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Abstract ─ The performance of the parallel out-of-core 

Higher-order Method of Moments (HoMoM) is analysed 

in this paper. The I/O to hard disks significantly affects 

the performance of the out-of-core algorithm. In order to 

reduce the I/O time, solid state drives (SSD) with high 

read and write speeds are utilized. The size of the in-core 

buffer allocated to each process, IASIZE, is tuned to 

achieve the optimum performance of the out-of-core 

algorithm. Numerical results show that the out-of-core 

algorithm using SSD exhibits better performance than 

that using SAS hard drives. As a challenging application, 

a slot array with 2068 elements is analysed using this 

method. 

 

Index Terms ─ HoMoM, out-of-core algorithm, SAS, 
slot arra, SSD. 

 

I. INTRODUCTION 
The method of moments (MoM) is a numerically 

accurate method for solving electromagnetic radiation 

and scattering problems [1-3]. However, for large 

complex objects, MoM needs a large amount of physical 

memory to deal with the dense impedance matrix. The 

matrix is usually too large to be stored in the main 

memory (RAM) of the system. One choice is using fast 

algorithms combined with iterative solvers, such as  

the multilevel fast multipole algorithm (MLFMA) [4]. 

However, slow convergence or even divergence often 

occurs when an object contains complex structures  

or diverse materials specially dealing with radiation 

problems. Other choice is using fast direct solver 

incorporate compression [5] to reduce the amount of data 

that has to be stored. However, the low rank property of 

the matrix is indispensable in this method, so it will 

expire most of time. 

An alternative solution is developing an out-of-core 

computation method using low-cost hard disks instead of 

memory to store data and using a direct solver like LU 

factorization for avoiding the slow convergence issue or 

the demand for low rank property of the matrix. The  

out-of-core algorithm is designed according to the  

multi-layered memory hierarchies of the computation 

machines, which uses memory as in-core buffer and  

hard disks to store large matrices. The major task of 

developing an out-of-core algorithm is adding an 

efficient hard-disk I/O interface to an in-core algorithm, 

including both matrix filling and matrix equation solving 

procedures. 

The state of the art high performance computing 

(HPC) technique can be employed to further improve  

the capability of the out-of-core algorithm. Due to the 

overhead of hard-disk I/O, the out-of-core algorithm 

typically requires more simulation time than its in-core 

counterpart. To reduce the I/O time, the high-speed SSD 

are utilized to accelerate the I/O [6, 7]. The radiation  

of an airborne antenna array is simulated to test the 

optimum IASIZE. Numerical results show that the 

performance of the out-of-core algorithm is affected by 

the value of IASIZE, the simulation time of the algorithm 

using SSD is reduced compared with that using SAS 

hard drives, and the developed parallel codes have 

excellent stability. 
 

II. HIGHER-ORDER METHOD OF 

MOMENTS 

A. Integral equations 

The method is based on the solution of Surface 

Integral Equations (SIEs) [8] in the frequency domain for 

equivalent electric and magnetic currents over dielectric 

boundary surfaces and electric currents over perfect 

electric conductors (PECs). The integral equation employed 

is the Poggio-Miller-Chang-Harrington-Wu (PMCHW) 

formulation [9, 10], which is solved in frequency domain 

for equivalent electric and magnetic currents over 

dielectric boundary surfaces and electric currents over 

perfect electric conductors (PECs). The set of integral 

equations are solved by using MoM, specifically the 

Galerkin’s method. 
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For the case when one of the two domains sharing  

a common boundary surface is a PEC, the magnetic 

currents are equal to zero at the boundary surface and 

therefore, the PMCHW formulation degenerates into the 

electric field integral equation (EFIE) [11]. 

 

B. Higher-order basis functions 

Higher-order polynomials over bilinear quadrilateral 

patches are used as basis functions over relatively large 

subdomains [9], 
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where, p and s are local coordinates, i and j are orders  

of basis functions, and 𝛂𝑝 and 𝛂𝑠 are covariant unitary 

vectors. The basis orders can be adapted to deal with 

nonuniform patches; that is to say for each patch may 

have completely different order in two directions. A 

quadrilateral patch is illustrated in Fig. 1. 
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Fig. 1. Bilinear quadrilateral patch defined by four 

vertices with the position vectors of r11, r21, r12, r22. 

 

The orders can be adjusted according to the electrical 

size of the geometric element. The orders become higher 

as the element size increases. The electrical size of the 

geometric element can be as large as two wavelengths. 

Typically, the number of unknowns for the HOBs is 

reduced by a factor of 5–10 compared with that for 

traditional piecewise basis functions, e.g., the RWG 

basis functions [12], and thus the use of HOBs drastically 

reduces the computational amount and memory 

requirement. Note that the polynomials can also be  

used as basis functions for wire structures. In this case, 

truncated cones are used for geometric modeling. 

