
Abstract.   The Boundary Residual Method, which
is a specialization of the Least Squares Method, is
described.   A significant benefit of the approach is
that error in the residual satisfaction of the
boundary condition is explicitly reported.   Use of
error values facilitates better monitoring of solution
convergence as expansion functions are added to
the underlying model.   Furthermore, better
discrimination between competing models is
possible when errors are known.   These concepts
are explored and applied to dipoles of various
lengths with key findings reported.

Introduction.

One of the earliest models, if not the earliest
model, of the current on a linear dipole was that of
a sinusoidally distributed current, an entire domain
function.   This model still appears in textbooks
produced today but was already under critical
review in the early 1950s.   The shortcomings in
this simple model motivated King [1] in 1959 to
develop a two-term formula for the current.
Subsequently, in 1967 King [2] proposed his
“three-term theory” that provided a reasonable
prediction of the current distribution on monopoles
up to lengths in excess of one and one quarter
wave lengths.   According to a review by Duncan
and Hinchey [3] in 1960, Storm [4] was the first to
introduce the idea of expanding the dipole current
in a Fourier Series.   Others [5] subsequently
proposed the use of polynomial expansions.
However, it is the Fourier series that appears to
have been adopted by most workers using entire-
domain expansions.   In a paper in 1965,
Richmond [6] examined not only the performance
of the Fourier series, but also the series of
Maclaurin, Chebyshev of the first kind, Hermite
and Legendre.   He examined them up to the first
five terms.   His comments were “it would be
advantageous to expand the current in a series of
functions which converges more rapidly than the
Fourier series……the Chebyshev and Legendre
series appear most promising, but this matter
requires further investigation”.   No record of this
further investigation, or similar ones, can be found.
The purpose of this current work is to report the

results of such an investigation – one that takes
advantage of the enhanced tools made available
by the passage of time.

Review of the Methodology.

The Method of Weighted Residuals, MWR, has
been discussed and researched in many forms [7].
One form of the MWR utilizes least squares
minimization in order to arrive at a solution to
whatever problem is under consideration.   The
Boundary Residual Method, BRM, first introduced
by Davies in 1973 [8], appears to be the first
application of the least squares method to
computational electromagnetics (an earlier
application in the area of acoustics had been
reported [9]).   In 1990, Bunch and Grow [10] [11]
developed a formalism for implementing the BRM
in a manner that appears much like point
matching, but without the associated short-
comings.    The method of Bunch and Grow
utilizes nodes and weights from widely used
integration formulae and the resulting equations
are solved using available procedures for solving
rectangular matrices.   In this work, Singular Value
Decomposition, SVD [12], is used.   Use of SVD
results not only in the solution of the design matrix,
but also provides both the value of the condition
number of the operator matrix and an estimate of
the square of the residual error.    It will be shown
in this paper that information on these two
measures proves to be of great help in the
understanding, and evaluation, of the results.

The ideas of Bunch and Grow are reviewed next.
Assume a boundary-value problem in which the
electric field tangential to a boundary can be
expressed as:

( )
1

( )
n

i iL f s E sα ≅∑  (1)

where s is the boundary over which the tangential
field is matched, and ( )E s  is the value of the

tangential incident field at this boundary.    The
sum of the functions, in conjunction with the
operator, L , is assumed to approximately
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represent the field on the boundary.   Weighting

functions, jW , 1 ,j m m n≤ ≤ ≥ , can be

multiplied on both sides of equation (1) and
integrated over the boundary, s, to produce a
matrix equation:

MA B≅          (2a)

jiM  = ( ) ( )j i

s

W s Lf s ds∫          (2b)

jB  = ( ) ( )j

s

W s E s ds∫  (2c)

Defining the residual along the boundary as: 
( )R s MA B= −      (3)

and minimizing the integral of the residual
magnitude over the boundary in the least squares
sense produces the basic equation, or normal
equation, of the Boundary Residual Method,
namely:

t tM MA M B=       (4)

The condition number of tM M  is the square of
the condition number of M  alone and hence the
solution of (4) will be unstable at an earlier stage
than if only M  is considered.   For this reason, a
solution of (4) is not attempted.   Instead Bunch
and Grow restate (2) as:

MA B=
r r

  (5)
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and solve this set of equations directly.   iq  and

is  are, respectively, the weights and locations

associated with any conventional integration
method.   An approach similar to this was
discussed, in a general mathematical sense, by
Hildebrand [13] as early as 1952.

