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Abstract – A novel design of wideband multi-
polarization reconfigurable antenna is proposed, based
on a non-uniform polarization convert artificial magnetic
conductor (AMC) reflector. The proposed antenna con-
sists of a radiator element and an AMC reflector. Firstly,
a modified polarization convert AMC reflector is de-
signed. The non-uniform AMC reflector causes an en-
hancement of 3 dB axial ratio (AR) performance. Sec-
ondly, a wideband linearly polarized monopole antenna
is presented as the main radiator, utilizing the broad-
band characteristic of a C-shaped monopole. The polar-
ization reconfigurability of the proposed antenna can be
achieved by properly rotating the AMC reflector, which
can be switched between linear polarization (LP), left-
hand circular polarization (LHCP), and right-hand circu-
lar polarization (RHCP). A prototype of the proposed an-
tenna is fabricated and experimented with to validate the
theoretical performance. The measured results show a -
10 dB impedance bandwidth of 42.7% and 44.4% for LP
and CP modes, respectively, and a 3 dB AR bandwidth
of 20% for CP modes. In addition, the measured peak
gain reaches 8 dBi/dBic. A good agreement is shown be-
tween the simulation and measurement, pointing to the
good performance of the proposed antenna.

Index Terms – Non-uniform metasurface (MS), polar-
ization convert AMC reflector, polarization reconfigura-
bility, wideband.

I. INTRODUCTION
With the rapid development of mobile and satel-

lite communications, lots of multifunctional antennas
have been investigated in recent years, such as fre-
quency reconfigurable antennas, pattern reconfigurable
antennas, polarization reconfigurable antennas, or hybrid

reconfigurable antennas [1]–[25]. Since circular polar-
ization has the characteristic of reducing the effect of
multipath loss, modern wireless communications require
antenna polarization diversity to strengthen the commu-
nication quality, especially for satellite communications
[3], [4]. Moreover, to meet more wireless communica-
tion applications needs, a wideband characteristic of the
antenna is needed. Thus, the antenna, which combines
performances of wideband and multi-polarization simul-
taneously, has attracted more and more attention.

Conventionally, the approach of antenna reconfig-
urability includes embedding RF or optical switches in
slots on radiator patches or the ground plane to change
the antenna current distribution and make different polar-
ization modes [5]–[14]. In [5]–[7], three tri-polarization
reconfigurable patch antennas are presented; they have
simple geometries, but all obtain a narrow operating
bandwidth of 2%, 8%, and 3%, respectively. On the con-
trary, a tri-reconfigurable antenna makes a large 3 dB ax-
ial ratio (AR) bandwidth of 50% caused by a C-shaped
radiator [8], but the optical switch is not easy to apply to
modern communication systems. Some other works un-
fortunately have polarization reconfigurability, switching
only within linearly polarized (LP) modes or circularly
polarized (CP) modes [9]–[12]. Other works realize po-
larization diversity by controlling switches inserted in
the slot on the ground plane [13], [14].

Another method for a polarization reconfigurable
antenna is to design a multipath phase-shift network,
which can change the phase difference between the feed-
ing points and lead to polarization diversities [15]–[10].
In this method, it is easy to offer a phase difference and
then achieve polarization diversity. For example, in [15]
and [18], a tri-polarization reconfigurable antenna and a
quad-polarization reconfigurable antenna are proposed,
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but they obtain a narrow 3 dB AR bandwidth of 17% and
12%, respectively. Obviously, the shortcoming of this
method is that a wideband phase-shift network is chal-
lenging to implement, and many lumped components are
used, which causes cost increases.

It’s worth noting that, as a novel design, some
multi-polarization antenna investigations about metasur-
face (MS) for polarization diversity have been presented
[20]–[25]. Compared with conventional works, the po-
larization reconfigurable antenna based on MS has the
advantage of a low profile. In [20], a CP reconfigurable
antenna based on non-uniform MS with a low profile and
broadband is investigated, controlled by RF switches.
Unfortunately, this antenna can’t work in LP mode. In
[23], a multi-polarization reconfigurable antenna based
on polarization convert MS is proposed with a bandwidth
of 30%, switching polarization states by rotating the MS.
Compared with RF switches, this method can reduce the
loss of bias circuits and lumped components.

