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Abstract ─ A new algorithm known as interpolation 

gravitational search algorithm (IGSA) is proposed in  

this paper when be used to synthesize pattern for array 

with complicated side lobe and notch. First, a novel and 

adjustable coefficient q for inertia mass is introduced, 

which can render the particle large in inertia mass get 

larger and more attractive to other particles to access  

to more optimal location, so the convergence can be 

accelerated through varying the discrepancy of inertia 

mass Mi(t) of particles in a specific population. Second, 

a simplified quadratic approximation algorithm (SQA) is 

interpolated that can make the algorithm perform better 

in the aspect of optimum seeking, so the computational 

accuracy can be increased through utilizing the stronger 

local search ability of SQA. To verify the validation of 

the algorithm, the proposed IGSA is applied to commit 

pattern synthesis in terms of different targets. Simulation 

results show that the IGSA, as a whole, is better than  

the other algorithms the same kind, mainly because the 

IGSA can be possessed of faster speed in convergence 

and perform more accurate in optimization. 

  

Index Terms ─ Inertia mass coefficient, interpolation 

gravitational search algorithm, notches, side-lobe reduction, 

simplified quadratic approximation.  
 

I. INTRODUCTION 
The pattern synthesis for array antenna is a 

procedure with deliverables of antenna’s relevant 

parameters upon the required radiation. Since the pattern 

synthesis can greatly simplify design complexity and 

reduce design cost, it has increasingly become a hot 

research topic in the field of antenna design and  

study. The pattern synthesis belongs to the optimization 

problems. To solve the optimization problem, various 

meta-heuristic (M-HS) algorithms such as honey bee 

mating optimization (HBMO) [1], the sailfish optimizer 

(SFO) [2], the differential evolution algorithm (DE) [3] 

and the moth-flame optimization algorithm (MFO) [4] 

have been proposed recently. The genetic algorithm (GA) 

[5,6], the particle swarm optimization algorithm (PSO) 

[7,8] have been verified to be able to satisfy in the 

requirement of the pattern synthesis of array antennas.  

The gravitational search algorithm (GSA) [9] is one 

of the recent M-HS algorithms inspired by the law of 

gravity. In GSA, a particle is guided by the sum of 

gravitational force exerted on it by other particles. To 

search the optimum efficiently, various improvement 

versions for the original GSA algorithms have been 

presented, which can be classified into two categories. 

One focuses on improving the variable parameters [10]; 

The other is to combine other state-of-the-art algorithms 

with GSA to enhance GSA [11].While these efforts 

ameliorate the performance of GSA, GSA is easier to fall 

into local optimal and become quite lower in the speed 

of convergence whenever dealing with the problems in 

the application of pattern synthesis such as the lower side 

lobe’s level and the notches in specific location. Because 

the specified objective functions which are usually 

nonlinear, nondifferentiable and even discontinuous 

with multiple parameters, how to balance the exploration 

and exploitation according to evolutionary states is 

challenging. 

In this paper, an interpolation gravitational search 

algorithm (IGSA) is proposed. First, a novel and 

adjustable inertia mass coefficient q is configured which 

changes the distribution of inertial masses to improve  

the searching speed to the optimum; Subsequently, to 

overcome the drawback that GSA is easier falling into 

local optimal, the simplified quadratic approximation 

(SQA) is used as a local search operator and embedded 

into GSA to enhance the entire ability of optimal 

seeking. Based on different simulation examples, the 

IGSA can be verified to be better than the traditional 

GSA both in the convergence rate and in the solution 

accuracy, which can be proved that the proposed 

algorithm is more suitable for solving the issue of the 

complicated synthesis of array antenna such as ultra side  
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lobe and notches. 

The remainder of this paper is arranged as follows. 

Section II briefly describes the pattern synthesis 

framework. In Section III, a detailed introduction of  

the proposed IGSA is presented. The IGSA is used  

to simulate standard benchmark functions and design 

pattern synthesis in Section IV. Finally, Section V 

concludes this paper. 

