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ABSTRACT- A hybrid scheme consisting of a modified 
second order in time- fourth order in space finite-difference 
time-domain (FDTD) scheme "

243dM " and the Yee algorithm, 

with subgridding is introduced to overcome the errors of 
applying the 4th order in space FDTD at the interfaces of 
perfect electric conductors (PEC) or dielectric scatterers. This 
hybrid scheme is based on applying the Yee algorithm in the 
vicinity of the scatterer using a high resolution grid (number of 
points per wavelength), and the 

243dM  scheme in the other 

regions using a low resolution grid in order to reduce the 
required computer storage for large problems, while still good 
accuracy. The results of this hybrid scheme are shown to agree 
well with the results of the Yee algorithm using a high 
resolution grid, for problems of plane wave scattering from 
PEC cubes, spheres. 
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1.  INTRODUCTION 
 
Higher order FDTD algorithms are used to improve the 
accuracy of the computations when using a relatively low 
resolution grid. Taflove [1] approximated the derivatives in the 
conventional fourth order FDTD using the second order 
central difference in time and fourth order in space. A 
modified second order in time- fourth order in space FDTD 
scheme “

243dM ”, has been deduced by the authors in [2,3,4]. 

The algorithm enables the numerical phase velocity error to be 
minimized, so that it leads to high accuracy with low 
resolution grids. The application of 4th order algorithms 
directly in the vicinity of a PEC or a dielectric scatterer 
introduces errors due to using large stencils in the 4th order 
algorithms [5,6]. Other sources of error are the large variations 
of the fields in the vicinity of an edge of a PEC or a large 
curvature of a surface of a PEC, that can not be reproduced 
with low resolution. To overcome the error of large stencils, 
Hadi [5] applied the 2nd order Yee algorithm in the vicinity of 
the scatterer, however, the Yee algorithm produces a 
significant error if it is applied using low resolution.  
 

The approach adopted in this paper depends on the 
application of the Yee algorithm in the vicinity of the scatterer 
using a high resolution grid, and using  the

243dM  scheme with 

low resolution in the other regions to reduce the required  

 
 
storage for large problems. The high resolution is also required 
to reproduce fast variations of the fields in certain regions. In 
addition, complex structures which contain fine details in 
some regions need high resolution grids, whereas a 4th order 
scheme with low resolution can be applied in the remaining 
regions. A number of examples are given in the present paper 
to show the applicability of the scheme for different categories 
of problems. 
 
2.   METHOD OF SOLUTION 
 
The modified 3D 4th order FDTD scheme "

243dM " is 

introduced by the authors in [2,3,4]. The updating equations of 
the 

243dM  scheme have been derived as applications of a 

version of Ampere’s law and Faraday’s law using 2nd order 
central difference in time and 4th order in space. 

The updating equation of the filed component xE  is, 
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where each point in the Yee cell ),,(),,( khjhihPzyxP kji =  

and the time tntn ∆= , h and t∆ are the space and time 

increments, nkji ,,,  are integers and 
h

t
Ne

0ε
∆=  . 

where the following conditions must be satisfied. 
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The constants 321 ,, KKK and 4K  are optimized to minimize 

the dispersion error in all directions at a certain frequency [3]. 
The time step t∆  should be small w.r.t the cell size according 
to the stability condition [3], 
 

3/21

1

3 21 KKc

h
t

−−
≤∆

β
                                               (4) 

 
The other five E,H field components have a similar form 
corresponding to Ampere’s and Faraday’s laws in the different 
directions with the field locations conforming to the Yee cell. 
The magnetic field components are updated at times shifted by 

2/t∆  w.r.t the times of the electric field components. 
 

The present approach is based on applying the 
243dM  

scheme using a coarse grid in the regions which are not in the 
vicinity of objects, and applying the Yee algorithm using a 
fine grid in a region that contains the object or the objects. The 
ratio of the resolution of the fine grid to that of the coarse grid 
to be used equals odd integers. An important property of using 
an odd integer ratio is that it provides colocated fields in space 
for the fine grid with the coarse grid (see Figure 1) [7]. The 
time step used is entirely constant in the domain with 

maxftt ∆<∆  (where 
maxft∆ is the maximum allowable time 

step satisfying the stability condition in the fine grid). 
 
At each time step the fields are updated in the coarse grid 

using 
243dM , then the tangential E-fields and the normal H-

fields on the interface planes of the fine grid are interpolated 
from the coarse grid to the fine one. Finally the fields are 
updated in the fine grid using the Yee algorithm.  

