veracity of the proposed system we 

characterize each module under wideband operation. 

The waveform-shaping module is concerned with data 

variety. This module is associated with identifying the 

number of enabled channels as well as designing the 

excitation signal for each channel. The optimization tool 

associated with waveform-shaping module controls the 

velocity of the system, and we devise a robust wideband 

time reversal optimization tool to meet the velocity  
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requirements of the proposed system. 

 

II. PROTOTYPE OF WIDEBAND 

HYPERTHERMIA SYSTEM 
The proposed multi-channel wideband hyperthermia 

system for enhanced energy localization is shown in  

Fig. 1. The waveform-shaping module depends upon an 

optimization tool to obtain digital form of the excitation 

signal of each channel. The optimization tool estimates 

the optimum values of the phase and magnitude of each 

frequency subcarrier to achieve constructive interference 

or EM energy at the tumor region and destructive 

interference elsewhere.  

The optimization tool depends on accurate patient 

specific head model to account for the wideband 

dispersive properties of various tissues. A linearization 

tool is also integrated with the waveform-shaping module 

in order to equalize the distortion introduced by the 

power amplifier under wideband excitation, which can 

diminish the process of energy localization. 

Each channel consists of a digital to analog 

converter (DAC), and high power wideband amplifier to 

provide enough power to maintain required temperature 

levels at tissues. The wideband applicator elements should 

maintain appropriate radiation in the frequency band of 

operation. A feedback mechanism is added to monitor 

temperature maps and control the waveform-shaping 

module. Description of our proposed system is described 

next. 

 

 
 

Fig. 1. Prototype of four-channel wideband hyperthermia 

treatment system. 

 

III. MODULAR DESCRIPTION OF THE 

PROPOSED SYSTEM 
Based on Fig. 1, we present an overview of the 

design and functionality of each module independently 

with a focus on the response of each module under 

wideband excitation. 
 

A. The head model module 

Patient-specific model and properties of head tissue 

can be utilized to optimize system performance. In this 

research, the analysis depends on heterogeneous head 

phantom represented by a four-layered cylinder of radius 

10 cm is developed in CST Microwave Studio [10].  

The inner four layers depicts brain tissue (radius = 8cm), 

gray matter (radius = 8.4cm), cerebrospinal fluid (CSF) 

(radius = 8.9cm) and skull (radius = 9.4cm) respectively. 

This model is shown in Fig. 2. 

 

 
 

Fig. 2. Illustration of head phantom with an embedded 

tumor. 

 

The tumor is taken to be of spherical shape (radius 

is 2.5 cm), and is located at x = 3 cm, y = 4 cm and z = 0, 

where the origin is set at the center of the phantom. The 

dispersive dielectric properties of brain tissue and tumor 

under wideband excitation are chosen in accordance with 

[11-13]. 

 

B. The applicator module 

Several designs have been considered as heating 

applicators for hyperthermia treatment over the past few 

years. It includes  Vivaldi [14], antipodal [15], microstrip 

[16, 17] and horn [18] antennas. Double ridge horn 

antenna can be designed to provide good performance in 

a very large bandwidth. Therefore, the traditional horn 

antenna has been replaced by double ridge horn antennas 

(DRHA) because of high gain, good directivity 

performance, low back radiation, low voltage standing 

wave ratio, and high peak power handling capability in 

wide bandwidth, which makes it a promising heating 

source for hyperthermia treatment [19, 20]. Recent 

developments in DRHA design are reported in [21, 22]. 

Here in this research we propose a double ridge horn 

antenna comprising of coaxial feeding, waveguide part, 

and two side ridges made of base ridges and flares as 

shown in Fig. 3. 

The exponential section of the ridge profile is 

approximated by the following exponential equation: 

 𝑓(𝑥) = 0.02𝑥 + 2.5𝑒0.0305𝑥 . (1) 

Where x is the axial length in millimeter along the horn 

from the straight section of the ridge, and f(x) is the 

perpendicular distance in millimeter from the centerline 

of the horn. The physical dimensions of the proposed 

DRHA are aperture width = 100 mm, aperture height = 
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100 mm and antenna length = 111 mm. We choose a 

minimum distance of 5 mm between proposed antenna 

and head phantom illustrated in Fig. 4 for simulation 

purpose.  

 
 (a) 

 
 (b) 

 

Fig. 3. (a) Geometry of the proposed DRHA, and (b) 

illustration of adopted ridges. 

 

 
 

Fig. 4. DRHA with head phantom model. 
 