 

II. PATTERN SYNTHESIS FOR LINEAR 

ARRAY ANTENNAS 
In terms of an equispaced linear array with N 

elements, the principle of pattern multiplication governs 

that the radiation pattern of this array will be equal to the 

multiplication of the pattern of element with the array 

factor, therefore, the pattern function normalized is:  

max

1

( 1) sin
( ) 20 log ( )* | | /

N

n

n

jk n d

eF F I e F


 




  

 
 , (1) 

where N is the number of elements, d is the distance 

between neighboring elements, 2k 


  is the wave 

number, In is the complex excitation of the nth element 

(amplitude and phase); θ is the included angle between 

the direction of radiation and the axis of array, maxF  is 

the maximum of the pattern function, ( )
e

F   is the pattern 

of element that represents the radiation feature of the 

element own, the current excitation amplitude is described 

as In n=1,2,…,N,N is the number of elements. 

The increasing traffic in the electromagnetic 

environment prompts to design the antenna array with a 

lower side lobe level (SLL). A lower SLL is required to 

avoid the interference with the other systems operating 

in the same frequency band. In this article, the design 

target of antenna synthesis is to make the side lobe level 

become lower than a specified value and create a deep 

notch in a designated location. The design of fitness 

function is determined by the design target. Therefore, 

the fitness function will be set by taking the following 

two aspects into consideration: 

1) The level of side lobe is lower than the expected 

target about the peak level of side lobe LESL.  

2) Given m directions ( 1, 2, ..., )
i

i m   in a region of 

side-lobe, forming notches which is deep in LENL. 

So the fitness function is designed as: 

 
fit

f =α|LMSL-LESL|+β|LMNL-LENL|, 
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the optimization objective is described as:  

 min
fit MSL ESL MNL ENL

f L L L L     , 

 subject to 
min maxnI I I  , (3) 

where LMSL is the maximum level of the side lobe in a 

real pattern; LMNL is the one within m direction in the side 

lobe domain, the level of which is the maximum notch; 

P is the domain of side lobe;   and   are the weights 

of error, 1   . The range of excitation current 

amplitude is 
min max

[ , ]I I , the penalty function method is 

used to deal with the constraint conditions, when the value 

of 
nI  exceeds the range, the corresponding objective 

value is set to the maximum, so that the individual can’t 

be selected into the next generation. To prevent the 

happening of the fitness value to be null, the issue about 

minimum specified by the equation closely above is 

going to be that of the maximum: 

 

100

1
fit

fit

f

f





. (4) 

 

III. DESCRIPTION OF INTERPOLATION 

GRAVITATIONAL SEARCH ALGORITHM 

A. The basic principle of GSA 

Different from these clustering algorithms like PSO, 

the particle in GSA is unnecessary to perceive situation 

in ambient through the factor of environment. On the 

contrary, the particle can share information through the 

gravitation applied each other. Therefore, when be 

influenced without the factor of environment, the particle 

can commence a search in terms of the environment 

perceived by overall situation. 

In GSA, the initial location of the particle is 

randomly produced. Given that there are N particles in a 

space for D dimensional search, the exact location for the 

ith particle is  1 2

1, 2,, , ,
d D

i i i i i
i Nx x x x x  , 

where, 
D

i
x  representing the location of the ith particle in 

D dimension.   