The matrix M
r

 is generally not square, with the
number of rows, m, intentionally greater than the
number of columns, n.   Equation (5) can be

solved using, among others, the Singular Value
Decomposition, SVD, method [12] [14].   This
approach decomposes the matrix into:

M
r

 = tU Vσ  (6)
where U and V are orthogonal matrices and σ  is
a diagonal matrix of singular values.   The ratio of
the largest to the smallest singular values,

1 / nσ σ , is the ‘condition number’ for the matrix

and indicates the number of significant digits

needed in manipulating M
r

.   The sought for
solution is then:

1 1 tA M B V U Bσ− −= =
r

         (7)

The squared residual norm, 2ρ , is given by:

2 2 ( ) 2

1

 || || || ||
m

k t
LS k

k

e MA B U Bρ
+

= = − =∑  (8)

where k is the rank of M
r

[14, p242].   The ready
availability of the value of this norm provides a tool
for assessing the suitability of the expansion

functions used in the calculation of A.   2
LSρ

appears as a function of m and its value depends
on the degree of match between the two sides of
equation (1).   Typically, the right-hand side of (1)
is smooth and when the expansion functions used
on the left-hand side are also smooth then

10m n≥ +      is found to be more than sufficient to

achieve a stable value of 2
LSρ .   When the

expansion functions are sub-domain then the
relationship between m and n needs further
attention.   In order to avoid the need for concern
with this issue and because the objective of this
study was accuracy, all results were computed
using m=128.   In subsequent sections of this
paper, both condition number and the squared

residual norm; 2
LSρ , will be used in the evaluation

of the fit of the expansion functions.   In particular,
only results where the condition number is well
within a limit suitable for the precision (double) of
the calculations are presented.
In order to evaluate the suitability of an expansion
function series, two measures of convergence are
defined.

1)   Global; for purposes of observing
convergence over the entire domain, De Boor
[15, p23] proposed a decay exponent that

anticipates that, as a function of n, || ||ne

decreases to zero like nαβ  for some constant

β  and some (negative) constant, alpha, α .   If
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|| ||~ne nαβ  then || || / || || ( / )n me e n m α= , and

we can estimate the decay exponent from

(log(|| ||) log(|| ||)) / log( / )n me e n mα = −  (9)

Ideally, initially α  would be a large, negative
number and then, as n increases, at some
point quickly approach zero.    This ideal state
is most likely to occur when the model is an
excellent representation of the problem.
2)   Local; frequently, the value of a specific
variable at a specific location is both required
and used to monitor convergence – the current
at the center of a dipole for example.
Consistent with the above model, we assume 

( ) . DX n X An∞= +   (10a)

which leads to:

( ) ( / ) /X n X X n n D∞= + ∂ ∂        (10b)

Use of (10b) permits both a qualitative
assessment of the convergence process as well

as a quantitative estimate of X∞  when the data

supports it.   In this study, at least, the data do not
support this form of analysis.   However, the
equation provides the basis for an approach
described here as scatter diagrams.   In these

diagrams one plots ( ( ) )X n X∞−  versus

( / )n X dn∂  to obtain the qualitative assessment.

As the value of X∞  is not known, the value at

n=64 is used as a surrogate.    Unfortunately,
equations (10a) and (10b) are unsuitable for use in
evaluating global convergence as the values of

2
LSρ  vary over orders of magnitude, hence the use

of α  for that purpose.

