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Abstract – Bayesian Optimization (BO) is an efficient
global optimization algorithm, which is widely used in
the field of engineering design. The probabilistic sur-
rogate model and acquisition function are the two keys
to the algorithm. Building an efficient probabilistic sur-
rogate model and designing a collection function with
excellent exploring capabilities can improve the perfor-
mance of BO algorithm, allowing it to find the opti-
mal value of the objective function with fewer itera-
tions. Due to the characteristics of small samples and
non-parametric derivation of the Gaussian Process (GP),
traditional BO algorithms usually use the GP as a sur-
rogate model. Compared with the GP, the Student’s T
Process (STP) retains the excellent properties of GP,
and has more flexible posterior variance and stronger
robustness. In this paper, STP is used as the surro-
gate model in BO algorithm, the hyperparameters of the
model are optimized by STP, and the estimation strat-
egy function (EST) is improved based on the posterior
output of the optimized STP, thus realizing the improved
BO algorithm based on the STP. To verify the perfor-
mance of the proposed algorithm, numerical experiments
are designed to compare the performances of the tra-
ditional BO algorithm, which includes the lower con-
fidence bound function (LCB) and EST as acquisition
function respectively and GP as the surrogate model, and
the proposed BO algorithm with STP as the surrogate
model and LCB, expected improvement function (EI),
expected regret minimization function (ERM) as acquisi-

tion function respectively. The results show that the pro-
posed algorithm in this paper performs well when finding
the global minimum of multimodal functions. Based on
the developed algorithm in this paper, the resonant fre-
quency of printed dipole antenna and E-shaped antenna
is modeled and optimized, which further confirms the
good design ability and design accuracy of the BO algo-
rithm proposed in this paper.

Index Terms – acquisition function; antenna optimiza-
tion; Bayesian optimization; Gaussian process; Student’s
T process

I. INTRODUCTION
Constructing efficient global optimization algo-

rithms has always been the focus of research topic. As
an advanced and efficient global optimization algorithm,
the Bayesian optimization (BO) algorithm has received
extensive attention and research [1]. The BO algorithm is
a kind of acquisition function and surrogate model as its
cores to fit the objective function, collecting new sample
observations to achieve fast iteration and find the maxi-
mum or minimum value of the objective function [2].

In recent years, the research on the BO algorithm
is inseparable from three aspects: the establishment of a
new surrogate model [3], the optimization of the surro-
gate model [4], and the design of the acquisition function
[5]. The performance of BO algorithms can be improved
by constructing efficient surrogate models, such as ran-
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dom forests surrogate models [6], making multiple deci-
sion trees to improve computational efficiency and accu-
racy, and deep neural network surrogate models [7] to
improve the model’s ability to handle large-scale data.
In recent years, the optimization of surrogate models
in BO algorithms has also become a research hotspot.
Chowdhury [8] proposed a scheme to dynamically adjust
the domain boundary of the surrogate model to solve
the complex problem of high-dimensional data analy-
sis. Yenicelik [4]designed an algorithm named BORING
to deal with the dimensionality reduction of data. The
acquisition function in parallel BO can collect multiple
sample points simultaneously to improve its efficiency.
Ginsburg et al. [9] studied Monte Carlo to simulate the
acquisition function to generate multiple sample points
at a time. Some scholars [10] also use the multimodal
method to solve multiple candidate sample points, reduc-
ing the time-consuming problem of the simulation.

As a classical surrogate model in BO, Gaussian Pro-
cess (GP) has a rigorous mathematical theoretical foun-
dation and can deal with complex problems [11, 12].
However, GP has two apparent shortcomings. Its poste-
rior variance depends on the observed sample points, and
its outliers are based on a prior assumption, which makes
GP not very good at rejecting outlier ability. Student’s T
Process (STP) is a generalization of the GP, which obeys
the Student’s T distribution rather than the Gaussian dis-
tribution [13]. The study of STP makes up for the lack
of robustness of GP, and it has a more flexible poste-
rior variance. Shah [14] proposed to perform the inverse
Wishart process on the kernel function of the GP to real-
ize the STP and use it to deal with outliers in the data.
This is because the kurtosis of the Student’s T distri-
bution is higher than that of the Gaussian distribution,
which means it can contain outliers. More likely.

