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Abstract – This paper proposes an artificial neural net-
work (ANN) model based on parametric modeling for
curved slots of the Vivaldi antenna. A more effective
processing method is achieved by feeding ANN with
the point positions that produce curved edges via cubic
spline interpolation rather than the picture of metal-
lic patches. The predicted results of ANN, including
S-parameter and gain, agree well with those from the
full-wave simulation. With the trained model, a Vivaldi
antenna with the lower cut-off frequency is optimized by
the multi-objective genetic algorithm.

Index Terms – Artificial neural network, cubic spline
interpolation, parametric modeling, Vivaldi antenna.

I. INTRODUCTION
Vivaldi antennas have been widely used in many

ultra-wideband (UWB) applications such as ground pen-
etrating radar [1], detection [2], communication [3], etc.
The Vivaldi antenna was first introduced by Gibson
in 1979 [4], while Gazit later proposed the antipodal
Vivaldi antenna (AVA) in 1988 [5]. To reduce cross-
polarization, Langley designed the balanced Vivaldi
antenna (BAVA) [6]. With the improvement of equip-
ment integration, BAVA needs to provide outstand-
ing performance in a limited size. As a miniaturiza-
tion approach, different types of corrugations have been
extensively used in the design of BAVA. Corrugation
refers to repetitive, evenly spaced and identical shaped
slots made on the outer flare edge which coincides with
the edge of the substrate. Corrugation helps to extend the
current path to improve the bandwidth of BAVA. The
current slot design, however, relies on some relatively
simple curves, such as straight lines [7], elliptic curves
[8], and exponential curves [9]. These curves cannot be
changed arbitrarily, which constrains the design freedom
of slots, leading to a limited radiation performance. More

crucially, the structure of BAVA is composed of a number
of curves, which will definitely increase the calculation
time due to the small-grid division in the electromagnetic
(EM) full-wave simulation algorithm.

In recent years, it has been demonstrated that the
artificial neural network (ANN) may replace the role of
full-wave simulation in the process of antenna optimiza-
tion [10–11]. In parametric modeling of neural networks,
the input is the parameter values of the antenna struc-
ture, and the EM response serves as the output. An ANN
model with three parallel and independent branches has
been presented to describe three different performance
indexes of the Fabry–Perot resonator antenna [12]. Once
the geometric parameters are input to the trained model,
it can simultaneously predict S-parameter, gain, and radi-
ation pattern. [13] presents an inverse ANN for the mod-
eling of the multimode resonant antenna, where the input
is the performance indexes, and the output is a set of
related geometric parameters. The inverse model can
provide antenna geometries directly without being repet-
itively called by an optimization process. Although ANN
based on parametric modeling can effectively map the
relationship from the input to the output, it is challeng-
ing to further improve the EM performance of an antenna
due to its fixed topology structure using ANN.

[14] proposes a non-parametric modeling method
for microwave filters using the convolutional neural net-
work (CNN). Instead of the structural parameter values,
the image of metallic patches is employed as the input
of the neural network. Although the CNN model can
change the component geometry flexibly and expand the
solution domain, the structure of CNN is relatively com-
plex, and the hyper-parameters in CNN are difficult to
determine due to their huge number. Moreover, a large
number of samples based on pixel images are required
for CNN training, resulting in a time-consuming training
process.
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In this paper, we propose an effective ANN for the
parametric modeling of curved slots of BAVA. The struc-
tural parameters of a curved slot are used as the input of
the model, including the longitudinal movement value of
the points, rotation angle, slot width and length, while
the output is the S-parameter and the gain of the antenna.
The cubic spline interpolation method is used to gener-
ate curved slots, and the corresponding antenna struc-
tures are input to the CST software for simulation to
provide training samples for ANN. After training, the
ANN prediction results are in good agreement with the
CST full-wave simulation results. The resulting BAVA
can obtain wider bandwidth thanks to the multi-objective
optimization of the non-dominated sorting genetic
algorithm-II (NSGA-II), which repeatedly calls the
trained ANN.

II. PROPOSED MODEL
In this paper, the curved slots shaped by ANN are

introduced to extend the current path effectively. The
training process of the proposed ANN model based on
parametric modeling of BAVA is shown in Fig. 1. The
geometric structure of a curved slot includes the longitu-
dinal movement value of the points, rotation angle, slot
width, and length. Based on cubic spline interpolation,

Fig. 1. Structure of the proposed model.

a curve passing through these points is formed. Through
translation and rotation, curves form a slot structure. The
slot generated by the proposed ANN is repeatedly copied
to produce corrugation in BAVA flares. The BAVA with
corrugation is sent to the CST software for calcula-
tion, and the obtained S-parameters and gain at each
frequency point are used to train the ANN. As the S-
parameter has large fluctuations in the frequency band,
200 points are sampled evenly across the frequency band
instead of vector fitting based on the transfer function. To
simplify the neural network structure and speed up train-
ing, four sub-ANNs are trained with 50 sampling points
each. Finally, the outputs of the four sub-ANNs, includ-
ing ANN1, ANN2, ANN3, and ANN4, are combined to
produce a complete S-parameter. ANN5 is used to train
the gain.

