
Parallel Higher-Order Method of Moments with Efficient Out-of-GPU

Memory Schemes for Solving Electromagnetic Problems

Zhongchao Lin, Yan Chen, Xunwang Zhao*, Daniel Garcia-Donoro, Yu Zhang,

and Huanhuan Zhang

School of Electronic Engineering

Xidian University, Xi’an, Shaanxi 710071, China

xwzhao@mail.xidian.edu.cn

Abstract ─ A distributed parallel Higher-order Method

of Moments (HoMoM) for solving electromagnetic

problems on CPU/GPU clusters is presented. An MPI/

OpenMP/CUDA parallel framework based on the GPU

context technique is designed. An out-of-GPU memory

scheme is employed to break the limitation of the GPU

memory. To improve the performance of data transferring

between main memory and GPU memory, an overlapping

scheme based on asynchronous technique and CUDA

streams is adopted. In comparison with the parallel CPU

version only, numerical results including a metallic

airplane and an airborne array with dielectric structures

demonstrate the high performance of the proposed method.

Index Terms ─ GPU-based HoMoM, GPU context, out-

of-GPU memory, overlapping, parallel framework.

I. INTRODUCTION
In the field of computational electromagnetics

(CEM), the method of moments (MoM) is widely used

for solving electromagnetic radiation and scattering

problems [1]. It is well known that direct lower/upper

(LU) decomposition solvers and iterative solvers are

the most common ways to solve the matrix equations

of MoM. In order to avoid slow convergence rates

or divergence issues of iterative solvers, direct LU

decomposition algorithms are utilized as matrix equation

solvers. Unfortunately, with the electrical size of problems

increasing, the solution time of LU solver increases

rapidly due to the computational complexity of O (N3),

where N is the number of unknowns. With the rapid

development in computer hardware capabilities, parallel

computing technique has been an efficiently approach

for solving extremely complicated engineering problems.

In recent years, the Graphics Processing Unit (GPU) has

become a prevalent commodity in parallel computing

due to its powerful computational capability.

Since the Nvidia GPUs programmed through the

CUDA API was introduced in 2006 [2], the GPUs

provide a very attractive, low-cost hardware platform for

CEM. The application of GPU in the area of CEM started

in the finite-difference time-domain method (FDTD). In

[3-5], the GPU-accelerated FDTD was implemented to

deal with the 2D and 3D simulation problems, a good

acceleration ratio can be obtained. However, MoM has

received relatively little attention in the GPU context.

The application of GPU acceleration using CUDA to

MoM is presented in [6-8], and an iterative solution

scheme for the linear system was adopted rather than

a direct solving scheme. In [9-11], a GPU-accelerated

implementation using Nvidia CUDA for the matrix

assembly of the MoM using Rao-Wilton-Glisson (RWG)

basis functions [12] was presented. However, the utilization

of MAGMA library [13] prohibits its application on a

distributed memory platform. In [14], an out-of-core

scalable approach that can break the restrictions of GPU

memory was introduced, but its performance get worse

without the optimization of data-movement between

GPU and CPU. In [15], an approach integrating the CUDA

computing directly into the ScaLAPACK framework

was presented and good speedup was obtained. However,

the scale of matrix can be factorized is limited by the

GPU memory. In very recent papers by Topa [16] and

Mu [17], some efficient out-of-core techniques of GPU-

accelerated MoM were presented, but these work are also

developed on a single CPU/GPU computing platform.

Under this situation, a hybrid parallel CPU/GPU

version of a higher-order method of moments (HoMoM)

is presented in this paper. The proposed technique makes

use of procedures with efficient out-of-GPU memory

schemes and able to run on distributed memory systems

with multiple CPU/GPU computing nodes. In the

particular case of this paper, the GPU is used to accelerate

the calculations of the LU decomposition during the

matrix factorization step. The scattering of an airplane

and the radiation of an airborne array are simulated to

demonstrate the acceleration performance of the proposed

algorithm. The implementation of the proposed hybrid

CPU/GPU technique is summarized as: 1) an efficient

MPI/OpenMP/CUDA parallel framework based on GPU

1054-4887 © ACES

Submitted On: October 31, 2016
Accepted On: August 26, 2017

ACES JOURNAL, Vol. 32, No. 9, September 2017781

context technique is adopted to implement the hybrid

parallel CPU/GPU procedures; 2) an efficient out-of-

GPU memory scheme is utilized to break the limitation

of GPU memory, thus offering a possibility of handling

complex EM problems; and 3) the asynchronous data

transfer and CUDA streams techniques are used to

overlap the data-movement and computation, which can

effectively avoid the time of data transfer between CPU

and GPU. Details about all these procedures are given in

Section III.