 
Assume that the electric and magnetic fields are denoted 

by ( HE , ) in the coarse grid and ( he , ) in the fine grid. At a 

common point on the two grids with indices ),,( kji  on the 

coarse grid and )’,’,’( kji on the fine grid, the field 

),,( kjiEx  corresponds to the field )’,’,1’( kjiex + (noting 

that the position of ),,( kjiEx  is the point 

( )zkyjxi ∆∆∆+ ,,)2/1( , Figure (1a)). The other five field 

components, ),,( kjiE y  corresponds to )’,1’,’( kjiey +  , 

),,( kjiEz  corresponds to )1’,,’( +kjiez  , ),,( kjiH x  

corresponds to )1’,1’,’( ++ kjihx , ),,( kjiH y  corresponds 

to )1’,’,1’( ++ kjihy  and ),,( kjiH z  corresponds to 

)’,1’,1’( kjihz ++ . 

 
In order to show the actual steps of evaluations and 

interpolations of the fields in the coarse and the fine grids, we 

consider the x-component of the electric-field  xE  and xe . 

Assume the six boundary planes of the fine grid region 
(intersection planes between the fine and coarse grids) are 

xix b ∆= 11 , xix b ∆= 22 , yjy b ∆= 11 , yjy b ∆= 22 , 

zkz b ∆= 11 and  zkz b ∆= 22  with bb ii 12 > , bb jj 12 >  and 

bb kk 12 > . The steps of the computations will be as follows 

for each time step; 

(1) xE  is updated in the coarse grid and in the intersection 

planes, i.e. in the region  {( bb iii 12 <≤ ) or 

( bb jjj 12 ≤≤ ) or ( bb kkk 12 ≤≤ )}, using 
243dM . 

(2) xE is interpolated on the four planes, the xy planes 

zkz b ∆= 11 and zkz b ∆= 22 and the xz planes 

yjy b ∆= 11  and yjy b ∆= 22  to find xe  on these 

planes. The interpolations on the xy plane 

zkz b ∆= 11 (Figure 1), can be evaluated as follows; 

i)Linear interpolation is used to find the interpolated value 
of   

xE at the points (p) in Figure1a, which are the 

positions of the xe field at the same points (i,j,k)  of  xE .             

ii)The interpolated four field components 1xe ,……., 4xe  

are used to obtain the  fields at the points (x) (Figure 1b) 
using quintic interpolation. 

(3)  The xe field is updated in the fine grid using the Yee 

algorithm. 

(4)  After updating the xe field, the values of xE are updated 

as xE = xe at the common points of the low resolution 

and the high resolution grids in the domain of the fine 
grid. 

(5) Simililar steps are to be repeated for the H field 
components. 

 
The use of the Yee algorithm in the fine grid, rather than 

using the 
243dM algorithm, has the obvious advantage that the 
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Yee algorithm does not have a large stencil thus it introduces 
only small errors at the object boundary. In addition, the use of 
high resolution will increase the accuracy of the Yee algorithm 
to the required value while using fewer floating point 
operations than the 

243dM algorithm. Third, the time step  

maxft∆ of the Yee algorithm is longer than the corresponding 

time step for 
243dM  (according to the stability condition of 

the two schemes [1], Eq.(4)), i.e. using 
243dM in the fine grid 

will increase the required time steps to solve the problem. 
 

3. REFLECTION ERROR OF SUBGRIDDING 
 
Using multi-resolution grids in the computational domain 
introduces spurious reflections at the interfaces between the 
coarse grid and the fine one. These reflections are evaluated  
using a rectangular waveguide as discussed in [7], but our test 
is applied for the three-dimensional case. A 

10TE  mode, 

Gaussian pulse-modulated sine wave is excited at one end of a 
waveguide with a cross section of dimensions 920× mm and 

its center lies at the point ),( 00 yx . The total field is updated 

taking into consideration the boundary condition of the perfect 
conductor of the waveguide. The coarse grid has a cell edge 
length zyxh ∆=∆=∆= =1mm. The waveguide is long 

enough to eliminate reflections from the absorbing boundary 
condition (ABC). The modulated pulse is given by  

g(t)= 
2)/(

02sin τπ tetf − ,                                                  (5) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (b) 
 

Figure 1. Steps of interpolations to find 
xe from 

xE in the 

planes z= zk b∆1
or z= zk b∆2

. (a) Interpolation of the field 

values at the points (p), (b) the interpolated values 
1xe ,

2xe ,
3xe  

and 
4xe are used to obtain the field values at the points (x). 