In this paper, a wideband multi-polarization recon-
figurable antenna based on a polarization convert arti-
ficial magnetic conductor (AMC) reflector is proposed.
Different from the previously published design, this an-
tenna is beneficial for a simple polarization switching
strategy and a reduction of loss, selecting polarization
modes by properly rotating the AMC reflector without
any switches. Meanwhile, compared to the conventional
metal reflector, the AMC reflector leads to an improve-
ment of the antenna gain with a low profile. Eventually,
the proposed antenna acquires multi-polarization work-
ing modes and a profile decline of 33.3% compared to
conventional mental reflectors with a profile of 1/4λ0 (at
f 0 = 5 GHz).

II. ANTENNA DESIGN PRINCIPLE
As depicted in Fig. 1, the proposed antenna includes

an AMC reflector and a C-shaped radiator. The wide-
band performance of the C-shaped radiator has already
been validated by previous work [8]. There is a modified
C-shaped monopole to offer a wideband incident wave
source. The modified C-shaped patch and ground plane
are printed on top and bottom of a 1.524 mm Rogers
4003C substrate with a relative permittivity of 3.38. In
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Fig. 1. The overall prototype of the proposed antenna. 
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Fig. 2.  The geometry of the proposed AMC. 
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R4 substrate with a relative permittivity of 4.4. To 

explain the design principle of the proposed antenna, a 

detailed analysis of the AMC reflector and C-shaped 

monopole are discussed as follows. 

 

A. Polarization convert AMC reflector analysis 
The geometry of the proposed AMC unit is illustrated in 

Fig. 2, in which its cell is a shuttle-shaped patch etched with a 

crossed slot. An equivalent circuit is provided to explain how the 

AMC reflector realizes polarization conversion. Along the 

diagonal corners, the orthogonal surface impedance component, 

marked Zu and Zv, of the AMC unit can be approximately 

calculated as 

𝑍𝑢  =  2𝑅1 + 2𝑗𝜔(2𝐿1) + 2/(𝑗𝜔𝐶1)
+ 1/( 𝑗𝜔𝐶2)  
=  𝑅𝑢 + 𝑗𝑋𝑢 and 

(1a) 

𝑍𝑣  =  2𝑅2 + 2𝑗𝜔(2𝐿2) + 2/(𝑗𝜔𝐶3)
+ 1/( 𝑗𝜔𝐶4)  
=  𝑅𝑣 + 𝑗𝑋𝑣, 

(1b) 

where R1, L1, C1, and C2, are the resistance, inductance, 

and distributed capacitance of the AMC unit in the u-direction, 

respectively, and R2, L2, C3, and C4 are in the v-direction. 

Further, according to the Euler formula, (1) can be simplified as 

follows 

𝑍𝑢  =  | 𝑍𝑢 |∠𝜑1 =  | 𝑍𝑢 |𝑒𝑗𝜑1and (2a) 

𝑍𝑣  =  | 𝑍𝑣 |∠𝜑2 =  | 𝑍𝑣 |𝑒𝑗𝜑2. (2b) 

What can be known is that the resistance, inductance, and 

distributed capacitance of the AMC unit are related to the triangle 

truncation and the crossed slot. Thus, by adjusting the size of the 

triangle truncated and the crossed slot, a phase difference can be 

achieved between Zu and Zv. 