II. PARALLEL HIGHER-ORDER METHOD

OF MOMENTS
A brief review regarding the basic principles of the

integral equation theory, higher-order basis functions

and the LU decomposition algorithm is given in this

section. Readers are referred to [1] for an in-depth

discussion of the theory.

A. Integral equations

The electromagnetic theory employed in this paper

is based on the so-called Surface Integral Equations

(SIEs) [18] in the frequency domain for equivalent electric

and magnetic currents over dielectric boundary surfaces

and electric currents over Perfect Electric Conductors

(PECs). The set of integral equations obtained are solved

by using MoM, and specifically using the Galerkin’s

method. The code is able to handle inhomogeneous

dielectrics categorized by a combination of various

homogeneous dielectrics. Therefore, any composite

metallic and dielectric structure can be represented as

an electromagnetic system consisting of a finite number

of finite-size linear, homogeneous and isotropic regions

situated in an unbounded linear, homogeneous and

isotropic environment.

For general models, the integral equation employed

by the code is the well-known Poggio-Miller-Chang-

Harrington-Wu (PMCHW) formulation [1, 19]. However,

when one of the boundary surfaces between two different

regions is PEC, the magnetic currents are equal to zero

at the boundary surface and that equation degenerates

into the electric field integral equation (EFIE) [20].

B. Higher-order basis functions

In order to approximate the solution to the

aforementioned integral equation, higher-order

polynomials over wires and quadrilateral patches are

used as basis functions over relatively large subdomains

[1]. Typically, the number of unknowns for the HOBs

is reduced by a factor of 10 compared with that for

RWGs, and thus the use of HOBs significantly reduces

the computational complexity and memory requirement.

There are also some other advantages in using the

polynomial basis functions. For example, the intermediate

results obtained in evaluating the elements of the

impedance matrix for lower-order can be used in the

computation of the elements of the impedance matrix

when using higher-order polynomials. In addition, Green’s

function for each pair of integration points belonging

to two patches is only evaluated once. These advantages

improve the efficiency of the matrix filling for the HOBs

presenting a straightforward implementation.

C. LU decomposition algorithm

Once the system of equations is obtained, the code

makes use of the LU decomposition algorithm to

solve the problem and obtain the solution. Specifically,

the code uses the LU right-looking algorithm. This

decomposition technique mainly includes the pivoting

step, the panel column factorization, the panel row

update and, finally, the trailing submatrix update. Given

deeper details about the code involved on the LU

decomposition, the routines pzgetrf2, pztrsm and pzgemm

are the ones responsible of each of the steps. It is worth

noting that the update operations contribute more than

80% of the computation time for a large scale dense

complex matrix.

p
iv

o
ti

n
g

 (a)

 (b) (c)

Fig. 1. Processes of LU Decomposition in ScaLAPACK

or Intel MKL: (a) panel column factorization, (b) panel

row update, and (c) trailing update.

Figure 1 shows a summary of the algorithm where

the arrows indicate the data dependency on each step.

In this way, for example, during the pivoting step, all

the coefficients of the panel column have to be known by

all the MPI processes involved on the decomposition.

Then, network communication is required between these

processes degrading the parallel performance. This

behavior can be extrapolated to the rest decomposition

steps which are repeatedly executed until the factorization

is completed.

LIN, CHEN, ZHAO, ET AL.: PARALLEL HIGHER-ORDER METHOD OF MOMENTS WITH EFFICIENT OUT-OF-GPU MEMORY SCHEMES 782

III. HYBRID PARALLEL CPU/GPU

IMPLEMENTATION
Details about the implementation of the proposed

hybrid parallel CPU/GPU technique are given in this

section. The parallel implementation of the method is

described next meanwhile the out-of-GPU memory

scheme is detailed later. It is worth to mention that, only

using an MPI-based multi-node processing is not enough

to achieve good parallel performance. It is also required

an optimization on the data-movement between GPU

and CPU memory. All these details are described in the

next subsections.