 

0,1
5.10 cff = =11.25 GHZ,  

GHZ20
2

1 =
τ

                                                                         (6) 

where 
0,1cf is the cuttoff frequency of the 10TE  mode. 

A fine grid region, with dimensions 40416 ×× mm and cell 

edge length zyxh ∆=∆=∆= =1/3mm, is placed such that its 

center lies in the transverse plane at the point ),( 00 yx . It is 

to be noted that the reflections are due to all six interfaces of 
the subgridded region similar to the test region of Okoniewski 
et al [8], which must be greater than the reflections from the 2-
dimensional test structure of Chevalier et al [7] in which the 
fine grid filled the entire second half of the waveguide. 
 

The electric field component 
yE is computed in front 

of the subgridded region and time steps are taken such that all 
reflections from the subgridded boundaries are taken into 
consideration. These time steps are stopped before any 
reflections return from the ABC. The same computations are 
repeated using entirely the coarse grid, i.e. without 
subgridding, and the resulting field values are taken as 
reference values. The difference in yE  between the two cases 

represents the reflected field from the interfaces of the 
subgridded region. Figure 2a shows the reflection coefficient 
in front of the subgridded region at the centeral point 

),( 00 yx in the transverse plane. Figure2b shows the 

reflection coefficient as an average of the reflection 
coefficients for different x-positions in front of the subgridded 
region in the transverse plane. The reflection coefficients in 
Figures 2a and 2b are plotted versus frequency from 7GHZ to 

 

 
 

Y 
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43GHZ (for resolution R=7 in the coarse grid). The 
subgridded zone is expected to yield multiple reflections along 
its length (40mm) as a half wavelength (corresponding to 
3.75GHZ). Peaks at approximately multiples of this frequency 
are expected to occur, Figures 2a and 2b. At the lower end of 
the frequency the resolution is high and the waveguide 
approaches its cut off frequency which leads to lower 
reflections. It is seen from Figure 2 that the reflection 
coefficient in this frequency band lies below –35dB and for 
resolution R ≥ 10 ( 30≤f GHZ) the reflection coefficient is 

smaller than -47dB. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 

Figure 2. Reflection coefficient from a subgridded region 16 x 
4 x 40 mm in a recatangular waveguide with coarse grid 

1x y z mm∆ = ∆ = ∆ =  and refinement factor 3. (a) Reflection 

coefficient at the centeral point of the transverse plane in front 
of the subgridding region, (b) average of the reflection 
coefficients for different x-positions in the transverse plane. 

4.  APPLICATION OF THE HYBRID 
SCHEME TO THE FAR FIELD 
CALCULATION FROM PLANE WAVE 
SCATTERING FROM PEC OBJECTS 
 
The hybrid scheme is tested for the problem of scattering from 
PEC cubes and spheres to long distances to show the 
improvement of the accuracy compared with the Yee 
algorithm. Hadi [6,5] applied the 2nd order Yee algorithm in 
the vicinity of the PEC using a single resolution in the entire 
domain. The application of the Yee algorithm with low 
resolution, such as R=5, introduces a significant error[5]. 

The scattering from a cube is a good test to show the 
applicability of the scheme in the vicinity of PEC scatterers 
which contain edges. The scattering to a long distance shows 
the low dispersion error of the scheme. The backscattered  
electric field from a cube, with side length of λ4.2 , is plotted 

in Figure 3 with the distance from the cube. The low 
resolution (R=5) results of various schemes are compared with 
the high resolution (R=20) result  of Yee algorithm. It is seen 
from Figure 3a that the application of the Yee algorithm with 
low resolution R=5 in the vicinity of the PEC cube introduces 
a large phase error which persists with distance and affects the 
solution of the 

243dM scheme in the remaining region. In 

Figure 3b the use of the 
243dM  scheme in the whole region 

introduces errors in the amplitude and the phase due to using 
large stencils that intersect the PEC and using low resolution 
near the edges of the PEC. The result of applying the hybrid 
scheme, in which the Yee algorithm is applied with R=15 in 
the first two layers around the cube and the 

243dM scheme is 

applied with R=5 in the remaining region, is shown in Figure 
3c. It is seen that this hybrid scheme gives good accuracy in 
both the phase and the amplitude to a long distance. 