Assuming that the incident source is a linearly polarized 

plane wave along the x-axis, so the incident E-field is also along 

the x-axis named Eix. Here, Eix is broken into two orthogonal 

components, Eiu and Eiv. By supposing that the magnitude of the 

two orthogonal E-field components is |Em| and the phase is φ3 

and φ4, Eiu and Eiv can be denoted by the following: 

𝑬𝒊𝒖  =  | 𝑍𝑚 |𝑒𝑗𝜑3 and (3a) 

𝑬𝒊𝒗  =  | 𝑍𝑚 |𝑒𝑗𝜑4. (3b) 

When E-field components Eiu and Eiv are incident on the 

AMC reflector, respectively, numerous electrons on the surface 

of the AMC unit will be excited and move along the u-direction 

and v-direction, respectively, generating induced currents, thus 

forming the reflected E-fields Eru and Erv individually. If there is 

no energy loss in reflection, the reflected and incident E-field are 

Fig. 1. The overall prototype of the proposed antenna.

others, an improved AMC reflector is placed H = 10 mm
below the radiator to achieve polarization reconfigurabil-
ity and radiation directionality. The AMC reflector con-
sists of 6×6 MS units fabricated on a 2 mm R4 substrate
with a relative permittivity of 4.4. To explain the design
principle of the proposed antenna, a detailed analysis of
the AMC reflector and C-shaped monopole are discussed
as follows.

A. Polarization convert AMC reflector analysis
The geometry of the proposed AMC unit is illus-

trated in Fig. 2, in which its cell is a shuttle-shaped patch
etched with a crossed slot. An equivalent circuit is pro-
vided to explain how the AMC reflector realizes polar-
ization conversion. Along the diagonal corners, the or-
thogonal surface impedance component, marked Zu and
Zv, of the AMC unit can be approximately calculated as

Zu = 2R1 +2 jω( 2L1)+2/( jωC1)

+1/( jωC2) (1a)
= Ru + jXu and

Zv = 2R2 +2 jω( 2L2)+2/( jωC3)

+1/( jωC4)

= Rv + jXv, (1b)
where R1, L1, C1, and C2, are the resistance, inductance,
and distributed capacitance of the AMC unit in the u-
direction, respectively, and R2, L2, C3, and C4 are in the
v-direction. Further, according to the Euler formula, (1)
can be simplified as follows

Zu = |Zu|∠ϕ1 = |Zu|e jϕ1 and (2a)

Zv = |Zv|∠ϕ2 = |Zv|e jϕ2. (2b)
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components is |Em| and the phase is ö3 and ö4, Eiu and
Eiv can be denoted by the following:

E iu = |Zm|e jϕ3 and (3a)

E iv = |Zm|e jϕ4. (3b)
When E-field components Eiu and Eiv are incident

on the AMC reflector, respectively, numerous electrons
on the surface of the AMC unit will be excited and move
along the u-direction and v-direction, respectively, gen-
erating induced currents, thus forming the reflected E-
fields Eru and Erv individually. If there is no energy
loss in reflection, the reflected and incident E-field are
equal in magnitude. Furthermore, the phase of the re-
flected wave is equivalent to the combination of the
phase with the incident wave, the phase of the AMC sur-
face impedance along the incident wave direction, and
the phase difference generated by the air gap. There-
fore, the reflected E-field components can be roughly de-
scribed as follows

Eru = |Zm|e j(ϕ1+ϕ3+∆ϕ) and (4a)

Erv = |Zm|e j(ϕ2+ϕ4+∆ϕ). (4b)
Eventually, the composite E-field components can

be roughly described as follows:

Eu = |Zm|
[
e jϕ3 + e j(ϕ1+ϕ3+∆ϕ)

]
and (5a)

Ev = |Zm|
[
e jϕ4 + e j(ϕ2+ϕ4+∆ϕ)

]
. (5b)

Since Eiu and Eiv are symmetric to Eix, these two
orthogonal E-field components have the same phase,
meaning that ö3 is equal to ö4. And appropriately op-
timizing the AMC unit, a 90◦ phase difference can be
obtained between Zu and Zv, assuming ö1 leads ö2 by
90◦. As a result, (5a) and (5b) can be simplified as (6a)
and (6b).