At the moment of t, 
d

ij
F  is the gravitation of the ith 

particle exerted by the jth counterpart, that is: 

 

( ) ( )

( ) ( )

( )

( ( ) ( ))
d d dpi aj
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where, Mpi(t) and Maj(t) are the inertia mass of the ith  

and the jth particles, respectively. ε is a quite small 

constant; G(t) is a gravitation constant at the moment t:

0

0
( )

t

TG t G e


 , ( )
ij

R t  is the 2-norm between the ith and 

jth particles:  

 2

( ) ( ), ( )
ij i j

R t x t x t
. 
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According to the Newton’s second law, the velocity 

of the ith particle at t on the dth dimension is:   

 ( 1) ( ) ( )
d d d

i i i i
v t rand v t a t    , (6) 

where, the acceleration is: 
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( )
i

M t  is the inertia mass of the ith particle. The inertia 

mass and the value of the fitness will be tough related 

each other. The inertia mass, as a measure used to scale 

the value of fitness, is involved into the movement of the 

particle, it can be revised by following:  
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where, , 1, 2, , ,
ai pi ii i
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





, ( )
i

fit t  denotes the value 

of fitness of the ith particle at the moment t. Upon the 

issue of maximum, best(t) and worst(t) represent the 

fitness’s maximum and minimum value at the moment t. 

In the process of iteration, the fitness value will be 

calculated through updating the location of particles. 

Result will be output subsequently (the location of 

particle) if either the calculation accuracy is satisfied or 

the maximal iteration time is reached, otherwise, the 

iteration should be started again: 

 ( 1) ( ) ( 1)
d d d

i i i
x t x t v t    , (9) 

 

B. The adjustable coefficient of inertia mass 

In GSA, the particle’s inertia mass is closely related 

to the value of fitness. Inertia mass, as a measure for 

scaling the value of fitness, involve the movement of 

location. If inertia mass is updated by the value of the 

function of fitness, it can be seen that the larger the 

inertia mass, the easier the attraction to other particles 

will be, which, as a result, will move to more optimal 

location. Therefore, in this paper, a novel and adjustable 

coefficient of inertia mass q is designed to change the 

discrepancy of particle’s inertia mass, which can make 

particle with large inertia mass larger, while particle with 

small inertia mass smaller. As a result, the velocity for 

the algorithm to converge to the maximum can be 

absolutely improved. When (8) is updated to (10): 
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where, )(
qi

M t  is the inertia mass of the ith particle at 

the t moment after adjustment, q is the adjustment factor 

of the inertia mass, ( )
AVG

f t  represents the mean value of 

the fitness at the moment t. min  and 
max  are the zoom 

factors, controlling the size and the change of the 

adjustable factor of inertia mass that is usually set by one 

just between 1 and 0. The value of the exponential weight 

0
  can be changed further to adjust the distribution  

of inertia mass. In this paper, 
min

0.1  ,
max

0.7  , 

0
3  . When ( )

i

fit t , the value of the inertia mass 

of the ith particle is equal to ( )
AVG

f t , the average value 

of all the particles at the time t, the inertia mass is 

unchanged, ( ) ( )
qi i

M t M t . Compared with the basic 

GSA, the size of q can be used to change the inertia mass 

of particle, making the discrepancy of particle’s inertia 

mass increase, which, as a result, will accelerate the 

speed to approach the optimal location, the velocity of 

convergence can thus be increased.  
 

C. The SQA algorithm  

As a simplified three point quadratic approximation, 

SQA is a simple, directive and efficient method for 

searching. It needn’t the message of derivative anymore, 

three points are enough for model delivery. Since the 

message of the objective function solved can be 

effectively utilized, the amount of calculation is quite 

small to bring more convenient to solve the issue of 

optimization. A combination method between SQA and 

DE is reported in terms of the problem of constraint 

optimization [12].After being optimized with respect to 

test function, it can be concluded that, compared with the 

original DE, this algorithm is more superior. This paper 

attempts to interpolate SQA into GSA for improving the 

algorithm’s overall performance.  

In terms of the issue of maximization, three optimal 

individuals 
a

x , 
b

x , 
c

x  are provided. In which, 
1 2

[ , , , ]
D T

a a a a
x x x x , 

1 2

[ , , , ]
D T

b b b b
x x x x , 

1 2

[ , , , ]
D T

c c c c
x x x x .
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The fitness function are ( ),
fit a

a
f f x  

( ),
fit b

b
f f x  ( ),

fit c

c
f f x  where 

a b c
f f f  . 

