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Abstract ─ in this paper, HIS (High Impedance Surface) 

are used, in order to verify their utilities; we have 

considered two different structures as a ground. The first 

is mushroom EBG (Electromagnetic Band Gap) structure 

which is composed of several patches with a ground 

connecting via, where the second is 2D metamaterial 

structure with resonant rings. Both the structures are 

investigated by simulation and compared at the frequency 

12 GHz. The metamaterials proprieties are successfully 

verified around the resonant frequency. 

 

Index Terms ─ Digital capacitance, EBG structures, 

metamaterials, negative index materials, wire antenna. 
 

I. INTRODUCTION 
The antennas manufacture requires a big precision 

in realization, because the dimensions of these circuits 

are of the same order of magnitude as the wave length. 

Considering imprecision factors due to the manufacture 

constraint, surface waves will be engendered; 

consequently, antenna performance will be influenced.     

A special material is used to block surface waves 

known as metamaterial, it enhances significantly the 

antenna performance which is characterized by 

simultaneously negative values of the permeability and 

the permittivity [1]; it doesn’t exist in natural state.  

Metamaterials enhance significantly the antenna 

performance. They have interesting proprieties [2], it 

consists in stopping surface waves to propagate along the 

surface, there is no phase delay to be introduced to the 

progressive wave and the evanescent wave is amplified. 

Hence, we can say that both propagating and evanescent 

waves contribute to the resolution of the system and 

circuit’s spatial frequency is restored. Therefore the 

wave behaves as there is no physical obstacle [3-4].  
    

II. METAMATERIAL TRANSMISSION LINE 

THEORY 
Figure 1 [5] shows a cell of metamaterial 

transmission line which is a combination of Right-

Handed Transmission Line (RHTL) and Left-Handed 

Transmission Line (LHTL). By applying the Kirchhoff 

law, it results: 
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Fig. 1. Metamaterial transmission line cell model. 

 

We solve simultaneously (1) and (2), we obtain the 

wave equations, for Voltage wave V: 

        ∂2v(x, t)/ ∂x2 = −Z Yv(x, t) = −γ2v(x, t).       (3) 

Where: 

                       γ =  √Z Y =  α + jβ =

        √−ω
2(LRCR + 

1

(ω2√LLCL)
2 −

LRCL+ LLCR

(ω√LLCL)
2    .          (4)   

We can introduce the RH resonant frequency: ωR =
1

√LRCR
. And LH resonant frequency ωL =

1

√LLCL
, it results: 

             γ = j√(ω/ωR)
2 + (ωL/ω)

2 − kωL
2 .             (5) 

Equation (5) describes all the behaviors of the 

metamaterial transmission line. 

Figure 2 shows the graph of the complex propagation 

constant. Where A = max ( 𝛚𝐬 , 𝛚𝐏 ), B = min (𝛚𝐬 , 𝛚𝐏 ) 
and C = ωF,  𝜔𝑠 , 𝜔𝑃 and ωF are respectively the series, 

shunt resonance frequencies and maximum attenuation 

frequency [5].  
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We consider Fig. 2, if 𝜔 <  min (𝛚𝐬 , 𝛚𝐏 ), the phase 

velocity (slope of the line segment from origin  

to curve) and group velocity (slope of the curve) have 

opposite sign (they are antiparallel) which means that the 

transmission line is left-handed and that β is therefore 

negative. 

If we apply Maxwell equations and use (1) and (2), 

it results: 

                          

{
 

 μ(ω) =  LR −
1

ω2CL
,                           (6)

ε(ω) =  CR −
1

ω2LL
 .                           (7)

 

When ω  <<  min(𝛚𝐬 , 𝛚𝐏 ), (6) and (7) become: 

{
μ(ω) = −1/ω2CL < 0 

ε(ω) = −1/ω2LL < 0 
Left-Handed Transmission Line. 