A. Parallel framework based on GPU context

As any other computational technique running on

distributed memory CPU/GPU clusters, the proposed

GPU HoMoM implementation makes use of MPI to

perform the internode communication.

The simplest parallel framework one can consider is

to assign one CPU core and one GPU card to each MPI

process. However, typically, the number of GPU cards

is usually less than that of CPU cores available in the

system. Under this scenario, there is an unmatched

situation between MPI processes and GPU cards, which

would lead to an unbalanced computing power in the

different MPI processes. In order to alleviate this issue,

different techniques reduce the number of MPI processes

of each node to match with the number of GPU cards,

meanwhile, multi-threads techniques (i.e., OpenMP) are

adopted to make full use of the CPU cores of each node.

This improved scheme assigns multiple CPU cores and

one GPU card to each MPI process, ensuring a good

balance between the computes nodes. However, due

to the low number of MPI processes involved on the

execution (typically, CPU/GPU cluster has only one GPU

card per compute node), the amount of communication

needed increases rapidly reducing the performances of

the implementation. Therefore, the implementation of

an efficient parallel framework with good balance and

performance is not straightforward. Fortunately, the

context technique of CUDA makes this possible.

Based on the CUDA context technique, multiple MPI

processes can use a GPU card simultaneously.

Each MPI process opens a CUDA context on the GPU

card, and the resources of the GPU card are averagely

distributed to each MPI process. It is equivalent to

partition one GPU card into several virtual GPU cards.

Each MPI process can use its own virtual GPU resources

to accelerate the computing tasks. Note that the OpenMP

technique can also be adopted in this framework and the

communication between CPU cores and GPU context is

implemented by PCI-E system bus. The efficient parallel

framework based on GPU context is shown in Fig. 2.

It is worth noting that, in systems where only few

CPU cores are available per node, the number of virtual

GPU card can be equal to the number of CPU cores. In

this case, the OpenMP technique is not required to provide

a good power balance. However, when the number of

CPU cores available per node is larger, the GPU context

technique will consume a large amount of GPU resources.

Thus, the total performance of the implementation will

be drastically degraded. Then, the number of virtual

GPU card must be reduced and the OpenMPI technique

used.

R
A

M

MPI process

R
A

M

MPI process

R
A

M

MPI process

R
A

M

MPI process

R
A

M

MPI process

R
A

M

MPI process...

...

GPU
CONTEXT

GPU
CONTEXT

GPU
CONTEXT

...

GPU
CONTEXT

GPU
CONTEXT

GPU
CONTEXT

...

C
o

m
m

u
n

icatio
n

 (M
P

I)
CPU
core

CPU
core

CPU
core

CPU
core

CPU
core

CPU
core

CPU
core

CPU
core

CPU
core

CPU
core

CPU
core

CPU
core

T
h

read
s

T
h

read
s

T
h

read
s

T
h

re
ad

s
T

h
re

ad
s

T
h

re
ad

s

Fig. 2. MPI/OpenMP/CUDA parallel framework base on

GPU context technique.

B. Out-of-GPU memory scheme

As mentioned previously, the trailing update

operation in the LU decomposition algorithm contributes

in more than 80% of the computation time for a large

scale dense complex matrix. The, it seems appropriate

to accelerate the pzgemm routine employing the GPU

power. In this phase, the computing task of each process

is reduced to perform matrix multiplication in the form:

C=C-AB (see Fig. 3 (a)). The matrix C is located on

the process that executes the matrix multiplication,

while the matrices A and B are obtained through MPI

communication.

The data required for GPU to complete certain

compute tasks should be uploaded to it, so the size of the

uploaded data has influence on the performances. Thus,

in order to accelerate the whole matrix multiplication,

the matrices B and C are divided into two parts C1 and

C2, and B1 and B2, respectively. Then, the operation

C1=C1-AB1 is performed in the CPU cores, meanwhile

the operation C2=C2-AB2 is performed in GPU cards.

Fig. 3 (b) illustrates this process.

Note that when matrices B2 and C2 are too large

to fit in GPU memory, the previous scheme must be

ACES JOURNAL, Vol. 32, No. 9, September 2017783

improved and this memory limitation has to be broken.