The approximation points achieved by SQA are: 
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M
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i a c c b b a
N x x f x x f x x f      .  

The interpolation of SQA into basic GSA can 

improve the problem that the algorithm is easy to fall into 

local optimal and can increase the velocity for particle to 

approximate the best.  
 

D. The procedure of IGSA  

The IGSA can be realized by following procedures:  

Step 1: Population Initiation 

Step 2: Gravitation calculation 

(1) Particle’s fitness value is calculated by  

equation (4), updated by G(t), ( ),
AVG

tf  best(t), worst(t), 

simultaneously. 

(2) Updating particle’s inertia mass by utilizing 

well-designed inertia mass coefficient q according to 

equation (11). Updating the total gravitation from all 

directions by equation (5). 

Step 3: Updating particle’s velocity by equation (6). 

Step 4: Updating particle’s location, the location is 

calculated by equation (9), updating the value of fitness. 

The result will be output (the location of particle) if 

either the calculation accuracy is satisfied or the maximal 

iteration times are reached, otherwise, turn to Step 2. 

Step 5: Interpolation into SQA 

(1) Calculating 
a

f ,
b

f ,
c

f , selecting three optimal 

particles 
a

x , 
b

x , 
c

x  to calculate fitness from Step 4.  

(2) Approximation point determination. If 0
i

N  , 

the Step 5 is omitted, otherwise the approximating point 

w
x  is calculated according to (12). In the meanwhile, 

fitness ( )
fit w

f x  is calculated. 

(3) Substitution. If ( )
a

fit w
f x f ,

w
x is used to replace 

the optimal 
a

x  in old population. If ( )
a b

fit w
f f x f  , 

w
x  is used to replace the worst case there; otherwise 

Step 5 is omitted. 

Step 6: Stop Judgment. If meeting stop criteria, the 

algorithm is terminated, the optimal result is output, 

otherwise turn to Step 2.  
 

IV. RESULT ANALYSIS 

A. Standard benchmark functions 

In this section, IGSA is compared with the MFO  

[4], PSOGSA [11], GSA, PSO, GA algorithms. The 

parameters of GSA and IGSA are set by the same  

as these in [9]. In benchmark functions, dimension is 

30(n=30) and maximal iteration is 1000(T=1000). The 

minimum value (
opt

f ) of the benchmark functions are 

zero, except for F4 which has a minimum value of  

-12569.487 (-418.9829*n, n=30). 

The results are averaged over 30 runs and the 

average best-so-far solution and median of the best 

solution in the last iteration are given in Table 1: 
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Table 1: Minimization results of benchmark functions with the average best-so-far solution and median of the best solution 

 IGSA PSOGSA MFO RGA PSO GSA 

F1 
1.69×10-18 5.31×10-16 1.49×10-15 23.13 1.8*10-3 7.3×10-11 

1.68×10-18 5.04×10-16 1.32×10-15 21.87 1.2*10-3 7.1×10-11 

F2 
7.38×10-10 3.65×10-8 2.05×10-11 11.78 8.1 3.7×10-6 

9.30×10-10 3.57×10-8 1.97×10-11 11.94 7.4 3.7×10-6 

F3 
2.78×10-18 4.39×10-15 6.23×10-12 24.01 1.0*10-3 8.3×10-11 

4.18×10-18 3.86×10-15 5.72×10-12 24.55 6.6×10-3 7.7*10-11 

F4 
-1.04×10+4 -6.83×10+4 -7.68×10+4 -1.2×10+4 -9.8*10+3 -2.8×10+3 

-1.45×10+4 -6.95×10+4 -7.41×10+4 -1.2×10+4 -9.8*10+3 -2.6×10+3 

F5 
1.023×10-9 2.145×10-9 7.1780×10-7 2.13 9.0×10-3 6.9×10-6 

1.023×10-9 2.150×10-9 7.1780×10-7 2.16 6.0×10-3 6.9×10-6 

F6 
2.72×10-19 6.59×10-9 1.49×10-7 0.051 0.29 0.01 

1.89×10-19 4.98×10-9 1.36×10-7 0.039 0.11 4.2*10-13 
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Statistically speaking, for the average value of  