Cubic spline interpolation is applied to the modeling
of the curved slots on the flares of BAVA, as shown in
Fig. 2.

Fig. 2. Diagram of the parametric modeling for curves.

The length of the slot along the x direction is con-
trolled by Lp. For example, seven points are set on the
curve, and the position of the kth point is denoted by
(xk,yk). The amount of space between any two adjacent
points along the x-axis is the same. The first point is fixed
at (x1,y1), and the remaining six points are moved along
the y direction to control the curve shape of the slot. As
a result, the curve consists of six piecewise curves. The
cubic spline interpolation formula for the interval of xk
≤ x ≤ xk+1 is as follows

f (x) = yk +

[
yk+1 − yk

xk+1 − xk
− xk+1 − xk

2
mk −

xk+1 − xk
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The corresponding linear equations for m1, m2, . . . ,
and mk can be written as
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, (2)

where h = Lp/6. Once mk are solved from (2), one edge of
the curved slot can be obtained based on (1). Then, the
curve is shifted along the y direction by the slot width
of Wp to obtain the other edge of the slot. With the
above operation, the shape change of the slot is achieved
through the parametric modeling.

III. APPLICATION EXAMPLE
A BAVA [15] without the slot in Fig. 3 (a) is

employed as an example to evaluated the proposed
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Fig. 3. Geometry of a BAVA without slots: (a) 3D 

view, (b) 2D view. 
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The metallic patch is printed on the substrate with a 

thickness of 0.254 mm and a relative dielectric constant 

of 2.2. Based on parametric modeling, the curved slots 

are introduced into the flares of BAVA. Lup is the 

distance between the slot and the top of flare, which is 

fixed at 3 mm. To increase the design freedom, a rotation 

angle is used as another variable of the slot structure as 

depicted in Fig. 4. 
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Fig. 4. Geometry of the curved slots.  
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Fig. 3. Geometry of a BAVA without slots: (a) 3D view
and (b) 2D view.

model. The BAVA consists of two substrate layers and
three copper layers. The first and third copper layers con-
nected by two metallic via holes serve as ground layers,
and the middle layer acts as a conductor. All copper lay-
ers are separated by substrates. The original geometric
parameters are as follows: L = 59.9 mm, L1 = 22 mm, L2
= 10 mm, L3 = 10 mm, L4 = 4 mm, Wa = 1 mm, Wg =
6.578 mm, W = 24 mm, Wms = 0.4 mm, Wsl = 0.74 mm,
and Dvh = 0.6 mm.

As shown in Fig. 3 (b), the inner and outer curved
edge profiles of the flares are determined by [15]{

Xinner =± [−Wms +(Wms/2)ep1y]
Xouter =± [(Wms/2)ep2y]

(3)

where p1 = 0.064276 and p2 = 0.157475. The asymmet-
ric substrate cutout profile is then defined as{

X1 =+[−Wms +(Wms/2)ep1y]−Wa
X2 =− [−Wms +(Wms/2)ep1y]

. (4)

The metallic patch is printed on the substrate with a
thickness of 0.254 mm and a relative dielectric constant
of 2.2. Based on parametric modeling, the curved slots
are introduced into the flares of BAVA. Lup is the distance
between the slot and the top of flare, which is fixed at 3
mm. To increase the design freedom, a rotation angle is
used as another variable of the slot structure as depicted
in Fig. 4.
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Fig. 4. Geometry of the curved slots.