The simulated S11 and VSWR characteristics of  

the proposed DRHA antenna with and without head 

phantom model are shown in Figs. 5 and 6 respectively. 

It is evident from the figures that S11 (<10 dB) is 

achieved for frequency band of 0.48 GHz to 1.24 GHz 

and the VSWR is almost below a value of two for the 

observed band. The resulting E-field maps by exciting 

the antenna with different frequency subcarriers are shown 

in Figs. 7 to 10. The radiation patterns corresponding to 

the chosen frequencies are presented in Figs. 11 to 14. In 

order to evaluate values of specific absorption rate SAR 

inside the head phantom, we compute the power loss 

density and then acquire the SAR maps for different 

frequencies as depicted in Figs. 15 to 18.  
 

 
 

Fig. 5. Simulated S11 (dB) (y-axis) versus frequency 

(GHz) (x-axis) of the proposed antenna with and without 

phantom. 

 

 
 

Fig. 6. Simulated VSWR (y-axis) versus frequency 

(GHz) (x-axis) of the proposed antenna with and without 

phantom. 

 

 
 

Fig. 7. E-field map of the proposed DRHA antenna in the 

vicinity of head phantom at 0.5 GHz. 

 

 
 

Fig. 8. E-field map of the proposed DRHA antenna in the 

vicinity of head phantom at 0.75 GHz. 
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Fig. 9. E-field map of the proposed DRHA antenna in the 

vicinity of head phantom at 1 GHz. 

 

 
 

Fig. 10. E-field map of the proposed DRHA antenna in 

the vicinity of head phantom at 1.25 GHz. 

 

 
 

Fig. 11. Simulated radiation pattern of the proposed 

DRHA antenna at 0.5 GHz. 

 

 
 

Fig. 12. Simulated radiation pattern of the proposed 

DRHA antenna at 0.75 GHz. 

 
 

Fig. 13. Simulated radiation pattern of the proposed 

DRHA antenna at 1 GHz. 
 

 
 

Fig. 14. Simulated radiation pattern of the proposed 

DRHA antenna at 1.25 GHz. 
 

 
 

Fig. 15. Simulated SAR map inside the head phantom 

when the proposed DRHA antenna operates at frequecny 

of 0.5 GHz.  
 

 
 

Fig. 16. Simulated SAR map inside the head phantom 

when the proposed DRHA antenna operates at frequecny 

of 0.75 GHz. 
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Fig. 17. Simulated SAR map inside the head phantom 

when the proposed DRHA antenna operates at frequecny 

1 GHz.  

 

 
 
Fig. 18. Simulated SAR map inside the head phantom 

when the proposed DRHA antenna operates at frequecny 

1.25 GHz. 

 

As apparent from the figures, appropriate levels of 

SAR distribution can be achieved inside the phantom  

for different frequencies. However, to maximize SAR  

at tumor location and minimize outside the tumor, it 

requires wave-shaping of wideband energy radiated 

from an applicator array. This can be accomplished using 

energy localization methods such as time reversal 

technique. 

 

C. Power amplifier (PA) module 

The introduction of power amplifier in each channel 

is essential to allow deposition of enough energy into  

the intended tissue to raise the temperature and achieve 

hyperthermia therapeutic level. Wideband channels allows 

targeting superficial as well as deep-seated tumors. This 

invokes the requirement of PA providing high power 

levels, wideband and high efficiency characteristics.  

To achieve high efficiency, the PA has to be operated  

near its saturation, which causes the amplifier to behave 

non-linearly and yield harmonics and intermodulation 

products. This can severely degrade the performance of 

the energy localization. In this research, we devise a 

power amplifier that can exhibit high efficiency while 

maintaining good degree of linearity for a wideband 

frequency range of operation. 

The recent research trend in the area of wideband 

power amplifier design is the use GaN HEMT field 

effect transistors because of its high breakdown voltage 

level and current density as compared to its counterpart  

GaAs transistors. With the aim to achieve high power, 

several GaN HEMT based distributed power amplifiers 

are reported by researchers. It includes a wideband 

distributed power amplifier using a GaN HEMT to give 

40.4 dBm of maximum output power with a small signal 

gain of 10 dB and power added efficiency (PAE) of 

greater than 35% when operated in 700 MHz to 4.5 GHz 

frequency [23]. In another research effort, an ultra-

wideband GaN HEMT DA with a frequency range of  

20 MHz to 3 GHz, 37 dBm output power and PAE of 

27% is achieved using three GaN HEMT transistors [24]. 