Särkkä [15] uses an STP instead of a GP and incor-
porates the noise term into the kernel function to sim-
plify the computation. Tang et al. [16] proposed that
when the input has noise that depends on the Stu-
dent’s T distribution, if the kernel function does not have
the β property, the STP has a better ability to handle
abnormal data. Chen et al. [17] proposed a multi-output
GP and a multi-output STP, which solved the multi-
output problem under the matrix variable of the STP.
An effective way of improving the prediction accuracy
and enhancing the performance of the model is to opti-
mize the model’s hyperparameters. For example, the gra-
dient descent method [18], particle swarm optimization
algorithm [19], and ant colony algorithm [20] are used
to optimize the super parameters of the nonparametric
model, so as to improve the performance of the model.

Scholars have also studied the combination of
STP and BO algorithm. In 2013, Shah [21] imple-
mented the Bayesian algorithm using STP and the

expected improvement function, and compared it with
the Bayesian algorithm using the GP as a surrogate
model for the function optimization problem. In 2018,
Tracey [22] implemented the Bayesian algorithm com-
bining the STP and the expected improvement function,
and applied it to the design of aerodynamic structures.
In 2020, Clare [23] used the improved expected regret
minimization function and confidence bound minimiza-
tion function, respectively, to combine with STP to form
a new Bayesian algorithm, enhancing the ability of BO.

As we all know, the optimization of electromagnetic
devices through full-wave electromagnetic simulation
software requires enormous computing resources, which
is very time-consuming. Therefore, exploiting optimiz-
ing algorithms to design electromagnetic devices quickly
is a good solution [24]. Gao [25] proposed a semi-
supervised algorithm for antenna design, but this algo-
rithm requires an additional round of antenna size. Torun
[26] designed a two-stage BO algorithm and applied it
to the minimization optimization of integrated circuits,
and the surrogate model used in this algorithm is the GP
model.

In this paper, a BO algorithm is proposed, which
uses the combination of an improved maximum eval-
uation policy function [27] and a hyperparameter-
optimized STP. Moreover, it is applied to optimize mul-
timodal functions, printed dipole antenna, and E-shaped
antenna. The results show that the proposed BO algo-
rithm has better exploration and global optimization abil-
ities than the traditional BO algorithm.

The rest of the paper is organized as follows. The
second part briefly reviews the derivation of GP and
STP. The third part cover the proposed BO algorithm,
including the hyperparameters for the STP, optimiza-
tion and improvement of the maximum evaluation policy
function. The fourth part is the numerical experiment,
which verifies the performance of the proposed algo-
rithm. The fifth part is the application of the proposed
algorithm to two microstrip antennas, including printed
dipole antenna and E-shaped antenna. The subsequent
parts is the summary and outlook.

II. BACKGROUND
A. Gaussian process

Gaussian Process (GP), as a non-parametric model
being suitable for small sample, has strict mathematical
theoretical derivation. Generally, we use (1) to describe
the GP [28, 29]:

f (x)∼ GP(µ(x),k(x,x)), (1)

where the µ(x) is the mean function and the
k (x,x′) is the covariance function. If D1:n =
{{x1,y1} ,{x2,y2} , . . . ,{xn,yn}} represents the observed
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set, then the covariance matrix K is recorded as:

K =

 k(x1,x1) · · · k(x1,xn)
...

. . .
...

k(xn,x1) · · · k(xn,xn)

 . (2)

For each input new observation xn+1, assuming that
the mean of the GP is zero, the joint Gaussian distribu-
tion of the outputs y1:n and yn+1 can be expressed as:[

y1:n
yn+1

]
∼N

(
0,
[

K(X ,X) K (X ,Xn+1)
K (Xn+1,X) K (Xn+1,Xn+1)

])
. (3)

Where, K (X ,Xn+1) is the covariance matrix of the order
n× (n+1) between the observation value and the train-
ing input samples, and is the covariance matrix of the
observation value itself.

The posterior probability is obtained by calculating
formula (4):

p(yn+1 | D1:n,xn+1) = N
(
µ (xn+1) ,σ

2 (xn+1)
)
, (4)

Here:
µ (xn+1) = kT K−1y1:n, (5)

σ
2 (xn+1) = k (xn+1,xn+1)− kT K−1k. (6)

The GP can fit the corresponding test output value
by calculating the above Process. It can be seen from
equation (6) that the posterior variance of the GP
depends on the test sample points. In BO, the acquisition
function can use the information of the predicted mean
and predicted variance of the GP to mine the next obser-
vation with high reliability. The acquisition function is
introduced in Section 3.1.