The inputs of the proposed ANN model and their
variation ranges are shown in Table 1, where ∆yk is the
longitudinal movement of kth (k = 2,3, · · · ,7) point, Wp
and Lp represent the width and length of the slots, respec-
tively, and α is the rotation angle of the slots. The design
of experiment (DOE) method is used to collect 200 train-
ing samples and 50 testing samples.
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Table 1: Definition of training and testing samples for the
antenna

Training Data
(200 Samples)

Testing Data
(50 Samples)

Min Max Step Min Max Step
∆yk
( mm)

-1.7 1 0.3 -1.7 1 0.3

Wp(mm) 0.1 1.3 0.3 0.1 1.3 0.3
Lp(mm) 0.5 4 0.5 0.5 4 0.5

α (◦) 0 20 4 0 20 4

The EM full-wave simulations with the CST soft-
ware are used for the collection of training and testing
samples. The neural networks designed to predict the
S-parameter are composed of two hidden layers with
10 and 30 neurons, respectively. The neural network
designed to predict the gain has a single hidden layer
consisting of 15 neurons. The four sub-ANNs for the
prediction of the S-parameter and the sub-ANN for the
prediction of the gain are trained with the Levenberg-
Marquardt optimization algorithm with an initial learn-
ing rate of 0.001. All the networks are trained with a set
of input parameters and their corresponding S-parameter
or gain values. The training process based on the back
propagation scheme iteratively adjusts the weights of all
neurons until the desired accuracy level is achieved. The
mean absolute percentage error (MAPE) is used to calcu-
late the training and testing errors. The training MAPEs
of the ANN model are 4.56% for |S11| and 3.45% for the
gain, while the testing MAPEs are 5.62% for |S11| and
4.12% for the gain.

Once the training of ANN is completed, it can be
repeatedly called by NSGA-II for the optimization of
BAVA in place of the traditional full wave simulation.
The optimized variables are x = (∆y2, ∆y3, ∆y4, ∆y5, ∆y6,
∆y7, Lp, Wp, α). The initial population, which includes
500 individuals, is randomly generated within the range
of the variables shown in Table 1. The objective of opti-
mization is to obtain the best possible S-parameters and
gain. The final optimal structural parameters are as fol-
lows: xopt1 = (0 mm, -1.6 mm, 0.2 mm, -1.6 mm, 0.8
mm, 0.2 mm, 4 mm, 0.8 mm, 12◦). Here, the optimal
parameters of xopt1 are input to both the ANN model and
the CST software to obtain the S-parameter and gain of
BAVA. When the simulated results from the CST soft-
ware are regarded as the benchmark, the MAPEs of the
S-parameter and gain from the ANN model are 1.5% and
0.6%, respectively, indicating its high calculation accu-
racy.

To highlight the advantages of the proposed
approach, we set ∆yk = 0 mm (k = 1,2, . . . ,7) and get
the straight slots for comparison. The results are shown
in Fig. 5. After the optimization of the BAVA with the
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Fig. 5. BAVA with straight slots.

straight slots, the optimal structural parameters are as fol-
lows: xopt2 = (0 mm, 0 mm, 0 mm, 0 mm, 0 mm, 0 mm,
4 mm, 1.3 mm, 0◦).

Figure 6 illustrates the simulated results of the
BAVAs with the optimal structures of straight slots and
curved slots. One can see from Fig. 6 that, the curved
slots designed by the proposed model lead to a broader
frequency band with nearly the same gain and cross-
polarization levels as the straight slots in BAVA. Accord-
ing to Fig. 6 (a), the lower cut-off frequency of the BAVA
with straight slots is 7.97 GHz, while that with curved
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of the variables shown in Table 1. The objective of 

optimization is to obtain the best possible S-parameters 

and gain. The final optimal structural parameters are as 

follows: xopt1 = (0 mm, -1.6 mm, 0.2 mm, -1.6 mm, 0.8 

mm, 0.2 mm, 4 mm, 0.8 mm, 12゜). Here, the optimal 

parameters of xopt1 are input to both the ANN model and 

the CST software to obtain the S-parameter and gain of 

BAVA. When the simulated results from the CST 

software are regarded as the benchmark, the MAPEs of 

the S-parameter and gain from the ANN model are 1.5% 

and 0.6%, respectively, indicating its high calculation 

accuracy. 

To highlight the advantages of the proposed 

approach, we set Δyk = 0 mm (k = 1,2, …,7) and get the 

straight slots for comparison. The results are shown in 

Fig. 5. After the optimization of the BAVA with the 

straight slots, the optimal structural parameters are as 

follows: xopt2 = (0 mm, 0 mm, 0 mm, 0 mm, 0 mm, 0 mm, 

4 mm, 1.3 mm, 0゜).  
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Fig. 5. BAVA with straight slots. 
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Fig. 6. Comparison of radiation performance between 

BAVAs with curved slots and straight slots: (a) |S11|, (b) 

gain, (c) cross-polarization level.  

 

Figure 6 illustrates the simulated results of the 

BAVAs with the optimal structures of straight slots and 

curved slots. One can see from Fig. 6 that, the curved 

slots designed by the proposed model lead to a broader 

frequency band with nearly the same gain and cross-

polarization levels as the straight slots in BAVA. 