Eu = |Zm|
[
e jϕ4 + je j(ϕ2+ϕ4+∆ϕ)

]
and (6a)

Ev = |Zm|
[
e jϕ4 + e j(ϕ2+ϕ4+∆ϕ)

]
. (6b)

Thus, the composite E-field Etotal is a CP wave,
which is combined by two E-field components with iden-
tical magnitudes and a 90◦ phase difference. In addi-
tion, because the phase of the E-field component in the
u-direction leads the v-direction, the antenna will work
in left-handed circularly polarized (LHCP) mode. As
shown in Fig. 2, when the AMC unit is rotated by -45◦ or
45◦, the AMC is symmetric about the x-axis. Thus, there
is an in-phase or anti-phase of the surface impedance be-
tween the u-direction and v-direction. Accordingly, the
composite E-field Etotal is an LP wave. Moreover, when
the AMC unit is rotated by 90◦, the polarization of the
proposed antenna will be in right-handed circularly po-
larized (RHCP) mode.

Ansoft HFSS simulates the AMC unit with the Flo-
quet port to verify the analysis. The width of the triangle

truncation on AMC units is defined as parameter n. Its ef-
fect on the reflected characteristic of the proposed AMC
unit and the polarization convert performance is given in
Fig. 3. With the increase of n, the high-frequency reso-
nance point of the AMC unit will move toward the high
frequency, whereas the low frequency remains almost
constant. Meanwhile, the impedance matching would
deteriorate. In addition, for better CP performance, the
magnitude ratio between the incident E-field and the re-
flected must be within ±3 dB. As shown in Fig. 3 (b),
while n increases, the magnitude ratio varies, and the
broadest 3 dB magnitude ratio bandwidth is obtained
when n is equal to 6 mm. Considering the performance of
the impedance matching and the CP, there are two AMC
units with different truncations, n = 4.5 mm and 6 mm,
respectively, to build a non-uniform AMC reflector.
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Fig. 4.  The phototype of the proposed AMC reflector 

(design parameters: m = 11.5 mm, P = 12 mm, n1 = 6 

mm, n2 = 4.5 mm, a1 = 5.5 mm, a2 = 6 mm, b1 = 4.5 

mm, b2 = 5 mm). 
 

B. C-shaped monopole antenna with the AMC 

reflector 

Given the polarization conversion characteristic of 

the proposed AMC reflector, a modified C-shaped 

monopole is designed and introduced to offer an incident 

x-LP wave source, positioned at the top of the reflector. 

As shown in Fig. 5, for Ant. 1, the impedance 

matching is poor, in which the real part of the impedance 
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Fig. 4.  The phototype of the proposed AMC reflector 
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Fig. 4. The phototype of the proposed AMC reflector (de-
sign parameters: m = 11.5 mm, P = 12 mm, n1 = 6 mm,
n2 = 4.5 mm, a1 = 5.5 mm, a2 = 6 mm, b1 = 4.5 mm, b2
= 5 mm).
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B. C-shaped monopole antenna with the AMC
reflector

Given the polarization conversion characteristic
of the proposed AMC reflector, a modified C-shaped
monopole is designed and introduced to offer an incident
x-LP wave source, positioned at the top of the reflector.

As shown in Fig. 5, for Ant. 1, the impedance match-
ing is poor, in which the real part of the impedance is not
close to 50 Ù, and the imaginary part is not near 0 Ù
within a certain bandwidth. There is a resonance only
near 4 GHz, noted f 1. To improve impedance match-
ing and bring multi-resonance, the C-shaped patch edge
is slotted and placed into three parasitic stubs in a fan
shape, labeled Ant. 2. Due to the slotting, the current
length of the resonant frequency f 1 will be expanded so
that the resonance frequency is scaled down and recorded
as f 2. The parasitic stubs, with the induced current, will
create a new resonance, marked f 3, achieving multi-
frequency resonance. As a result, two resonant frequency
points near 3 and 5 GHz are generated and bring a wide
impedance bandwidth (|S11| < -10 dB) of about 60%.
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Fig. 5. The performance of two C-shaped monopoles: (a) 

Impedance, (b) |S11|. 
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Fig. 7. The phototype of the C-shaped monopole (design 

parameters [millimetres]: R1 = 9, R2 = 16, R3 = 10, R4 = 

8.5, R5 = 21, R6 = 7, R7 = 16, Rd1 = 6.5, Rd2 = 7.5, w = 

1.3, d = 2, g = 0.5, Wd = 2.3). 