B. Student’s T process
Student’s T Process (STP) is a generalization of GP,

which refers to a functional distribution of an infinite set
of random variables that obeys the joint Student’s T dis-
tribution. For the Student’s T distribution, we describe it
as [18]:

T(µ,Σ,v) =
Γ((v+d)/2)

Γ(v/2)vd/2πd/2|Σ|1/2

·
(

1+
1
v
(y−µ)T

Σ
−1(y−µ)

)−(v+d)/2

,

(7)

where d is the size of the T distribution, µ is the posi-
tion parameter of the T distribution, Σ is the symmetric
positive definite scattering matrix parameter of the T dis-
tribution, and v > 2 is the degree of freedom.

E
[
(y−µ)T (y−µ)

]
=

v
v−2 ∑ . (8)

STP is parameterized by the mean function m(x) and
the covariance function k (x,x′); however, it has an addi-
tional parameter, the degrees of freedom v. The proper-
ties of STP can be determined jointly by m(x), k (x,x′)
and v, x,x′ ∈ Rd is an arbitrary random variable. There-
fore, STP can be expressed as:

f (x)∼ ST P
(
m(x),k

(
x,x′
)
,v
)
. (9)

With increasing degrees of freedom, the multivari-
ate Student’s T distribution converges to a multivariate

Gaussian distribution with the same mean, and the scat-
tering parameter matrix approaches infinity.

In STP, m(x) defines the prior expected value of each
location, the kernel function represents the covariance
of the objective function between the values of any two
locations x and x0, the joint distribution probability of a
finite subset of locations is:

p(y | x) = T (µ,Σ,v)(y) = T
(

µ,
v−2

v
K,v
)
(y), (10)

Where µ is the mean vector, µi = m(xi), Ki, j = k (xi,x j)
is the kernel matrix.

Given a set of samples D = [(x1,y1) , · · · ,(xn,yn)],
the posterior of STP is given by (11), (12), (13), (14).

p(y | x,D) = T
(

µ,
v−2

v
K,v
)
(y), (11)

µ̂ = Kx,xK−1
x̃,x̃ ỹ, (12)

K̂ =

(
v+ ỹT K−1

x̃,x̃ ỹ−2
)
·
(
Kx,x −Kx,x̃Kx̃,x̃

−1Kx̃,x
)

v+ |D|−2
, (13)

v̂ = v+ |D|. (14)
In general, the square exponential kernel is selected

[30]:

KSEard
(
x,x′
)
= σ

2
f exp

(
− (x− x′)T (x− x′)

2ℓ2

)
, (15)

where σ2
f is the signal variance,which also is the output

scale amplitude, and the parameter ℓ is the input (length
or time) scale.

Combining equation (13) with the kernel function,
we can see that the posterior covariance of the STP
depends on not only the test observations, but also the
training observations [31]. Therefore, using a STP as a
surrogate model for a BO will have a more flexible pos-
terior variance than a GP. The hyperparameter optimiza-
tion of the STP is obtained by maximizing the likelihood
function, whose negative log-likelihood function has the
form:

L(θ) =− log p(y | x,θ)

=
N
2

log((v−2)π)+
1
2

log |Kθ |

− logΓ

(
v+N

2

)
+ logΓ

( v
2

)
+

v+N
2

log
(

1+
β

v−2

)
.

(16)

III. THE PROPOSED BAYESIAN
OPTIMIZATION ALGORITHM

As a supervised learning method, BO can effectively
seek the global optimal solution of the black-box objec-
tive function within the design space. By updating the
prior knowledge of the objective function, we can obtain
the corresponding observation value to update the pos-
terior distribution closer, and find the optimal solution
quickly [32].
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The BO algorithm consists of two modules, the sur-
rogate model module for fitting the objective function
and the acquisition function module for acquiring new
observations. The framework is shown in Fig. 1. The
study of Bayesian architecture is inseparable from three
directions: the construction of the surrogate model, the
optimization of the surrogate model, and the design of
the acquisition function.

Fig. 1. Bayesian optimization framework.