30 runs, IGSA reaches best in all of the benchmark 

functions except F2 for which the average best-so-far 

solution and median of the best solution based on MFO 

is better. The number of functions which the MFO 

performs better is inferior to PSOGSA and superior  

to GSA. The MFO and PSOGSA can balance the 

exploration and exploration well than the GA and PSO 

algorithms. From the Table 1, it can be concluded that 

IGSA performs best on the test functions. 
 

Table 2: Results comparison of ultra low side lobe synthesis for the six algorithms 

Results of Ultra Low Side Lobe Synthesis 

Algorithms Directivity Peak Side-Lobe Level (dB) Width of Main-Lobe (°) 

GA 15.1579 -37.8756 0.8 

PSO 15.2763 -39.1364 0.8 

GSA 15.3204 -40.5069 0.6 

MFO 15.2987 -40.7952 0.6 

PSOGSA 15.3462 -41.0551 0.6 

IGSA 15.4543 -42.0317 0.6 

The linear antenna arrays (LAA) are widely used in 

many high-performance radio systems like radar, sonar, 

air and space navigation, underground propagation etc. 

In this paper, we consider a central symmetry linear array 

with N=20,
 2
d  . The current excitation amplitudes 

are optimized for the synthesis of LAA keeping the 

excitation phase as zero. So the optimization parameters 

are 10 amplitudes, the amplitude range of In is [0.1,1], 

n=1,2,…,N,N is the number of elements. 

 
B. The pattern synthesis for ultra low side lobe 

In this section, the design objective is that beam 

width of the main lobe is 20˚, and the side lobe levels  

are lower than -42dB. So, in equations (1), (3), 

( ) sin
e

F   , 
ESL

L =-42dB, 1, 0   . 

The IGSA is used compared with the GA, PSO, 

standardized GSA, PSOGSA, MFO to conduct a specific 

optimization, the iterative times for them are 1000; the 

number of population for GSA and IGSA are 100, 

0
10G   

0
5  . Simulation results averaged over 30 

runs are depicted in Figs. 1-4 and Table 2. 

Figure 1 shows the patterns of ultra low side lobe  

for the six algorithms. It is clear that the pattern obtained 

by IGSA meets the desired objective very well. Figure  

2 shows the average evolution curves of these six 

algorithms when they run 30 times. It can be seen that 

the IGSA performs better in convergence speed and 

computer accuracy. The best convergence profile, worst 

convergence profile, average profile for IGSA over 30 

runs are depicted in Fig. 3. Figure 4 is the optimized 

current amplitude value. Table 2 is the detailed 

comparisons of the above algorithms. PSOGSA and 

MFO perform similar and only inferior to IGSA. The GA 

and PSO have no advantages. It can be noted that under 

the same width of main lobe, GSA is better than MFO 

dealing with directivity, while it is weak in peak side 

lobe level. When the width of main lobe is almost 

unchanged, the IGSA not only performs most low peak 

side lobe (-42.0317), but also has the best directivity 

value (15.4543). It can conclude that the IGSA 

outperforms other algorithms according to the directivity, 

the peak side lobe level and width of main lobe. 
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Fig. 1. Patterns of ultra low side lobe for the six 

algorithms. 
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Fig. 2. Average convergence based on six algorithms for 

the pattern synthesis of ultra low side lobe. 
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Fig. 3. Comparison of different convergence curves 

based on IGSA. 