 
The backscattered electric field versus distance from 

PEC spheres is shown in Figures 4 and 5, for spheres with 
diameters λ2.1=D and λ1.2=D , respectively. The use of 
low resolution near the PEC sphere introduces a staircase error 
which can be reduced by using high resolution. It is seen from 
Figure 4a that the result of Yee algorithm with low resolution 
R=7 does not give accurate results in the vicinity of the sphere, 
and in addition a dispersion error appears with distance. In 
Figure 4b, the subgridding is used with the Yee algorithm such 
that, on the surface of the sphere and in two cells around the 
sphere, the Yee algorithm is applied with resolution R=21, and 
the same algorithm is applied with R=7 in the remaining 
region. The application of the Yee algorithm with high 
resolution in the vicinity of the sphere improves the results in 
this region, and the low resolution introduced a dispersion 
error in the remaining region, as seen in Figure 4b. This 
dispersion error is avoided by applying 

243dM without 

increasing the resolution in that region to obtain the accurate 
results of Figure 4c. Similarly, it is seen from Figure 5 that the 
hybrid technique 

243dM -Yee with R=7/21 (the Yee algorithm 

is applied on the surface of the sphere and in two cells  around 
the sphere), gives accurate results in amplitude and phase to 
long distance from the sphere.  
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                                                     (b) 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) 
Figure 3. The backscattered electric field with distance (dist is 
the distance from the surface of the cube) for normal plane 
wave incidence on a cube (side length 

λ4.2=== zyx LLL ), xtfE
inc

ˆ2sin1000 0π= , MHZf 9000 = , 

                   Yee results (R=20).   
(a) - - - -  hybrid 

243dM -YEE with single resolution R=5,  (b) 

243dM  with R=5 (dotted results), (c) hybrid 
243dM -YEE 

with sugridding R=5/15 (dotted results) 
 
It is seen from Figures 3,4 and 5 that the electric field 

has reached the far region with high accuracy when using the 

243dM -Yee algorithm. Thereby this technique can be used to 

find directly the far-field, with a relatively small amount of 
memory, instead of using a near to far field transformation. 
The near to far field transformation [9] or [10] depends on 
calculating of the time derivative of the equivalent electric and 
magnetic currents which affect on the accuracy as shown in 
[10]. An improvement is achieved in [10] by implicitly 
calculating the required time derivatives of the equivalent 
electric and magnetic currents, instead of an  explicit 
formulation of central differencing as in [9]. 

 
5.  CONCLUSION 
 
The direct application of 4th order FDTD algorithms in the 
vicinity of a perfect electric conductor (PEC) or dilectric 
scatterer introduces errors due to using large stencils in the 4th 
order algorithms. Other sources of error are the large 
variations of the fields in the vicinity of edges of a PEC or a 
large curvature of a surface of a PEC that can’t be reproduced 
with a low resolution in the entire computational domain 
because of a large phase error due to the application of the Yee 
algorithm with low resolution. A hybrid  

243dM  - Yee scheme 

with subgridding has been used in the vicinity of the scatterer 
using a high-resolution grid and 

243dM  has been used with a  

scat
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                       (c) 
 

Figure 4. The scattered electric field scat
xE , with distance, from 

a sphere with diameter λ2.1 . ),,( 000 zyx is the center of the 

sphere, xtfE
inc

ˆ2sin1000 0π= , MHZf 9000 = . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. The scattered electric field with distance from the 

surface of a sphere with diameter λ1.2 , xtfE
inc

ˆ2sin1000 0π= , 

MHZf 9000 = . 
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low-resolution grid in the other region. This scheme 
successfully overcomes the errors. 
 
 Using multi-resolution in the computational domain 
introduces a spurious reflection at the interface between the 
coarse grid and the fine one. A ratio of three has been used 
between the high-resolution grid and the low-resolution grid. 
The reflection coefficient of the subgridding of the present 
algorithm has been found to be below 47 dB for frequences 
corresponding to resolution greater than ten in the coarse grid. 
 

Different test cases have been considered which 
showed the applicability of this hybrid scheme for different 
types of problems with low resolution. The scheme has been 
tested for scattering from PEC cubes and spheres. The 
scattering from a cube is a good test to show the applicability 
of the scheme in the vicinity of a PEC scatterer which contains 
edges. The field variation with distance, up to the far field 
region, shows the low dispersion error of the scheme. It has 
been found that the field reaches the far region for the test 
cases, with high accuracy, using as low resolution as R=5 with 
the present scheme, which on the other hand requires at least a 
resolution R=20 in the Yee algorithm. Such results suggest the 
use of this scheme to obtain the far field directly without the 
need to use near field to far field transformation. 
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