Thus, an out-of-GPU memory scheme is implemented

where matrices B2 and C2 are split into smaller matrices

that can fit into the GPU memory. Then, through

multiple data transfer and calculation, the process of

trailing update is completed. Figure 3 (c) shows a sketch

of this out-of-GPU scheme.

B

A C

C=C-AB

 (a)

B1

A C1

B2

C2

CPU:C1=C1-AB1

GPU:C2=C2-AB2

B 1

A C 1

B 2 1

C 2 1

B2 2

C 2 2

…

…

B 2 n

C 2 n

CPU:C1 =C1 -AB 1

GPU:C2 i =C2 i -AB 2 i

 (b) (c)

Fig. 3. The out-of-GPU memory scheme.

C. Overlapping scheme

The previous out-of-GPU memory scheme

overcomes the restriction of GPU memory, offering the

possibility of handling complex electromagnetics (EM)

problems. However, the data transfer between CPU

and GPU is a time consuming process. Fortunately, the

asynchronous technique and CUDA streams can be used

to overlap it with the calculation.

Each MPI process opens several CUDA streams [21]

on the GPU context (see Fig. 4). The CUDA stream are

similar to a CPU pipeline operation queue. Then, matrices

B2 and C2 are split into smaller matrices according to Fig.

3 (c). These smaller matrices will be transferred to the

GPU memory thought different CUDA streams using

the CUDA asynchronous data transfer function. After

the GPU calculation is completed, the results will be

transferred back to RAM in the same way. Note that this

transfer process must be executed when the number of

CUDA streams is less than the number of smaller

matrices.

This overlapping scheme consists of three different

operations: data transfer from CPU to GPU, GPU

calculation and data transfer from GPU to CPU, these

operations are performed by different hardware units.

To control the time sequence, the operations in the

same CUDA stream must be performed once at a time.

However, different operation in different CUDA streams

can be done in parallel. Note that the same operation

cannot be executed at the same time in two different

CUDA streams since they are performed by the same

hardware unit.

R
A

M

CPU

core

MPI process

R
A

MCPU

core

MPI process

CONTEXT2

CONTEXT1

stream1

stream2
stream3
stream4

stream1

stream2
stream3
stream4

Fig. 4. MPI process opens CUDA streams on GPU

context.

For example, in Fig. 5, we have four CUDA streams

and the three operation marked with different colors.

When one of the streams is involved in data transferring,

another can be used for calculations at the same time.

The data transfer and calculation of different CUDA

streams can be executed in parallel, so the communication

time is hidden. Moreover, the only work that CPU does

is to start the GPU kernel function. Then CPU will do its

own work without waiting for the ending of the GPU

computing.

t

Stream

1

2

3

4

CPU to GPU Compute GPU to CPU

Fig. 5. Overlapping scheme of communication and

computation on GPU context.

IV. NUMERICAL RESULTS
In order to demonstrate the correctness and the

parallel performance of the proposed hybrid parallel

CPU/GPU technique different benchmarks are run. The

first test consists of the scattering analysis of PEC sphere

used to check the correctness of the implementation.

LIN, CHEN, ZHAO, ET AL.: PARALLEL HIGHER-ORDER METHOD OF MOMENTS WITH EFFICIENT OUT-OF-GPU MEMORY SCHEMES 784

The second test consists of the analysis of a perfectly

conducting cylinder. This test is used to check the parallel

performance of the method. Finally, some analysis of a

real airplanes and antennas are presented to demonstrate

that the method can solve real electromagnetic challenging

problems.

The computational platform used for these

benchmarks is a high performance GPU cluster with

seven computing nodes. Each computing node has two

Intel Xeon two 12-core Intel Xeon E5-2692v2 2.2 GHz

EM64T processors (12×256 KB L2 Cache and 30 MB

L3 Cache), one NVIDIA Tesla K20c GPU card (4.6 GB

memory of available) and 64 GB RAM. The nodes

are connected with Infiniband switches. The code is

developed using the FORTRAN/C/C++ hybrid languages

based on MPI.

A. Correctness of the implementation

To validate the accuracy and efficiency of the

proposed hybrid parallel CPU/GPU technique the analysis

of a PEC sphere with radius of 10 λ is performed. The

excitation is a z-axis polarized plane wave propagating

along the x-axis direction. The sphere model (see Fig. 6)

is discretized into 3258 bilinear patches given a total

number of unknowns of 27,528. The bistatic RCS results

are given in Fig. 7. A comparison with the analytic Mie

solution is performed showing an excellent agreement.