According to Fig. 6 (a), the lower cut-off frequency of 

the BAVA with straight slots is 7.97 GHz, while that 

with curved slots is 6.76 GHz. This indicates that the 

lower cut-off frequency of the BAVA with curved slots 

is reduced by about 1.2 GHz.  

 

IV. CONCLUSION 
In this paper, an ANN for parametric modeling 

based on cubic spline interpolation is proposed to shape 

the slots of BAVA. The longitudinal movement values 

of the points, rotation angle, width, and length of the 

curved slot serve as the input of ANN. These input 

parameters of ANN help to determine the slot structure. 

The output of the proposed ANN includes the S-

parameter as well as the gain of the antenna. The lower 

cut-off frequency is decreased without affecting BAVA's 

gain, thanks to the curved slots created by the proposed 

ANN and further optimized by NSGA-II. The proposed 

ANN only involves simple geometric parameters instead 

of image processing, leading to a convenient operation 

of machine learning. Moreover, the parametric modeling 

can also be adapted to shape design of other devices. 

     

ACKNOWLEDGMENT 
This work was supported by the National Natural 

Science Foundation of China under Grant 62171093 and 

by the Sichuan Science and Technology Programs under 

Grants 2022NSFSC0547 and 2022ZYD0109. 

 

REFERENCES  
[1] F. T. Wu, G. F. Zhang, X. L. Yuang, and N. C. 

Yuang, “Research on ultra-wide band planar 

Vivaldi antenna array,” Microw. Opt. Technol. 

Lett., vol. 48, no. 10, pp. 2117-2120, Oct. 2006. 

[2] M. J. Horst, M. T. Ghasr, and R. Zoughi, “Design 

of a compact V-band transceiver and antenna for 

millimeter-wave imaging systems,” IEEE Trans. 

Instrum. Meas., vol. 68, no. 11, pp. 4400-4411, 

Nov. 2019. 

[3] M. R. Hamid, P. Gardner, P. S. Hall, and F. 

Ghanem, “Vivaldi with tunable narrow band 

rejection,” Microw. Opt. Technol. Lett., vol. 53, no. 

5, pp. 1125-1128, May 2011. 

[4] P. J. Gibson, “The Vivaldi aerial,” in Proc. 9th Eur. 

Microw. Conf., Brighton, U.K., pp. 101-105, June 

1979. 

[5] E. Gazit, “Improved design of the Vivaldi 

antenna,” IEE Proc. H-Microw. Antennas Propag., 

vol. 135, no. 2, pp. 89-92, Apr. 1988. 

[6] J. D. S. Langley, P. S. Hall, and P. Newham, 

“Novel ultrawide-bandwidth Vivaldi antenna with 

low crosspolarisation,” Electron. Lett., vol. 29, no. 

23, p. 2004, 1993. 

[7] A. Dadgarpour, F. Jolani, Y. Yu, Z. Chen, B. S. 

Virdee, and T. A. Denidni, “A compact balanced 

antipodal bow-tie antenna having double notch-

bands,” Microw. Opt. Technol. Lett., vol. 56, no. 9, 

pp. 2010-2014, Sept. 2014. 

[8] M. C. Sai and D. Chandwani, “Balanced antipodal 

Vivaldi antenna design with hexagonal slots and 

three level geometric patches,” in 2019 3rd 

International conference on Electronics, 

Communication and Aerospace Technology 

(ICECA), Coimbatore, India, pp. 1057-1060, June 

2019. 

[9] L. Juan, F. Guang, Y. Lin, and F. Demin, “A 

modified balanced antipodal Vivaldi antenna with 

improved radiation characteristics,” Micro & 

(b)

0 5 10 15 20 25 30 35 40 45

-10

-5

0

5

10

15

20

G
a
in

 (
d

B
)

Frequency (GHz)

 Curved slot

 Straight slot

 
(b) 

0 5 10 15 20 25 30 35 40 45

-45

-40

-35

-30

-25

-20

-15

C
ro

ss
-p

o
la

ri
za

ti
o
n

 l
ev

el
s 

(d
B

) 

Frequency (GHz)

 Curved slot

 Straight slot

 
(c) 

 

Fig. 6. Comparison of radiation performance between 

BAVAs with curved slots and straight slots: (a) |S11|, (b) 

gain, (c) cross-polarization level.  

 

Figure 6 illustrates the simulated results of the 

BAVAs with the optimal structures of straight slots and 

curved slots. One can see from Fig. 6 that, the curved 

slots designed by the proposed model lead to a broader 

frequency band with nearly the same gain and cross-

polarization levels as the straight slots in BAVA. 