In this paper, the STP is used as the surrogate model
of BO, and the kernel function (17) without the β prop-
erty is selected. The hyperparameters of the STP, includ-
ing the degrees of freedom, noise variance, and hyperpa-
rameters of the kernel function, are globally optimized
using the pattern search algorithm toolbox [33]. The opti-
mization flowchart is shown in Fig. 2.

KSEisoU = exp
(
− 1

2ℓ2 (x− z)T (x− z)
)
. (17)

The pattern search algorithm uses the negative log-
likelihood of STP as the objective function to perform
global optimization, obtain the final hyperparameters,
and then determine the STP model. The model can out-
put the corresponding prediction function value when
given a new observation.

In the BO framework, the acqisition function use the
information outputted by the surrogate model to explore
the next observation. Common acquisition functions
include confidence UCB/LCB [34, 35], EI [36], prob-
ability improvement (PI) function [26], entropy search
(ES) function [37], EST [38] and ERM [39].

Martı́n presented a detailed derivation of GP
upper/lower-confidence bound functions [36]:

αUCB(x) = µt−1(x)+
√

βtσt−1(x), (18)

Fig. 2. Pattern search toolbox to optimize STP hyperpa-
rameters.

αLCB(x) = µt−1(x)−
√

βtσt−1(x). (19)
Where βt is the assumed given learning rate, which

are different from the LCB function under the GP. In this
paper, the µ(x),σ(x) in LCB are changed to the predic-
tion mean and prediction variance of STP.

Shah proposes a closed-form solution to the EI func-
tion for the STP [21]:

αEI (x;(xn,yn) ,θ) = γσΦv +N(γ(x))

+σ

(
1+

γ(x)2 −1
v+N −1

)
φv,

(20)

where
γ(x) = σ((xn,yn) ,θ)

−1 [ f (xbest −µ ((xn,yn) ,θ))] .
(21)

µ ((xn,yn) ,θ) and σ ((xn,yn) ,θ) are represent the
predicted mean and variance of STP, respectively, φ ,Φ
represent the probability density function and distribu-
tion function of T distribution, and θ define the set of
hyperparameters of STP.

The estimation strategy function selects the maxi-
mum posterior value m in each iteration, which can be
expressed as argmaxx∈χ Pr(Mx|m,Dt), Mx is the event
when the point reaches the maximum value. The EST
function can be defined explicitly as:

αEST (x) =
m̂−µt−1(x)

σt−1(x)
. (22)

Obtained by approximation, in this paper, the EST
method mentioned in the literature [27] is used to obtain
approximately m̂. Unlike wang [27], we replace the pre-
dicted mean and predicted standard deviation of STP in
the function µ(x),σ(x) respectively.

As a result, the pseudocode of the proposed BO
algorithm, called BO-STP-EST in the paper, is presented
in Algorithm 1.

IV. NUMERICAL EXPERIMENT
In order to verify the generalization performance

and global optimization effect of the proposed BO-
STP-EST algorithm, numerical experiment is carried out
based on the multimodal function (23), where the inde-
pendent variable interval is [−512, 512]. So we finally
obtained the training data X ∈ 50×1,Y ∈ 50×1 through
the program. The experimental goal is to find the global
minimum of this function, and the total number of itera-
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Algorithm 1 BO-STP-EST.
Require:

Sample set,D1:n = ((x̃1, ỹ1) , · · · ,(x̃n, ỹn));
Initial point,x0 = [x1,x2, · · · ,xm]

T ;
The number of iterations,iters;
Lower bound and upper bound of the design space;

1: for each i ∈ [1, iters] do
2: D1:n→ Optimize Hyperparameters for STP using

pattern search algorithm, and then train STP;
3: x0 →Obtain the posterior prediction mean µi−1

and posterior variance σi−1
2 of x0 by the trained

STP;
4: argmin m̂−µi−1(x)

σi−1(x)
→ xopt

i , Get the new sample
points by the acquisition function;

5: xi
opt → ST P → fi

opt , Use the trained STP to pre-
dict the objective function value corresponding to
the input sample point;

6: fbest take the current minimum value, xbest ake the
corresponding sample value;

7: end for

tions is set to 50. To verify the performance of the algo-
rithm, we compare it with the BO-GP-LCB [1], BO-
GP-EST [27], BO-STP-ERM [23], BO-STP-EI [21], and
BO-STP-LCB. For the STP in the models of BO-STP-
ERM, BO-STP-LCB, and BO-STP-EI, global optimiza-
tion is not implemented. The experimental results are
shown in Figs. 3 and 4.

y =− (x+47)× sin(
√
|x+47|)

−512× sin(
√

465− x). (23)
It can be seen intuitively from Fig. 3 that only the

Fig. 3. The found minimum value by different models.