B. Performance testing

The second test consists of the analysis of a perfectly

conducting cylinder that is infinitely long along one

direction and is illuminated by a transverse magnetic

(TM)-polarized plane wave. This benchmark is used to

check the performance of the method under different

configurations: (1) a single node with 4 MPI processes

(each MPI process opens 6 OpenMP threads) and one

GPU and (2) two nodes with 8 MPI processes (each MPI

process opens 6 OpenMP threads) and two GPUs.

Figure 8 shows the benchmarking results for double

precision complex matrices ranging from 1024×1024

to 56320×56320 elements in size. The K20c GPU with

4.6 GB of memory is limited to about 17000 unknowns.

Figure 9 shows the benchmarking results for double

precision complex matrices ranging from 1024×1024 to

78848×78848 elements in size. The two K20c GPUs with

2×4.6 GB of memory is limited to about 24000 unknowns.

z

x

y
o

Fig. 6. The model of a PEC sphere.

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180
-10

0

10

20

30

40

50

Theta (deg)

 Mie solution

 GPU-based LU Solver

σ
/
λ

2
(d

B
)

Fig. 7. RCS results in xoz plane from the PEC sphere

with radius of 10 λ.

0 10000 20000 30000 40000 50000 60000

0

500

1000

1500

2000

2500

 HoMoM

 GPU-based HoMoM

S
o
lv

in
g
 t

im
e(

s)

Number of Unknowns

Fig. 8. Performance against matrix size for two versions

of LU decomposition using a single node.

0 20000 40000 60000 80000

0

500

1000

1500

2000

2500

3000

3500

4000

 HoMoM

 GPU-based HoMoM

S
o
lv

in
g
 t

im
e(

s)

Number of Unknowns

Fig. 9. Performance against matrix size for two versions

of LU decomposition using two nodes.

A comparison between the results given by the

proposed hybrid parallel CPU/GPU technique and the

CPU version only are given in both figures. On a single

node, the computing speed of the 24 CPU cores with a

single GPU is about 2.3 times than that obtained by using

24 CPU cores alone. On two nodes configuration, the

computing speed of the 48 CPU cores with two GPUs is

about twice of that from using 48 CPU cores alone. The

results show that the proposed technique can save at least

50% of computation time on both distributed and shared

memory systems.

ACES JOURNAL, Vol. 32, No. 9, September 2017785

C. Performance analysis for metallic structures

This section contains the scattering results of a real

airplane. This benchmark demonstrates that the proposed

method can solve electromagnetic challenging problem

as well. The airplane model is shown in Fig. 10. The

airplane is 30.6 m long, 29.0 m wide and 11.8 m high. The

bistatic RCS of airplane is simulated at the frequency

440 MHz. The excitation is a z-axis polarized plane

wave propagating along the negative x-axis direction.

The airplane is discretized into 16,980 bilinear patches,

and the total number of unknowns is 135,501.

z

x
y

o

Fig. 10. The model of an airplane.

The two-dimensional (2D) RCS results are shown in

Fig. 11. The 2D results computed by the parallel CPU

version only are also given for comparison. Note that θ

coordinate is measured from xoy plane to z axis and φ

coordinate is measured from +x axis to y axis in this

paper. The computation parameters are listed in Table 1.

For this simulation, seven compute node of the described

computational platform were used.

Table 1: Computational parameters for the airplane

Computational

Resources
Solving Time (s) Speedup

24 CPU cores×7 2499.298 1

(24 CPU cores and

1 GPUs) ×7
1089.444 2.294

From the comparisons, one can see that the results

of both CPU version only and the proposed hybrid CPU/

GPU technique present a very good agreement. The

required memory of this simulation is about 274 GB when

the memory provided by the GPUs is less than 34 GB.

Thus, the proposed algorithm breaks the limitation of

the memory of the GPUs as it was described previously.

Regarding, the speedup between both codes, the hybrid

CPU/GPU code is over 2 times faster, while a speedup

of over 380 times is achieved compared to the sequential

CPU version only.