 
 

Fig. 2. Complex propagation constant vs. frequency 
 

III. SIMPLE DIPOLE ANTENNA RESPONSE 
Figure 3 shows the radiation pattern of dipole 

antenna in free space. In horizontal plane (3.B), when 

viewed from above, the pattern exhibits two lobes which 

represent the omnidirectional characteristic of the dipole 

antenna (bidirectional radiation). 

When a dipole antenna is installed close to the 

earth’s surface, the pattern radiation is attenuated because 

of the reflection from the surface [6]. In the ideal case, 

the gain of the dipole antenna doesn’t exceed 3 dB as 

shown on Fig. 4. 
 

IV. MODELS AND DIMENSIONS 
In order to investigate the performance of the dipole 

antenna, it will be installed close to different surfaces and 

each structure will be also optimized in order to seek the 

best results. 
 

A. Dipole above a perfect electric conductor (PEC) 

The most simple structure is a ground plane placed 

under the dipole antenna (27.5X27.5 mm) of distance 

ℎ𝑑𝑖𝑠𝑡  = 1.925 mm functions as reflector as shown on Fig. 5. 

 
 

Fig. 3. Idealized dipole radiation pattern. 

 

 
 

Fig. 4. Dipole radiation diagram of the gain at 12 GHz. 

 

 
 

Fig. 5. Dipole antenna above a reflector. 

 

B. Dipole above EBG substrate (mushroom) 

The second model is the dipole antenna placed 

above EBG substrate of distance ℎ𝑑𝑖𝑝 = 0.02λ. It is 

composed of several patches of side width w = 0.12λ, 

gap width g = 0.02 λ, substrate thickness h = 0.04 λ and 

via hole of ray r = 0.005λ.  

We have considered the following parameters as: 

dipole length L = 0.452λ and dielectric constant 𝜀𝑟 = 2.17 

for the frequency 12 GHz (red graph in Fig. 10), the 

dipole length L = 0.457λ and dielectric constant 𝜀𝑟 = 2.2 

for the frequency 12.228 GHz (green graph in Fig. 10). 

Figure 6 illustrates the model. 
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 (a) 

 
 (b) 
 

Fig. 6. (a) Dipole antenna above mushroom structure, 

and (b) parameters of mushroom cells. 
 

C. Dipole antenna above 2D structure substrate with 

digital capacitors and rings 

The third model is the dipole antenna placed above 

substrate of distance hdip = 0.02λ, permittivity 𝜀𝑟 = 2.2 

and thickness h = 1.25 mm. It is composed of several 

patches of width wpatch = 0.084λ, seven digits digital 

capacitors of parameters wdigit = 0.0084λ and rings with 

parameters: 𝑟 𝑟𝑖𝑛𝑔 = 0.08λ [7], a = 0.007λ, the space 

between rings g = 0.02 λ and via hole of ray r = 0.005λ.  

We have considered the digit length of the digital 

capacitor (Ldigit) and the dipole length (L) as follows:  

Ldigit = λ/4     and     L = 0.41λ; 

for the frequency 12 GHz (red graph in Fig. 12): 

Ldigit = λ/5     and     L = 0.42λ; 

for the frequency 11.772 GHz (green graph in Fig. 12). 

Figure 8 illustrates the model, where the digital 

capacitor as shown on Fig. 7 can be calculated by the 

following formula [8]: 

      𝐶 (
𝑝𝐹

𝜇𝑚⁄  ) = (𝜀𝑟 +  1)𝑙[(𝑁 − 3)𝐴1 + 𝐴2].       (8) 

Such as:  

         𝐴1 = 4.409 tanh  [0.55(
ℎ
𝑊⁄ )0.45]10−6,          (9.a)  

           𝐴2 = 9.92 tanh  [0.52(ℎ 𝑊⁄ )0.5]10−6.            (9.b) 

Where W = S = S’, N is the number of digits.  
 

 
 

Fig. 7. Seven digits of the digital capacitor. 

 
 (a) 

 

 
Fig. 8. 2D structure with digital capacitor and rings: (a) 

structure and (b) parameters. 