Fig. 4. Function value vs. iteration numbers of different
models.

BO-STP-EST proposed in this paper finds the global
minimum of the multimodal function. Models such as
BO-GP-LCB and BO-GP-EST are trapped in the local
minimum of the function, and other BO algorithms are
close to the global minimum of the function, which
shows that the proposed BO algorithm has a strong
global optimization ability. As can be seen from Fig.
4, since we set the first iteration to be the new sample
point explored by the model corresponding to the objec-
tive function value, the starting points in the figure are
inconsistent, which also just shows that the ability of dif-
ferent models to explore sample points is different.

Although the objective function value obtained by
BO-GP-LCB for the first time is the smallest, it never
explores a function value smaller than the current value
after 4th time. Compared with the same acquisition func-
tion with EST, the exploration ability of the BO algo-
rithm with the GP as the surrogate model is much lower
than that of the BO algorithm with the STP as the sur-
rogate model. Compared with the same surrogate model
algorithm, the prediction accuracy of the proposed BO-
STP-EST algorithm after hyperparameter optimization is
significantly higher than that of other models.

V. OPTIMAL DESIGN OF MICROSTRIP
ANTENNAS

A. Printed dipole antenna
The printed dipole antenna comes from the litera-

ture [40] and its structure is shown in Fig. 5. The whole
antenna can be divided into five parts, which are the
dielectric layer, the dipole antenna arm, the microstrip
balun line, the microstrip transmission line, and the
antenna feeding surface, The dimensional parameters of
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Table 1: Antenna size parameters
Variable Value/mm
L1 21.5
L2 21.5
L3 9.8
W1 3
W2 3
W3 3.5
εr 4.4
h 1.6

the antenna are shown in Table 1. The working frequency
of the antenna is 2.25 GHz-2.72 GHz, and the design
index include that its working frequency is 2.45 GHz,
and the return loss S11 is less than −15 dB.

As shown in Fig. 5, the antenna has many variables
that affect its performance. We select five size variables
that have more significant impact as input, as shown in
Table 2, including the transmission line length L1, one
dipole arm the length L2, the side length L3 of the balun
triangle, the right angle length L4 of the base of the balun
triangle, and the width W3 of the balun rectangle.

Therefore, the input is X = [L1,L2,L3,L4,W3], the
output is the resonant frequency, while other parame-
ters are fixed. The HFSS-MATLAB-API [41] program
is used for the co-simulation of the antenna using the
orthogonal experiment method. The frequency sweep
range is 2 GHz through 3 GHz, and the step size is
0.01 GHz. So, each group of antenna size variables cor-
responds to 100 resonance frequency points. The training
sample size is X ∈ 50×5,Y ∈ 50×1.

According to the design index of the antenna, the
design objective function is (24), where fresonant =
2.45 GHz, fprediction is the predicted resonant frequency.

fobjective =
∣∣2.45− fprediction

∣∣2 & fresonant <−15 dB.
(24)

Fig. 5. The found minimum value by different models.

Table 2: Design range and initial design value of the
printed dipole antenna
Variable Min/mm Max/mm Initial

value/mm
L1 21 23 21.5
L2 20 22.5 21.5
L3 9 10.5 9.8
L4 11.5 13 12.6
W3 3 5 3.5

In order to verify the effectiveness of the
BO-STP-EST algorithm proposed in this paper, the BO-
GP-LCB, BO-GP-EST, BO-STP-LCB, BO-STP-EI, BO-
STP-ERM, and the BO-STP-EST are compared. The
iterative performance of the objective function under dif-
ferent models, the optimization results of the antenna
size and the actual simulation results of the optimized
antenna size are verified by experiments. The design
space and initial sample points are shown in Table 2, and
the total number of iterations is 50 times. The experi-
mental environment is Inter(R)Corte(TM)i5-7500 CPU
@ 3.40 GHz 16GB RAM, MATLAB2019b.