0 30 60 90 120 150 180 210 240 270 300 330 360

0

10

20

30

40

50

60

σ
／
λ

2 (
dB

)

Phi (deg)

 HoMoM

 GPU-based HoMoM

 (a)

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

-20

-10

0

10

20

30

40

50

60

 HoMoM

 GPU-based HoMoM

σ
／
λ

2 (
dB

)

Theta (deg)
 (b)

Fig. 11. 2D RCS of the airplane: (a) xoy plane and (b)

xoz plane.

D. Performance analysis for composite metallic and

dielectric structures

Finally, the radiation pattern of an airborne array

is presented. A microstrip array (20x4) is printed on a

substrate εr = 4.5 and μr = 1.0 and is housed in a 5.27 m

by 0.9524 m by 0.018 m cavity in a ground plane, as

shown in Fig. 12 (a). The feeding line for each patch

has the radius of 1.8 mm. The dimensions of each patch

element are 0.2056 m by 0.1548 m, and the gaps between

any two neighboring elements are 0.0579 m by 0.0833 m

along the length and width directions. The microstrip

array is installed 4.0 m above the airplane, as shown in

Fig. 12, and the distance between the center of the array

and the nose of the airplane is 15.4 m. A -30 dB Taylor

amplitude distribution is utilized in the array feed along

the y-direction and the mainlobe is also directed towards

the tail. The operation frequency of the array is 440 MHz.

The airborne model is discretized into 21,602 bilinear

patches, and the total number of unknowns is 155,494.

The 2D and 3D gain patterns obtained by the

proposed method are shown in Fig. 13. The 2D gain

patterns computed by the CPU version only are also

given for comparison where a very good agreement is

clearly seen. In addition, the computation parameters

LIN, CHEN, ZHAO, ET AL.: PARALLEL HIGHER-ORDER METHOD OF MOMENTS WITH EFFICIENT OUT-OF-GPU MEMORY SCHEMES 786

are listed in Table 2.

z
x

y
o

 (a)

z

x
y

o

Microstrip array

 (b)

Fig. 12. The airborne array model: (a) the microstrip

patch array with 20×4 elements, and (b) the airborne

microstrip patch array.

0 30 60 90 120 150 180 210 240 270 300 330 360
-30

-20

-10

0

10

20

30

 HoMoM

 GPU-based HoMoM

G
ai

n
(d

B
)

Phi (deg)
 (a)

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180
-40

-30

-20

-10

0

10

20

30

Theta (deg)

G
ai

n
(d

B
)

 HoMoM

 GPU-based HoMoM

 (b)

 (c)

Fig. 13. 2D and 3D gain patterns of the airborne array

antenna: (a) xoy plane, (b) xoz plane, and (c) 3D pattern.

Table 2: Computational parameters for the airborne array

Computational

Resources
Solving Time (s) Speedup

24 CPU cores×7 3749.444 1

(24 CPU cores

and 1 GPUs) ×7
1577.735 2.376

In this simulation, we can also see that the limitation

of the memory of the GPUs is broken. The required

memory of the airborne array (about 360 GB) is quite

larger than the available memory of the GPUs (about

34 GB). Moreover, a speedup of over 2 times is achieved

compared to the parallel CPU version only, while

compared with the sequential HoMoM version, the

speedup of the hybrid CPU/GPU technique is about 400

times.

V. CONCLUSION
In this paper, a hybrid parallel CPU/GPU HoMoM

method is presented and used to simulate the scattering

of an airplane and the radiation pattern of an airborne

array. The hybrid parallel CPU/GPU procedure is proved

to have a good speedup in the same degree of accuracy

compared with the parallel HoMoM using the Intel MKL

LU solver. The MPI/OpenMP/CUDA parallel framework

base on GPU context technique can support a large scale

of parallelism, which can fully exploit the computing

power of current distributed CPU/GPU clusters. The out-

of-GPU memory scheme overcomes the GPU memory

limitation is to utilize both the CPU and GPU memory,

which offering a possibility of handling complex

electrically large objects.

ACKNOWLEDGMENT
This work was supported in part by the China

Postdoctoral Science Foundation funded project under

Grant 2017M613068, in part by the National Key

Research and Development Program of China under

ACES JOURNAL, Vol. 32, No. 9, September 2017787

Grant 2017YFB0202102, in part by the International S&T

Cooperation Program under Grant 2016YFE0121600,

and in part by the Special Program for Applied Research

on Super Computation of the NSFC-Guangdong Joint

Fund (the second phase) under Grant No. U1501501.