For bilinear surfaces, the surface current is 

decomposed into its p and s-components; p and s being 

the two parametric coordinates of the unit quadrangle, p, 

s   [-1, 1]. The approximation for the s-component of 

the electric current is (analogous expressions hold for the 

p-component of the electric current and for the magnetic 

current): 
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where Np and Ns are the degrees of the approximations 

along the coordinates, and aij, ci1 and ci2 are the unknown 

coefficients. 

Expression (3) stands for the representation of the 

current in terms of edge basis functions Ei (p, s) and 

interior or patch basis functions Pij (p, s) which can be 

compactly expressed as: 
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Edge basis functions Ei2 and patch basis functions 

Pij are zero along the first edge (s=-1); being Ei1 and Pij 

zero along the second edge (s=1). Thus, the continuity 

equation can easily be imposed on a common edge.  

Figure 2 shows the different polynomials orders  

in use for the simulation of an microstrip antenna and  

the orders range from 1 to 4. The orders of the basis 

functions over the patches that close to the feed are 

higher than those over other patches, because the current 

distribution on these patches changes much faster than 

that over other patches, as shown in the inserted figure 

inside Fig. 2. 
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Fig. 2. Basis orders along p and s directions of each 
quadrilateral patch of the microstrip antenna. The basis 
orders are adaptive to the patch size along p and s local 
coordinates. 
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III. PARALLEL OUT-OF-CORE 

ALGORITHM 
The MoM is based on the solution of Surface Integral 

Equations (SIEs) [8, 13], and the integral equations are 

discretized into N×N dense matrix equations in a general 

form of: 

 AX = B , (8) 

where A is the complex dense matrix, X is the unknown 

vector to be solved for, and B is the excitation vector.  

The MoM is parallelized through partitioning the 

large dense matrix into blocks, which are uniformly 

distributed to Message Passing Interface (MPI) processes 

in a block-cyclic manner. As an example, assume that 

matrix A is divided into 6×6 matrix blocks, and distributed 

it to six processes in the 2×3 process grid. Figure 3 

presents the block-cyclic distribution methodology based 

on ScaLAPACK math libraries. Two factors, process 

grid and block size, significantly affects the performance 

of the parallel algorithm. The reader is referred to [14] 

for more detailed discussion of the theory. 
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Fig. 3. Block-cyclic distribution scheme: (a) a matrix 

consisting of 6×6 blocks; (b) rank and coordinates of 

each process owning the corresponding blocks in (a). 
 

The main idea of designing an out-of-core filling 

algorithm is to modify the in-core filling algorithm 

structure and fill a portion of the matrix at a time instead 

of the whole matrix. The detail procedure is shown in Fig. 

4. When performing an out-of-core LU factorization, 

each portion of the matrix is read into the RAM and the 

LU decomposition is started. On completion, the result 

of the LU factorization of this portion of the matrix  

is written back to the hard disk (HD). The code then 

proceeds with the next portion of the matrix until the 

entire matrix is LU factored. The memory is used as  

the in-core buffer for the out-of-core algorithm, and the 

buffer size, IASIZE, determines the number of portions. 

A larger value of IASIZE will lead to higher CPU usage, 

and this will result in faster computation. However, 

reading/writing a large file from/to the hard disk will 

need more time if the memory is not properly allocated. 
Therefore, the value of IASIZE is a critical factor for 

obtaining optimum performance. In the following sections, 

we investigate how the performance of a cluster is affected 

by the choice of the IASIZE parameter. 
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Fig. 4. The out-of-core algorithm. 

 

The left-looking variant of LU factorization, which 

requires less hard-disk I/O amount than the right-looking 

variant, is used and the total amount of I/O required is [2, 

13]: 

 
3

21 2 1
2

b b

b

n nM
O R M O W

n M M

      
        

      
, (9) 

where M is the order of the dense matrix, nb is the matrix 

block size, and R and W are the time required to read and 

write one matrix element, respectively. 

The read and write speeds of SAS and SSD that be 

monitored by paramon software [15] are shown in Fig. 5 

and Fig. 6. And the read and write speeds of SSD  

are higher than those of ordinary hard drives, e.g., SAS. 

Therefore, R and W in (9) can be reduced by using SSD. 
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Fig. 5. Write speeds of hard disk: (a) SAS and (b) SSD. 
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Fig. 6. Read speeds of hard disk: (a) SAS and (b) SSD. 