 

Then the proposed AMC reflector is applied below 

the C-shaped monopole antenna, about 0.15λ, to realize 

directionality and polarization reconfigurability. To 

reduce the crossed polarization, especially in CP modes, 

a set of fan-shaped parasitic stubs are added at the notch 

of Ant.2. The added parasitic stubs will be excited and 

generated with a polarization mode consistent with the 

antenna, so the main polarization is enhanced, which 

implies a reverse weakening of the cross-polarization, as 

shown in Fig. 6. The final design of the C-shaped 

monopole antenna, shown in Fig. 7, contains a C-shaped 

patch with seven parasitic fan stubs and a circular ground 

plane with two additional rectangle stubs.  

Eventually, when holding the C-shaped monopole 

antenna still and rotating the AMC reflector 

counterclockwise by -45°, 45°, 0°, and 90°, the antenna 

can work on x-LP1, x-LP2, LHCP, and RHCP modes, 

respectively. 

 
 

Fig. 8. Photographs of the manufactured antenna and 

experiment setup. 
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Fig. 9. The simulated and measured reflection coefficient 

|S11|: (a) LP modes, (b) CP modes. 
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Fig. 10. The simulated and measured results of axial ratio 
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Then the proposed AMC reflector is applied below
the C-shaped monopole antenna, about 0.15ë, to realize
directionality and polarization reconfigurability. To re-
duce the crossed polarization, especially in CP modes,
a set of fan-shaped parasitic stubs are added at the notch
of Ant.2. The added parasitic stubs will be excited and
generated with a polarization mode consistent with the
antenna, so the main polarization is enhanced, which
implies a reverse weakening of the cross-polarization,
as shown in Fig. 6. The final design of the C-shaped
monopole antenna, shown in Fig. 7, contains a C-shaped
patch with seven parasitic fan stubs and a circular ground
plane with two additional rectangle stubs.

Eventually, when holding the C-shaped monopole
antenna still and rotating the AMC reflector counter-
clockwise by -45◦, 45◦, 0◦, and 90◦, the antenna can
work on x-LP1, x-LP2, LHCP, and RHCP modes, respec-
tively.
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Fig. 7. The phototype of the C-shaped monopole (design
parameters [millimetres]: R1 = 9, R2 = 16, R3 = 10, R4
= 8.5, R5 = 21, R6 = 7, R7 = 16, Rd1 = 6.5, Rd2 = 7.5, w
= 1.3, d = 2, g = 0.5, Wd = 2.3).

III. SIMULATED AND EXPERIMENTAL
RESULTS

The proposed antenna is designed and optimized by
Ansys HFSS and then fabricated and measured to ver-
ify the performance by the ROHDE&SCHWARZ ZVB-8
vector network analyzer and multi-probe antenna testing
system. The manufactured antenna and far-field experi-
ment setup are shown in Fig. 8.