 

V. RESULTS 
The return loss of the first model as shown on Fig. 9 

below doesn’t satisfy the minimum attenuation, it can’t 

be used as a ground. 
 

 
 

Fig. 9. Return loss vs. frequency of the dipole above PEC 

ground. 
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Figure 10 shows the graph of the reflection 

coefficient dipole antenna above mushroom structure. 

Two different graphs appear: we have considered the 

dipole length L = 0.452λ and 𝜀𝑟 = 2.17 for the red graph, 

the dipole length L = 0.457λ and 𝜀𝑟= 2.2 for the green 

graph.  

From the curve it’s clear that the antenna at 12.228 

GHz reaches a perfect resonance, it has the minimum 

value of the reflection coefficient -41.39 dB compared  

to 12 GHz operating frequency which has less reflection 

-26.45 dB. 
 

 
                                          (a) 

 
                                           (b) 
 

Fig. 10. Dipole mushroom return loss for 12 GHz 

operating frequency and around: (a) magnitude in dB and 

(b) linear magnitude. 
 

 
 (a) 

 
 (b) 

 
 (c) 

 
 (d) 

 

Fig. 11. Dipole mushroom parameters: (a) directivity at 

12.228 GHz, (b) directivity at 12 GHz, (c) gain at 12 

GHz, and (d) gain at 12.228 GHz. 

 

Figure 11 shows the different parameters of the 

dipole mushroom structure, the graphs show that the 

gains are closely similar at 12 GHz and 12.228 GHz, they 

reach 8.3 dB, but the structure is more directive at 12.228 

GHz, 59.8 deg. compared to 83.5 deg. at 12 GHz. 

Figure 12 shows the graph of the reflection 

coefficient dipole antenna above 2D structure with 

digital capacitors and rings. Two different graphs appear: 

we have considered Ldigit = λ/4 and the dipole length  

L = 0.41λ for the red graph, Ldigit = λ/5 and the dipole 

length L = 0.42λ for the green graph. 

Compared to the mushroom structure, we have more 

reflection at 12 GHz and also around the resonant 

frequency: -30 dB at 12 GHz and -45 dB at 11.772 GHz. 

 

  Frequency (GHz) 

S-Parameter (Linear Magnitude) 
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                                          (a) 

 
                                           (b) 

 

Fig. 12. Dipole above 2D structure with digital capacitors 

and rings: return loss for 12 GHz operating frequency 

and around. 

 

Furthermore, the gain is increased by 1 dB at 12 GHz 

and close to 2 dB around the resonant frequency as 

shown on Fig. 13. As for the directivity, we obtain 59.4 

deg. at 12 GHz and 56 deg. around the resonant frequency 

as shown on Fig. 14. 
 

 
 (a) 

 
 (b) 

 

Fig. 13. Dipole above 2D structure with digital 

capacitors and rings: (a) gain at 11.772 GHz and (b) gain 

at 12 GHz. 

 

 
 (a) 

 
 (b) 

 

Fig. 14. Dipole above structure with digital capacitors: 

(a) directivity at 12 GHz and (b) directivity at 11.772 GHz. 

 

VI. CONCLUSION 
Two HIS structures have been simulated and 

compared to prove the application utility of the 

metamaterials and verify theirs proprieties. Both the 

structures considered have successfully enhanced the 

performance of the dipole antenna, whereas the simple 

dipole is an omnidirectional antenna, the antennas 

considered in this article become directives with a much 

higher gain, close to 10 dB compared to the gain of 2 dB 

of the simple dipole antenna. These structures have 

successfully contributed to block surface waves.  

We have used the digital capacitor because it allows 

a greater capacity value than the gap capacitor and 

          S-Parameter (Linear magnitude) 

  Frequency (GHz) 
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combined resonators with 2D metamaterial make the 

circuit original compared to the classical mushroom. 

The results are obtained by using CST which is 

based on one of the most popular numerical method for 

the solution of electromagnetic problems (FDTD) [9]. 
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