A 5-W GaN HEMT, 0.35-8 GHz ultra-wideband power 

amplifier with average gain of 9 dB and PAE of 20% 

throughout the band is reported in [25]. 

In this paper we present the design of multi-octave 

GaN HEMT based wideband distributed power amplifier 

with almost flat gain of 10 dB from 0.2 GHz to 1.2 GHz. 

The maximum PAE achieved is 50%. This design is 

based on conventional distributed amplifier also known 

as travelling wave amplifier, consists of multiple FETs 

connected through drain and gate transmission lines as 

shown in Fig. 19. 

 

 
 

Fig. 19. Conventional distributed power amplifier. 

 

The power is amplified at each FET and it adds up 

in phase with the signal at each section. Since the gain is 

almost the same for each amplifier, higher gain-bandwidth 

product can be achieved. The main disadvantage of the 

distributed power amplifier is its efficiency, which is 

typically in the range of 20-35%. The efficiency however 

can be increased using different techniques. One approach 

is to reduce losses at the gate of FET by introducing a 

series capacitance [26]. Another approach is based on 

tapering of the drain line with no termination as proposed 

by [27]. We included both techniques in our design. 

In order to meet the output power requirement for 

hyperthermia treatment which typically varies between 

90-110W for each channel, we choose a CREE 

manufactured 120 watts bare-die GaN HEMT FET 

(CGH60120D) [28]. A three-cell cascade topology of  

the distributed amplifier (DA) is adopted based on 

conventional design of DA and then optimized for high 

efficiency, gain and power. The schematic of the designed 

DA is shown in Fig. 20. The structure is simulated using 

Advance Design System (ADS) simulation software  

by Keysight’s technologies. The values of lumped 

components used in the schematic are given in Table 1. 
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Fig. 20. Component level schematic of the proposed 

power amplifier. 

 

Table 1: Lumped parameters used in schematic 

Capacitors Value (pF) Resistors Value (Ohms) 

C 100 Rg1 710 

Cout 7 Rg2 830 

Cg1 0.3 Rg3 15 

Cg2 5.7 Rd 840 

Cg3 3 Rg 1200 

 
The small signal simulations are carried out with  

the biasing conditions of Vgs = -2.5 Volts and Vds = 28 

Volts. The HEMT has typically a larger gate-to-source 

capacitance ‘Cgs’ than its drain-to-source capacitance 

‘Cds’. In our case Cgs value is 34 pF, while, Cds is  

7.7 pF at -8 Volts of Vgs as stated in the datasheet of the 

HEMT.  

The bandwidth and efficiency can be improved  

by adding a series gate capacitance to lower the value  

of HEMT’s Cgs. The simulations therefore involved  

two steps: firstly, without the series capacitance and 

secondly, with an optimized series capacitance. The 

values of the optimized capacitances are listed in Table 

1. By adding the series capacitances to our HEMTs,  

their equivalent input capacitances which are directly 

proportional to its bandwidth can be approximated as; 

Ceq1 = Cgs ǁ Cg1 = 0.29 pF, Ceq2 = Cgs ǁ Cg2 = 4.88 pF, 

and Ceq3 = Cgs ǁ Cg3 = 2.75 pF. Thus, S11 and transducer 

power gain both are improved by adding the series gate 

capacitance Cg1, Cg2, and Cg3 as illustrated in Figs. 21 and 

22, respectively.  

To improve output power and power added 

efficiency Rd and Rg are chosen to be 840 Ω, while the 

optimized capacitances ‘C’ along with drain and gate 

line is chosen to be 100 pF. With this configuration, 

maximum efficiency achieved at 1.2 GHz is 50% with 

maximum output power of 49 dBm as shown in Fig. 23, 

which corresponds to 80 watts, approximately making it 

suffice to be used in each channel of the proposed 

hyperthermia treatment system. 

 

 
 

Fig. 21. S11 (dB) versus frequency (GHz), with and 

without series gate capacitance Cg. 

 

 
 

Fig. 22. Transducer gian S21 (dB) versus frequency 

(GHz), with and without series gate capacitance Cg. 

 

 
 

Fig. 23. Output power (dBm) & power added efficiency 

(%) versus input power (dBm) at 1.2 GHz. 

 

D. Waveform shaping module 
Energy localization in hyperthermia treatment is 

reported to be achieved using various techniques such as 

phased-arrays [29, 30], ultra-wideband beamforming 

approach [10], multi-frequency technique [31], transmission 

line approach [32, 33], time reversal techniques [34, 35],  
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temperature control feedback approach [36], projection 

algorithm [37], eigenvalue analysis [38] and SAR 

optimization techniques reported in [39-42].  