 

IV. NUMERICAL RESULTS 
The computational platform used in this paper is a 

HPC cluster with 64 computing nodes. Each computing 

node has two 12-core Intel Xeon E5-2692v2 2.2 GHz 

EM64T processors (12×256 KB L2 Cache and 30 MB 

L3 Cache), 64 GB RAM. Among these 64 computing 

nodes, 32 computing nodes include SSD and each 

computing node has two 400 GB Intel MLC SSD, and 

the other 32 computing nodes include SAS hard disks 

and each computing node has two 600 GB 10K rpm SAS 

hard disks. The nodes are connected with Infiniband 

switches. 

 

A. Correctness of the out-of-core algorithm 

To validate the accuracy and efficiency of the 

HoMoM, the monostatic analysis of the NASA almond 

is considered. The parametric equations that define  

the geometry of the NASA almond are well known  

and available in the literature [16]. The Non-Uniform 

Rationale B-Spline (NURBS) model is shown in Fig. 7. 

The comparison between the computed result and the 

measurement for 9.92 GHz is shown in Fig. 8. The results 

agree with each other very well. 

 

 
 

Fig. 7. NASA almond. 
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Fig. 8. VV polarized monostatic RCS of NASA almond 

at 9.92 GHz (0° starts from the x-axis in the xoy-plane). 

 

B. IASIZE optimization 

To find optimum IASIZE of the out-of-core 

algorithm using SSD and SAS, we calculate the radiation 

pattern of an airborne antenna array operating at 440 

MHz as shown in Fig. 9. The antenna is a microstrip 

patch antenna array with 333 units and the material 

parameters of the substrate are εr = 4.2 and μr = 1.0. The 

dimensions of the airplane and the array are 54.0 m×53.8 

m×10.5 m and 10.0 m×2.5 m×0.018 m, respectively. The 

number of unknowns (NUN) of the airborne array is 

308,371. In all the simulation, the number of computing 

nodes used is 8, namely 192 CPU cores. The result is 

given in Fig. 10.  

The time using different IASIZE is listed in Table 1. 

The measured wall time as a function of IASIZE is 

plotted in Fig. 11 and Fig. 12. From comparison, we can  
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see that the total time and matrix solving time of the  

out-of-core algorithm using SSD is evidently reduced 

compared with that using SAS, and the optimum IASIZE 

of the out-of-core algorithm using SSD and SAS are 3.0 

GB and 2.3 GB, respectively. 

Note that the optimum value of the IASIZE will vary 

slightly for the same platform when using different basis 

functions, or when running different projects with the 

same basis function. Also, the optimum value of the 

IASIZE may not be the same for different computational 

platforms. It is always advisable for the user to choose 

the proper IASIZE that 80%~90% of available memory 

size to avoid using virtual memory of the computer. 
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Fig. 9. Airborne array model: (a) the rectangular patch 

antenna array with 37×9 elements, and (b) the antenna 

array above an airplane. 

 

Table 1: Wall times when using different IASIZE 

IASIZE 

(GB) 

Total Time(s) LU Time(s) 

SSD SAS SSD SAS 

2.0 31538 35360 25788 29528 

2.1 30811 34194 25841 29086 

2.2 30920 34047 25938 28960 

2.3 31289 33524 26319 28488 

2.4 31342 33846 26177 28806 

2.5 30254 33961 26068 29705 

2.6 30210 35717 25986 30803 

2.7 30121 34507 25868 30228 

2.8 30272 37172 26000 32715 

2.9 30048 37123 25763 32460 

3.0 30008 38894 25734 33062 

3.1 30414 39344 26100 34177 

 

 
 

Fig. 10. 3D radiation pattern of the airborne antenna 

array. 
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Fig. 11. Wall time for matrix solving when using 

different IASIZE. 
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Fig. 12. Total wall time when using different IASIZE. 

 

C. Performance comparison of SSD, SAS and RAM 

In this section, we use the optimum IASIZE 

obtained in previous section to ensure best performance. 

We present one set of electromagnetic scattering results 

for demonstrating the performance of the out-of-core 

algorithm using SSD and SAS. The results of the in-core 
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algorithm are also given for comparison. The airplane 

model with dimensions of 11.6 m×7.0 m×2.93 m is shown 

in Fig. 13. The range of simulation frequency is from  

600 MHz to 2.3GHz and the corresponding numbers of 

unknowns are given in Table 2, where the time for matrix 

filling and matrix equation solving is listed. The results 

in Fig. 14 illustrate that the out-of-core algorithm does 

not result in loss of numerical accuracy of the MoM. 

According to Table 2, the performance comparison 

of the three solving approaches is evaluated and shown 

in Fig. 15. For the process of matrix filling, it can be seen 

that the in-core solver is the fastest, followed by the  

out-of-core solver using SSD, and out-of-core solver 

using SAS is the slowest. With the number of unknowns 

increasing, the difference among three approaches is 

more and more obvious. From the process of matrix 

equation solving, it can be seen that the performance  

of out-of-core algorithm using SSD is obviously better 

than using SAS and very close to the in-core algorithm. 