According to Fig. 6 (a), the lower cut-off frequency of 

the BAVA with straight slots is 7.97 GHz, while that 

with curved slots is 6.76 GHz. This indicates that the 

lower cut-off frequency of the BAVA with curved slots 

is reduced by about 1.2 GHz.  

 

IV. CONCLUSION 
In this paper, an ANN for parametric modeling 

based on cubic spline interpolation is proposed to shape 

the slots of BAVA. The longitudinal movement values 

of the points, rotation angle, width, and length of the 

curved slot serve as the input of ANN. These input 

parameters of ANN help to determine the slot structure. 

The output of the proposed ANN includes the S-

parameter as well as the gain of the antenna. The lower 

cut-off frequency is decreased without affecting BAVA's 

gain, thanks to the curved slots created by the proposed 

ANN and further optimized by NSGA-II. The proposed 

ANN only involves simple geometric parameters instead 

of image processing, leading to a convenient operation 

of machine learning. Moreover, the parametric modeling 

can also be adapted to shape design of other devices. 

     

ACKNOWLEDGMENT 
This work was supported by the National Natural 

Science Foundation of China under Grant 62171093 and 

by the Sichuan Science and Technology Programs under 

Grants 2022NSFSC0547 and 2022ZYD0109. 

 

REFERENCES  
[1] F. T. Wu, G. F. Zhang, X. L. Yuang, and N. C. 

Yuang, “Research on ultra-wide band planar 

Vivaldi antenna array,” Microw. Opt. Technol. 

Lett., vol. 48, no. 10, pp. 2117-2120, Oct. 2006. 

[2] M. J. Horst, M. T. Ghasr, and R. Zoughi, “Design 

of a compact V-band transceiver and antenna for 

millimeter-wave imaging systems,” IEEE Trans. 

Instrum. Meas., vol. 68, no. 11, pp. 4400-4411, 

Nov. 2019. 

[3] M. R. Hamid, P. Gardner, P. S. Hall, and F. 

Ghanem, “Vivaldi with tunable narrow band 

rejection,” Microw. Opt. Technol. Lett., vol. 53, no. 

5, pp. 1125-1128, May 2011. 

[4] P. J. Gibson, “The Vivaldi aerial,” in Proc. 9th Eur. 

Microw. Conf., Brighton, U.K., pp. 101-105, June 

1979. 

[5] E. Gazit, “Improved design of the Vivaldi 

antenna,” IEE Proc. H-Microw. Antennas Propag., 

vol. 135, no. 2, pp. 89-92, Apr. 1988. 

[6] J. D. S. Langley, P. S. Hall, and P. Newham, 

“Novel ultrawide-bandwidth Vivaldi antenna with 

low crosspolarisation,” Electron. Lett., vol. 29, no. 

23, p. 2004, 1993. 

[7] A. Dadgarpour, F. Jolani, Y. Yu, Z. Chen, B. S. 

Virdee, and T. A. Denidni, “A compact balanced 

antipodal bow-tie antenna having double notch-

bands,” Microw. Opt. Technol. Lett., vol. 56, no. 9, 

pp. 2010-2014, Sept. 2014. 

[8] M. C. Sai and D. Chandwani, “Balanced antipodal 

Vivaldi antenna design with hexagonal slots and 

three level geometric patches,” in 2019 3rd 

International conference on Electronics, 

Communication and Aerospace Technology 

(ICECA), Coimbatore, India, pp. 1057-1060, June 

2019. 

[9] L. Juan, F. Guang, Y. Lin, and F. Demin, “A 

modified balanced antipodal Vivaldi antenna with 

improved radiation characteristics,” Micro & 

(c)

Fig. 6. Comparison of radiation performance between
BAVAs with curved slots and straight slots: (a) |S11|, (b)
gain, and (c) cross-polarization level.

slots is 6.76 GHz. This indicates that the lower cut-off
frequency of the BAVA with curved slots is reduced by
about 1.2 GHz.

IV. CONCLUSION
In this paper, an ANN for parametric modeling

based on cubic spline interpolation is proposed to shape
the slots of BAVA. The longitudinal movement values of
the points, rotation angle, width, and length of the curved
slot serve as the input of ANN. These input parameters
of ANN help to determine the slot structure. The output
of the proposed ANN includes the S-parameter as well
as the gain of the antenna. The lower cut-off frequency
is decreased without affecting BAVA’s gain, thanks to
the curved slots created by the proposed ANN and fur-

ther optimized by NSGA-II. The proposed ANN only
involves simple geometric parameters instead of image
processing, leading to a convenient operation of machine
learning. Moreover, the parametric modeling can also be
adapted to shape design of other devices.
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