Figure 9 illustrates simulated and experimental re-
flection coefficients |S11| in different polarization modes.
The experimental -10 dB overlapped impedance band-
width of 42.7%, covers 3.5 GHz to 5.4 GHz in both
LP modes. It obtains 44.4% of the measured -10 dB
impedance bandwidth for the CP modes and covers be-
tween 3.5 GHz and 5.5 GHz. The measured impedance
matching of the antenna decreases slightly at high fre-
quency due to manufacturing error. The experimental re-
sults are in good accordance with the simulation results.
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Figure 10 shows the simulated and measured ax-
ial ratio and gain in different polarization modes. When
working in LP modes, the axial ratio of the antenna is
larger than 25 dB within operating bandwidth. In addi-
tion, the measured peak gain reaches about 8 dBi. When
working in CP modes, an overlapped 3 dB axial ratio
bandwidth of 20%, covering 4.5 GHz to 5.5 GHz, shows
good agreement with the simulation. Similarly, the mea-
sured peak gain is about 8 dBic for CP modes. Compared
with the simulations, there is a 2 dB loss of the measured
gain, which is caused by the error of fabrication and the
loss of dielectric material. The measured and simulated
normalized radiation patterns of the proposed antenna at
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4.8 and 5 GHz are illustrated in Figs. 11 and 12 for CP
and LP modes, respectively. The simulated results match
well for all states with good directivity.
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manufacturing error. The experimental results are in good 
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Fig. 11.  The simulated and measured normalized 

radiation pattern: (a) LHCP at 4.8 GHz and (b) 5.2 GHz, 

(c) RHCP at 4.8 GHz and (d) 5.2 GHz. 

 
Figure 10 shows the simulated and measured axial 

ratio and gain in different polarization modes. When 

working in LP modes, the axial ratio of the antenna is 

larger than 25 dB within operating bandwidth. In 

addition, the measured peak gain reaches about 8 dBi. 

When working in CP modes, an overlapped 3 dB axial 

ratio bandwidth of 20%, covering 4.5 GHz to 5.5 GHz, 

shows good agreement with the simulation. Similarly, 

the measured peak gain is about 8 dBic for CP modes. 

Compared with the simulations, there is a 2 dB loss of 

the measured gain, which is caused by the error of 

fabrication and the loss of dielectric material. The 

measured and simulated normalized radiation patterns of 

the proposed antenna at 4.8 and 5 GHz are illustrated in 

Figs. 11 and 12 for CP and LP modes, respectively. The 

simulated results match well for all states with good 

directivity. 

Table 1 shows a performance comparison with other 

polarization reconfigurable works. The proposed antenna 
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Table 1 shows a performance comparison with other
polarization reconfigurable works. The proposed antenna
has a wider -10 dB impedance bandwidth of over 40%
and more operating modes. Meanwhile, this work has a
simple polarization switch strategy by rotating the MS,
with no RF switches applied. In addition, the 3 dB axial
ratio bandwidth and peak gain of the proposed work have
shown good performance.

Table 1: Performance comparison with other works
Ref. Modes Impedance

Bandwidth
(%)

AR
Bandwidth

(%)

Peak Gain
(dBi/c)

[11] 2 CP 41.1 34 12
[12] 2 CP 5 4 5.2
[21] 2 CP 36 21.5 15.5
[22] 1 LP2 CP LP: 17.1

CP: 8.7
8.7 LP: 9

CP: 8.3
This work 2 LP2 CP LP: 42.7

CP: 44.4
20 LP: 8

CP: 8

IV. CONCLUSION
This paper proposes a design for a polarization re-

configurable antenna based on a rotating AMC reflector.
The proposed antenna is composed of two parts, an AMC
reflector and a C-shaped monopole. By turning the AMC
reflector at ±45◦, 0◦, and 90◦ clockwise, respectively, the
antenna could switch the polarization state among x-LP,
LHCP, and RHCP. Compared to other previous polariza-
tion reconfigurable antennas, it reduces the application
of the DC bias circuits with a simple polarization switch-
ing strategy. The proposed antenna has a wide operating
bandwidth of 42.7% and 20% for LP and CP modes, ap-
proximately covering 3.5 to 5.4 GHz and 4.5 to 5.5 GHz,
respectively. Furthermore, the maximum measured gain
reaches 8 dBi(c). It could be applied to 5G mobile com-
munication systems, satellite communications, and other
polarization-diverse applications.
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