We chose time reversal (TR) optimization technique 

to achieve energy localization at tumor region. As 

compared to other SAR or temperature optimization 

techniques, it is more robust, as it estimates the phases 

and magnitudes of E-fields directly from wave simulation 

rather than measured data [35]. It also allows the use  

of sinusoidal or pulse form of input excitation signals. 

Typically, TR operation involves two steps [43, 44].  

In the first step, a virtual excitation source is placed  

at desired focusing position and energy is allowed to 

propagate through the heterogeneous head model. These 

field values are recorded at model surface and are 

processed in a time-reversed order, corresponding to 

conjugation in frequency domain. In the second step, the 

virtual source is removed and antenna applicators are 

placed at points of maximum field and are driven by the 

time-reversed signals. Because of the time invariance 

characteristics of EM field, the back-propagated time-

reversed fields has the capability to refocus at the initial 

position of the virtual source. Here in this study, we use 

a plane of virtual source at tumor center. This plane has 

a dimension of 1cm x 1cm and can be considered as grid 

of point sources, excited by each of the subcarriers. 

Mathematically, the field measured by an applicator 

at the phantom surface from the mth excitation point is 

given by: 

 𝑓(𝑡) = ∑ ℎ𝑚(𝑡) ⊗ 𝑒𝑚(𝑡)𝑀
𝑚=1 , (2) 

or 

 𝑓(𝑡) = ∫ ∑ ℎ𝑚(𝑡)𝑒𝑚(𝑡 − 𝜏)𝑑𝜏𝑀
𝑚=1

+∞

−∞
, (3) 

Where ⊗ represents the temporal convolution and 

ℎ𝑚(𝑡) is the linear propagation operator defined by 

Green’s function. This term includes the propagation 

effects of the medium from the mth excitation point  

to applicator. 𝑒𝑚(𝑡) corresponds to excitation signal of 

point source and 𝑓(𝑡) is the signal measured by the 

applicator. In frequency domain, Equation (3) can be 

written in matrix form as: 

 𝐹(𝜔) = 𝐻𝑚(𝜔)𝐸𝑚(𝜔). (4) 

The matrix 𝐻𝑚(𝜔) is the Fourier transform of  

the Green’s function. By assuming spatial reciprocity 

condition, the propagation between applicator and virtual 

point sources can be represented as: 

 𝐸𝑚(𝜔) =  𝐻𝑚
𝑇(𝜔) 𝐹(𝜔). (5) 

Here 𝐻𝑚
𝑇 is the transpose of 𝐻𝑚. For the time 

reversal step, the time reversal operation of Green’s 

function [ℎ𝑚(−𝑡)] in time domain is equivalent to 

complex conjugate in frequency domain. Therefore, the 

time reversing the spectrum of applicator’s output yields: 

𝐹∗(𝜔) = 𝐻𝑚
∗(𝜔)𝐸𝑚

∗(𝜔) = 𝐻𝑚
∗(𝜔)𝐸𝑚(𝜔). (6) 

Here 𝐸𝑚 is real and ‘∗’ represents the complex 

conjugate. By combing the previous two equations, the 

back-propagated signal at the initial source location can  

be achieved as: 

 𝐸𝑇𝑅(𝜔) =  𝐻𝑚
𝑇(𝜔) 𝐹∗(𝜔), (7) 

or 

 𝐸𝑇𝑅(𝜔) =  𝐻𝑚
𝑇(𝜔) 𝐻𝑚

∗(𝜔)𝐸𝑚(𝜔). (8) 

Where 𝐻𝑚
𝑇(𝜔) 𝐻𝑚

∗(𝜔) is known as time reversal  

(TR) operator. In this research, a time reversal (TR)  

tool is developed using MATLAB [45], which has the 

capability to interface with CST simulating environment 

to automate the process of field acquisition, TR processing 

and feeding back to the applicators.  

We investigate step 2 of the TR method by 

considering three planes xmax, ymax and zmin located 

on phantom surface at maximum value of x, maximum 

value of y and minimum value of z positions, respectively. 

The field resulted by excitation of the source at tumor 

center are collected at these planes, and TR tool is 

invoked to acquire field values, calculate the conjugate, 

and feed it back at planes positions. The fields are then 

ready to be back propagated towards tumor center, which 

is step 2 of the TR technique. In order to visualize energy 

localization at tumor region, we made three cut planes at 

tumor center located parallel to yz, xz and xy planes. The 

results are shown in Figs. 24 to 27, respectively.  