Because the matrix equation solving time is much longer 

than the matrix filling time, it can be concluded that the 

out-of-core algorithm using SSD achieves nearly the 

same performance as the in-core algorithm. 
 

 
 

Fig. 13. An airplane model. 
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Fig. 14. Bistatic RCS of the airplane at 2 GHz: (a) xoy 

plane and (b) xoz plane. The plane wave is incident along 

–x axis. 

 

Table 2: Simulation time for the airplane 

NUN 

Matrix Filling  

Time(s) 

Matrix Equation 

Solving Time(s) 

SSD SAS RAM SSD SAS RAM 

14482 4.07 4.06 3.66 7.80 7.88 7.45 

18689 4.76 4.79 4.16 13.27 13.90 12.75 

23293 7.53 7.55 6.66 20.88 21.01 20.39 

26943 10.38 10.33 9.11 29.50 29.39 28.47 

33415 14.32 14.39 12.60 50.85 49.59 47.41 

38964 22.14 22.08 19.35 73.26 72.63 69.28 

47411 31.10 31.13 27.35 121.7 120 114.7 

53307 32.63 32.55 27.93 165.1 163.4 156.6 

61515 41.82 42.09 35.57 262.0 258.1 251.8 

67552 46.35 46.53 39.35 325.2 321.9 320.4 

76459 62.05 61.28 51.17 450.7 445.6 435.8 

84059 74.00 75.69 62.88 610.8 651.3 575.7 

93509 95.82 105.2 79.08 828.5 861 783.8 

105905 114.1 126.1 94.89 1187 1243 1064 

115934 157.2 171.6 116.4 1542 1703 1400 

129012 202.6 221.6 146.3 2144 2548 1949 

145483 209.7 229.7 175.8 3071 4042 2677 

160770 380.1 493.4 228.2 4119 4903 3615 
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Fig. 15. Performance comparison of the out-of-core 

algorithm using SSD and SAS and the in-core algorithm: 

(a) matrix filling time, and (b) matrix equation solving 

time. 

 

D. Radiation calculation of a waveguide slot antenna 

In order to validate the stability of the parallel out-

of-core algorithm and further confirm the acceleration 

performance of SSD, the radiation problem of a 

waveguide slot antenna operating at 35GHz as shown in 

Fig. 16 is calculated. The antenna model is composed of 

24 waveguide components with a total 2068 slots, for an 

overall dimension of 66λ by 17λ. The total number of 

unknowns for this antenna is 660,779, which requires 

approximately 6.3 TB of storage to analyze the problem 

using double precision arithmetic. The general computer 

is unable to provide enough memory, so we use the 

parallel out-of-core MoM with higher-order basis 

functions. 

The computational parameters are listed in Table 3. 

We can see that the required memory of this simulation 

is about 6.3 TB and the provided memory of the CPUs is 

2.0 TB, so the parallel out-of-core algorithm has broken 

the limitation of the memory of the CPUs. Compared 

with the out-of-core algorithm using SAS hard drives, 

the acceleration percentage of the out-of-core algorithm 

using SSD is about 18.66%. The overall speedup does  

not seem that good, but the hard disk only affects the 

time of reading and writing files in the out-of-core 

algorithm, so it is in line with expectations. Actually, 

acceleration of 18.66% can also reduce a lot of 

computing time for very large problem. The SSD is used 

to accelerate out-of-core algorithm in here is mainly 

want to reduce the performance loss that caused by 

reading/writing hard disk compared with the in-core 

algorithm. The result is given in Fig. 17. This simulation 

demonstrates that the code is stable and can be used for 

even more unknowns as long as sufficient hard disk is 

available. 

 

 
 

Fig. 16. Waveguide slot antenna model. 
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Fig. 17. Radiation patterns of the waveguide slot antenna: 

(a) 3D radiation pattern, and (b) xoy plane radiation 

pattern. 
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Table 3: Computational parameters for the antenna 

NUN 
Storage 

(TB) 

Computational 

Resources 

Total Wall 

Time(s) 

660,779 6.354 
32 nodes with SSD 387,319 

32 nodes with SAS 476,156 

 

V. CONCLUSION 
The performance of the parallel out-of-core MoM  

is improved through SSD, and the sensitivity of the 

speedup on IASIZE is much less with the SSD than with 

the SAS disks. The proposed algorithm allows matrices 

to be written to the hard disk and is no longer limited to 

the size of the memory. The algorithm does not suffer 

from slow-convergence issue, and thus it is suitable  

for accurately modeling large electromagnetic problems 

including complex structures and diverse materials. 
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