REFERENCES
[1] Y. Zhang and T. K. Sarkar, Parallel Solution of

Integral Equation Based EM Problems in the

Frequency Domain. Hoboken, NJ: Wiley, 2009.

[2] “NVIDIA GeForce 8800 GPU architecture

overview,” NVIDIA Corporation, Santa Clara, CA,

Tech. Brief TB-02787-001_v0.9, Nov. 2006.

[3] S. E. Krakiwsky, L. E. Turner, and M. M. M.

Okoniewski, “Acceleration of finite-difference

time-domain (FDTD) using graphics processor

units (GPU),” in IEEE MTT-S Int. Microwave

Symp. Digest, pp. 1033-1036, 2004.

[4] M. J. Inman and A. Z. Elsherbeni, “Programming

video cards for computational electromagnetics

applications,” IEEE Antennas Propag. Mag., vol.

47, pp. 71-78, 2005.

[5] M. J. Inman, A. Z. Elsherbeni, J. G. Maloney, and

B. N. Baker, “Practical implementation of a CPML

absorbing boundary for GPU accelerated FDTD

technique,” ACES Journal, vol. 23, no. 1, pp. 16-

22, Dec. 2008.

[6] T. Takahashi and T. Hamada, “GPU-accelerated

boundary element method for Helmholtz’ equation

in three dimensions,” International Journal for

Numerical Methods in Engineering, vol. 80, pp.

1295-1321, 2009.

[7] S. Peng and Z. Nie, “Acceleration of the method of

moments calculations by using graphics processing

units,” IEEE Trans. Antennas Propag., vol. 56, no.

7, pp. 2130-2133, May 2008.

[8] M. J. Inman, A. Z. Elsherbeni, and C. J. Reddy,

“CUDA based LU decomposition solvers for CEM

applications,” ACES Journal, vol. 25, no. 4, pp.

339-347, Dec. 2010.

[9] E. Lezar and D. Davidson, “GPU acceleration of

method of moments matrix assembly using Rao-

Wilton-Glisson basis functions,” in Proc. ICEIE,

Kyoto, Japan, pp. V1-56-V1-60, 2010.

[10] E. Lezar and D. Davidson, “GPU-accelerated method

of moments by example: Monostatic scattering,”

IEEE Antennas Propag. Mag., vol. 52, no. 6, pp.

120-135, Dec. 2010.

[11] E. Lezar and D. B. Davidson, ‘GPU-based LU

decomposition for large method of moments

problems,” Electronics Letters, vol. 46, no. 17, pp.

1194-1196, 2010.

[12] S. M. Rao, D. R. Wilton, and A. W. Glisson,

“Electromagnetic scattering by surfaces of arbitrary

shape,” IEEE Trans. Antennas Propag., vol. AP-

30, no. 3, pp. 409-418, May 1982.

[13] Innovative Computing Laboratory, University

Tennessee, Knoxville, “MAGMA: Matrix Algebra

on GPU and Multicore Architectures,” 2009. [Online].

Available: http://icl.cs.utk.edu/magma/index.html

[14] E. DAzevedo and JC Hill, ‘Parallel LU factorization

on GPU cluster,” Procedia Computer Science, 9,

pp. 67-75, 2012.

[15] P. Du, S. Tomov, and J. Dongarra, “Providing GPU

Capability to LU and QR within the ScaLAPACK

Framework,” 2012. [Online] Available: http://www.

netlib.org/lapack/lawnspdf/ lawn272.pdf

[16] T. Topa, “Efficient out-of-GPU memory strategies

for solving matrix equation generated by method of

moments,” Electronics Letters, vol. 51, no. 19, pp.

1542-1544, 2015.

[17] X. Mu, H.-X. Zhou, K. Chen, and W. Hong,

“Higher order method of moments with a parallel

out-of-core LU solver on GPU/CPU platform,”

IEEE Trans. Antennas Propag., vol. 62, no. 11, pp.

5634-5646, 2014.