 
C. The pattern synthesis for low side lobe with notches 

In this section, the optimizing objective is that the 

side lobe level is required not exceeding -29dB and 

between 50°and 60°, a notch with -70dB is required to 

be created. In equation (1), ( ) 1
e

F   . In equation (3), 

29
ESL

L dB  , 70
ENL

dBL   , 0.65  , 0.35  . 

The parameters are same as that in Section B. The 

optimal results averaged over 30 runs are shown in Figs. 

5-8 and Table 3. 
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Fig. 4. The optimized current excitation amplitude for 

the pattern synthesis of ultra low side lobe. 

 

Table 3: Results comparison of low side lobe and notches for the six algorithms 

Results of Low Sidelobe and Notches 

Algorithms Peak Side Lobe Level (dB) Peak Level of Notch (dB) Width of Main Lobe (°) 

GA -27.7897 -65.2736 1.4 

PSO -28.4271 -67.4101 1.6 

GSA -29.0359 -70.3720 1.4 

PSOGSA -29.1577 -70.3410 1.2 

MFO -29.6085 -71.0416 1.4 

IGSA -29.6170 -71.3873 1.2 
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Fig. 5. Patterns of low side lobe with notches based on 

six algorithms. 
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Fig. 6. Comparison of different convergence curves 

based on the IGSA algorithm. 
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Fig. 7. Average convergence based on six algorithms for 

the pattern synthesis of low side lobe with notches. 

 

0 5 10 15 20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
x
ci

ta
ti

o
n
 a

m
p
li

tu
d
e

n

 GA

 PSO

 GSA

 PSOGSA

 MFO

 IGSA

 
 

Fig. 8. The optimized current excitation amplitude for 

the pattern synthesis of low side-lobe with notches. 

 

The patterns obtained by these six algorithms after 

1000 iterations are shown in Fig. 5. The best convergence 

profile, worst convergence profile, average profile for 

IGSA over 30 runs are depicted in Fig. 6. It can be seen 

that the peak side lobe level and notches value obtained 

by IGSA is lower than the result obtained by GSA and 

other algorithms. Figure 7 shows the average evolution 

curves after 30 runs. It can be seen that IGSA outperforms 

other algorithms in evolutionary speed and accuracy. It 

is worth noting that the problem of trapping in local 

optimum of GSA is improved efficiently by using IGSA. 

The further comparison of IGSA with GSA and other 

four algorithms are shown in Table 3.  

The notch depth of PSOGSA is relatively poor than 

that of GSA and MFO, but the peak side lobe level is 

better than GSA. It is worth noting that MFO performs 

better than GSA and PSOGSA, when dealing with the 

peak side lobe level, MFO is even comparable to that  

of IGSA. When the width of main lobe is narrower than 

other algorithms, the IGSA also performs better in peak 

side lobe and notch value. It can conclude that IGSA 

outperforms other algorithms. Figure 8 is the optimized 

current value. The optimization results meet the current 

amplitude requirements in the constraint conditions.  

 

V. CONCLUSION 
In terms of the drawbacks of the basic GSA that is 

slow in convergence and fall easily into local optimal 

when synthesizing patterns to the array with low side 

lobe and notch, IGSA is proposed in this paper. This 

algorithm can realize the balance between the overall 

convergence and the local convergence to improve 

convergence speed through introducing new inertia mass 

adjustable factor q. This algorithm can also be enhanced 

to foster local search through interpolating the SQA. In 

IGSA, the SQA is used as an algorithm with high power 

in local searching, and the GSA is used to commit search 

overall. The simulation results in the final show that  

the proposed IGSA, compared with the same kind of 

algorithm under the same situation, can be endorsed with 

faster convergence speed, while keeping the smaller 

width of the main lobe and the lower level of side lobe. 

As a conclusion, the proposed algorithm is really more 

suitable for the pattern synthesis of the complicated array 

antenna, IGSA can balance between the exploration  

and the exploitation to reach the optimum quickly and 

accurately. 
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