Figure 24 demonstrates that energy localization is 

more prominent in the tumor yz plane when xmax plane 

is chosen for step 2 of TR. When ymax plane is chosen, 

good energy localization is achieved in tumor xz plane 

as shown in Fig. 25. The focus of energy localization 

shifts to tumor xy plane when zmin is chosen as 

excitation plane for step 2 of TR. This is illustrated in 

Fig. 26. 

 

   
 (a) (b) 

   
 (c) (d) 

 

Fig. 24. Step 2 of TR energy locaization when (a) field 

from xmax plane is back-propogated towards tumor. 

Energy localization is shown at tumor center in yz (b), 

xz (c), and xy (d) planes. 
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(a)   (b) 

     
 (c)   (d) 

 

Fig. 25. Step 2 of TR energy locaization when (a) field 

from ymax plane is back propogated towards tumor. 

Energy localization is shown at tumor center in yz (b), 

xz (c), and xy (d) planes. 

 

     
 (a) (b) 

     
 (c) (d) 

 

Fig. 26. Step 2 of TR energy locaization when (a) field 

from zmin plane is back propogated towards tumor. 

Energy localization is shown at tumor center in yz (b), 

xz (c), and xy (d) planes. 
 

For the case when all fields at phantom surface  

is propagated backward to phantom in time reversal 

mode, the results are shown in Fig. 27. We now extend 

the results achieved in Fig. 27 to 3D visualization by 

considering two cases: narrowband and wideband 

excitation and investigating the results of TR energy 

localization for both cases. The results achieved for 

narrowband case is shown in Fig. 28, when all the four 

planes at phantom surface are excited with a single 

frequency carrier of 0.5, 0.75, 1 and 1.25 GHz respectively. 

The figure reveals the fact that good penetration of EM 

signal is achieved for low frequencies while sharp focus 

is accomplished for high frequencies. It implies that 

adopting a wideband TR approach can deliver enhanced 

localization of energy. Results for the wideband TR 

energy localization are shown in Figs. 29 and 30.  

For wideband operation, the results demonstrate the 

fact that increasing the number of frequency subcarriers 

can further improve energy localization. Heat generated, 

because of hotspots at the head interface, can be cooled 

down by the water coupling medium present between the 

applicator and the head. 

 

     
 (a) (b) 

     
 (c) (d) 

 

Fig. 27. Step 2 of TR energy locaization when (a) fields 

from four planes are back propogated towards tumor. 

Energy localization is shown at tumor center in yz (b), 

xz (c), and xy (d) planes. 

 

    
 (a) (b) 

    
 (c) (d) 

 

Fig. 28. 3D view of energy localization at tumor center 

for narrowband TR case when frequency is (a) 0.5 GHz, 

(b) 0.75 GHz, (c) 1 GHz, and (d) 1.25 GHz. 
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 (a) (b) 
 

Fig. 29. 3D view of energy localization at tumor center 

for wideband TR case when (a) two frequency subcarriers 

0.5 and 0.75 GHz are combined, and (b) three frequency 

subcarriers 0.5, 0.75, and 1 GHz are combined. 

 

 
 

Fig. 30. 3D view of energy localization at tumor center 

for wideband TR case when four frequency subcarriers 

0.5, 0.75, 1.0 and 1.25 GHz are combined. 
 

IV. DISCUSSION AND CONCLUSIONS 
A wideband, hyperthermia treatment system with 

the potential of enhancing energy localization is 

investigated and presented. The incorporated multi-

channel configuration allows enhancement in energy 

focus. The proposed system is described in big data 

domain with the aim to identify system parameters  

to expedite energy accumulation process with precision 

and accuracy. A modular description of the proposed 

system is presented focusing on the functionality of each 

module under wideband excitation. With the adopted 

modular approach, the system provides an increase in  

the number of degrees of freedom to allow performance 

improvement. A robust wideband waveform shaping 

technique is proposed based on an optimization tool  

to maximize SAR values at the affected regions and 

minimize the values in healthy tissues. The achieved 

results show that wideband energy can be controlled to 

target deep-seated tumor effectively.  

Clinical adaptation of such systems requires the 

development of real time optimization tool, which can  

be achieved using hardware acceleration and cluster 

computing techniques. Robust real time temperature 

monitoring is needed to provide a feedback mechanism 

to control energy excitation. With addressing of clinical 

challenges, the proposed system can improve the efficacy 

of hyperthermia treatment and enhance patient comfort 

and safety. 
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