From Fig. 6 and Table 3, we can see that the pro-
posed BO-STP-EST exhibits a good generalization abil-
ity, and it can find the minimum in a few iterations. Com-
pared with the BO algorithm with GP as the surrogate
model, BO-GP-LCB find a smaller value in the 41st time,
but this minimum value is very different from other mod-
els. For the same acquisition function, BO-GP-EST takes
more time to find the minimum at the 8th iteration, and
the proposed BO-STP-EST performs much better than
BO-GP-EST, where it finds the minimum value at the 3rd

Fig. 6. The found minimum value by different models.
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Table 3: Optimization results of different models of the printed dipole antenna
Model L1 L2 L3 L4 W3 Iteration fob jective time
BO-GP-LCB 23 20.1999 9.0208 12.6053 3 41 1.53e-02 106.8259
BO-GP-EST 22.4373 20.7785 9 12.9988 3.2000 8 8.03e-04 105.4107
BO-STP-LCB 23 22.5000 10.6000 11.5000 3 20 1.55e-02 60.3916
BO-STP-EI 22.8226 21.2913 9.6366 12.1941 3.8591 5 2.65e-04 115.4727
BO-STP-ERM 22.4044 20.0226 9.9722 11.5997 4.5191 19 8.60e-05 137.3362
BO-STP-EST 23 21.0537 10.5999 11.5000 3 3 2.88e-05 93.5832

Fig. 7. The found minimum value by different models.

iteration. Compared with other models with STP, BO-
STP-EI and BO-STP-ERM are not as good as BO-STP-
EST in terms of the objective function and time con-
sumption because the optimized STP has fitting higher-
degree posterior outputs which makes the EST collection
function have stronger exploration ability.

The antenna optimization results in Fig. 7 verified
by HFSS illustrate that, for the design index of the
resonant frequency of the antenna, only the proposed
BO-STP-EST achieves the design targets with the res-
onant frequency 2.45 GHz and where S11<−15 dB.
The resonant frequency points predicted by other models
have certain errors, which are also in line with the predic-
tion results of the objective function in Table 3 and Table
4. It can be concluded from the above tables and figures
that the proposed BO-STP-EST has greater advantages
in convergent speed and accuracy than other models.

B. E-shaped antenna
The E-shaped antenna is evolved from the rectangu-

lar patch antenna, and two identical parallel slot antennas
are formed by using the slot-loading method [42]. For
the E-shaped antenna, it is easy to obtain good perfor-

Table 4: The actual resonant frequencies optimized by
different models of the printed dipole antenna
Model Resonant

frequency/GHz
Return loss/dB

BO-GP-LCB 2.53 −26.0488
BO-GP-EST 2.49 −27.2250
BO-STP-LCB 2.32 −25.9310
BO-STP-EI 2.42 −26.9227
BO-STP-ERM 2.56 −25.6303
BO-STP-EST 2.45 −24.1248

Table 5: Design range and initial design value of the E-
shape antenna
Variable Min/mm Max/mm Initial

value/mm
L 25 35 26
W 20 28 29
ls 2 8 4
ws 4 18 7
h 1.57 3.57 1.6

mance by adjusting the shape of the slot, which is very
suitable for use in portable communication and miniatur-
ized equipment. The E-shaped antenna is shown in Fig.
8, which consists of a radiation patch, a ground plate, a
dielectric plate, and a feeding point.

The design index is the working frequency
3.50 GHz, where the return loss S11 is less than −10 dB.
According to the structure of the antenna, several param-
eters that greatly affect the performance of the antenna,
including L,W, ls,ws,h, are selected as the training input
of the model, and the rests are unchanged, including the
dielectric material εr = 2.33, as shown in Table 5.

Therefore, the input is X = [L,W, ls,ws,h], and the
output is fresonant . The frequency sweep range is 2 GHz-
5 GHz, the step size is 0.01 GHz. So, each group of
antenna size variables corresponds to 100 resonance fre-
quency points, and the training data X ∈ 41×4,Y ∈ 41×1 is
finally obtained.