[18] P. Ylä-Oijala, M. Taskinen, and S. Järvenpää,

“Analysis of surface integral equations in

electromagnetic scattering and radiation problems,”

Engineering Analysis with Boundary Elements,

vol. 32, no. 3, pp. 196-209, 2008.

[19] R. F. Harrington, “Boundary integral formulations

for homogenous material bodies,” Journal of

Electromagnetic Waves and Applications, vol. 3,

no. 1, pp. 1-15, 1989.

[20] John L. Volakis and Kubilay Sertel, Integral

Equation Methods for Electromagnetics. Raleigh,

NC: SciTech Pub., 2012.

[21] NVIDIA Corporation, ‘CUDA API REFERENCE

MANUAL Version 5.0’, Oct. 2012.

LIN, CHEN, ZHAO, ET AL.: PARALLEL HIGHER-ORDER METHOD OF MOMENTS WITH EFFICIENT OUT-OF-GPU MEMORY SCHEMES 788

	JOURNAL
	ISSN 1054-4887

	page 2 of frontal always insert.pdf
	FRONTAL_MAY 2017
	JOURNAL
	ISSN 1054-4887

	Always replace second page with addition of Abouzahra.pdf
	02_ACES_Journal_20160117_SL_AZE headers.pdf
	I. INTRODUCTION
	II. FORMULATION
	III. STABALITY ANALYSIS OF FOURTH ORDER HIE-FDTD METHOD
	IV. NUMERICAL DISPERSION ANALYSIS
	V. NUMERICAL RESULTS
	CPU Time (s)
	Second-order
	14.40
	FDTD
	Fourth-order
	FDTD
	Second-order
	HIE-FDTD
	One-step-leapfrog
	Fourth-order HIE-FDTD
	VI. CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

	03_ACES_Journal_20160903_SL_AZE header.pdf
	I. INTRODUCTION
	II. LOSSY-ANI ALGORITHM
	III. NUMERICAL RESULT
	IV. CONCLUSION
	REFERENCES

	new page going forward to insert.pdf
	ALL OF THEM WITH HEADERS & NUMBERS and front.pdf
	06_ACES_Journal_20150819_SL_AZE header.pdf
	I. INTRODUCTION
	II. TRIANGULAR CLOAKS DESIGNING PROCEDURE
	III. HOMOGENEOUS CLOCK OF ARBITRARY SHAPE
	IV. CONCLUSION
	REFERENCES

	fix list and insert.pdf
	JOURNAL
	ISSN 1054-4887

	FRONTAL_MAY 2017 page on only special.pdf
	JOURNAL
	ISSN 1054-4887

	FRONTAL_MAY 2017new first page.pdf
	JOURNAL
	ISSN 1054-4887

	page 2 of frontal always insert.pdf
	FRONTAL_MAY 2017
	JOURNAL
	ISSN 1054-4887

	Always replace second page with addition of Abouzahra.pdf
	02_ACES_Journal_20160117_SL_AZE headers.pdf
	I. INTRODUCTION
	II. FORMULATION
	III. STABALITY ANALYSIS OF FOURTH ORDER HIE-FDTD METHOD
	IV. NUMERICAL DISPERSION ANALYSIS
	V. NUMERICAL RESULTS
	CPU Time (s)
	Second-order
	14.40
	FDTD
	Fourth-order
	FDTD
	Second-order
	HIE-FDTD
	One-step-leapfrog
	Fourth-order HIE-FDTD
	VI. CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

	03_ACES_Journal_20160903_SL_AZE header.pdf
	I. INTRODUCTION
	II. LOSSY-ANI ALGORITHM
	III. NUMERICAL RESULT
	IV. CONCLUSION
	REFERENCES

	new page going forward to insert.pdf
	ALL OF THEM WITH HEADERS & NUMBERS and front.pdf
	06_ACES_Journal_20150819_SL_AZE header.pdf
	I. INTRODUCTION
	II. TRIANGULAR CLOAKS DESIGNING PROCEDURE
	III. HOMOGENEOUS CLOCK OF ARBITRARY SHAPE
	IV. CONCLUSION
	REFERENCES

	fix list and insert.pdf
	JOURNAL
	ISSN 1054-4887

	FRONTAL_MAY 2017 page on only special.pdf
	JOURNAL
	ISSN 1054-4887

	FRONTAL_MAY 2017new first page.pdf
	JOURNAL
	ISSN 1054-4887