To verify the generalization and optimization per-
formance of the proposed BO-STP-EST, we compare
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Table 6: Results obtained by different models for the E-shape antenna
Model L W ls ws h Iteration fob jective time
BO-GP-
LCB

35 28 2 4.84 3.57 6 0.105 106.83

BO-GP-
EST

30.09 24.12 5 14.5 2.57 12 1.616e-05 115.19

BO-STP-
LCB

25 28 2 18 1.64 28 0.0424 165.4

BO-STP-EI 30.89 20.30 2.50 16.05 2.77 41 0.0372 198.42
BO-STP-
ERM

26.20 27.71 8 16.10 2.62 42 7.626e-05 220

BO-STP-
EST

35 28 8 4.95 3.57 7 5.313e-05 197.03

Fig. 8. E-shaped antenna structure diagram.

the performances of the BO-GP-LCB, BO-GP-EST, BO-
STP-LCB, BO-STP-EI, and BO-STP-ERM. The design
objective function is (25), where fresonant = 3.50 GHz,
fprediction is the predicted resonant frequency.

fopt =
∣∣3.50− fprediction

∣∣2 & fresonant <−10 dB. (25)

The experiment compares the differences in the
number of iterations, the minimum value, and the dura-
tion of the six models. The results are shown in Table 6.
The return loss of the antenna obtained by the final opti-
mization of each model is also compared, and the results
are shown in Fig. 9 and Table 6.

As can be seen from Fig. 9, since the sample points
recorded in the first setting of the model program are
ones collected by the acquisition function, we can see the
ability of different models to explore the sample points
in the sample space. Compared with the same acquisition
function EST, although the value of the objective func-
tion corresponding to the sample points first explored
by the proposed BO-STP-EST algorithm is greater than
BO-GP-EST, it is much stronger than BO-GP-EST in the
subsequent exploration ability. It finds the global min-
imum value in the 7th iteration and is better than that
found by BO-GP-EST in the 12th iteration.

Fig. 9. Objective functions vs. iteration of different
model for the E-shape antenna.

Compared with other models by STP, BO-STP-EST
can find the minimum value of objective function which
is much smaller than BO-STP-LCB and BO-STP-EI. As
we can see from table 6,7, although the final objective
function value found by BO-STP-ERM is close to BO-
STP-EST, it takes more time. Therefore, BO-STP-EST
is still the most competitive among several models in
terms of minimum value and time-consuming of objec-
tive function.

In the experiment of this part, we deliberately reduce
the number of training samples, so as to verify that the
hyperparametric optimization of the model can improve
the prediction ability of the algorithm proposed in this
paper when the training samples are reduced. The simu-
lation results (Fig. 10) verified by HFSS show that when
the training samples are reduced (Table 7), the predic-
tion accuracy of the different models mentioned in the
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Table 7: The actual resonant frequencies optimized by
different models of the printed dipole antenna
Model Resonant

frequency/GHz
Return loss/dB

BO-GP-LCB 3.49 −13.460
BO-GP-EST 3.69 −33.945
BO-STP-LCB 3.30 −17.399
BO-STP-EI 4.27 −20.067
BO-STP-ERM 3.19 −28.231
BO-STP-EST 3.50 −12.837

Fig. 10. Simulation results obtained by different models
for the E-shape antenna.

paper begins to decline, however, the accuracy of the
BO-STP-EST is much higher than that of the algorithm
without global hyperparametric optimization. Taking the
STP as surrogate model, the algorithm still maintains
good prediction accuracy under the condition of reduc-
ing the number of training samples. At the same time,
the proposed BO-STP-EST realizes the design index of
S11 < − 10 dB at the resonant frequency at 3.5 GHz.
It shows that the hyper-parameter optimization of surro-
gate model can improve the accuracy and optimization
performance of Bayesian optimization algorithm.

VI. CONCLUSION
This paper proposes a BO algorithm that combines

an improved maximum evaluation policy function with a
hyperparameter-optimized STP. Numerical experimental
verification of finding the minimum value through mul-
timodal functions shows that the proposed BO algorithm
with the STP as the surrogate model has better predic-
tion accuracy than these with the GP as the surrogate
model. At the same time, the acquisition function EST
can improve the exploration ability of the BO algorithm.

The proposed algorithm in this paper is applied to the
antenna modeling problems, and the design index can
be well completed. The simulation results of electromag-
netic simulation software also verify the effectiveness of
the algorithm.

Although the proposed algorithm is only applied to
the optimization problem of single-band antennas in this
paper, following, we will study the multi-band antenna
optimization by the proposed algorithm.
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