These two concepts, global and local
convergence, were used to define the following
three types of convergence:

Type I. The strongest type of
convergence is manifest when α  in equation
(9) behaves in the desired manner – initially
being a large negative number and then at
some decisive point assuming a value of, or
close to, zero as n is increased.   It is assumed
that global convergence produces local
convergence.
Type II. .This is an intermediate level
between Type I and Type III (to be defined
next).   α  behaves well initially but may not
stay close to zero as n increases; however
Type III is clearly observed.
Type III. α  may behave poorly.   However,
when the data associated with

( ( ) )X n X∞− and ( / )n X dn∂  is plotted, the

scatter plot clearly shows a point of
convergence.

Numerical Procedures

The numerical algorithms and procedures used in
this study are summarized next.

1) All calculations were made using double
complex precision.

2) The SVD routines are those provided in
LAPACK, release 3.0, and the associated
BLAS [16].   The routines for various Bessel
functions were those provided in ACM TOMS
644 [17].

3) The number of variables, n, represents the
number of terms in each of the series.    There
is obviously a need for a further variable in
connection with the constant in Hallen’s
equation when it is used, but this is not
included in the reported value of n.

4) The condition number is reported as Cn =

10log ( 1 / nσ σ ) and the error-squared is

reported as Err-sq = 10log ( 2
LSρ ).

5) The smallest singular value permitted was
1010.0− , or Cn = 10.0.

6) The integrals were evaluated using multiple
applications of a 42-point quadrature rule
using a procedure specifically designed to
accommodate logarithmic singularities [18].

7) The 128 nodes and weights used in m
instances were the positive nodes of a 256
point Gauss-Legendre quadrature formula to
reduce the computational time by taking
advantage of symmetry.

Numerical Findings.

Infinite Cylinder. Primarily for purposes of
illustrating a Type I convergence, the case of a TM

wave, 0180incφ = , being scattered from an

infinitely long circular cylinder of circumference
1.0λ was examined.    The formulation for this
problem is in [19, p37].   The current on the
surface of the cylinder was modeled as the sum of
a surface-conforming Fourier series, namely:

0

cos( )
N

n
n

I a nφ
=

= ∑ .

Figure 1a clearly shows the desired behavior of
alpha and the associated Err-sq.    When n>8 the
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values of alpha are essentially zero and global
convergence has been achieved.   The

components of the surface current at 0180φ = ,

shown in Figure 1b, also appear to possess
excellent convergence and stability.   Finally, for
values of n greater than 7 a value of 6.2366  is
found for the magnitude of the current which
agrees well with the value reported in [19, p43 ].
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Figure 1a.   Err-sq and alpha plotted as a function of
the number of expansion functions.
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Figure 1b.   Plots of the components of the current on a
perfectly conducting cylinder illuminated by a TM wave.

Linear Dipole. In what follows, the operator is
that associated with the Hallen solution for a linear
dipole [20].   The relevant equation

is:
+h

-h 0

( ') ( , ') ' cos( ) ( ')sin( ( ')) '
z

iI z G z z dz C kz E z k z z dz+ = −∫ ∫
2

' 0

1
where  ( , ') '

4.

jkRe
G z z d

R

π

φ

φ
π

−

=

= ∫

2 2'
and  ( ') (2 sin( ))

2
R z z a

φ
= − +  where I  is

the desired current, G  is the Green’s function, C

is a constant to be determined and iE  is the

incident excitation.    The dipole, which is an open
circular cylinder with an infinitesimally thin wall
thickness, has a radius, a, equal to 0.007λ  in this
work.   

Two excitations were employed in the study.   The
first was a plane wave approaching the dipole
from a direction at 90 degrees to the longitudinal
axis of symmetry with its polarization parallel to
that same axis.    The second was a magnetic frill
[21] located at the center of the dipole with b=
2.3a, where b is the outer radius of the frill.   Four
dipole lengths, 2h, were considered: 2h = 0.5, 1.0,
1.5 and 2.0λ . 

Various entire-domain expansion functions were
examined.   These are summarized in Table I
below.   In all cases, each term of the expansion

function was multiplied by 2(1 )x− (as x  is

defined in Table I.) as proposed by Richmond [22]
to account for the edge mode.

   When the ten current models shown in Table I
were used in numerical calculations several
important findings emerged.
1) Three of the series were found to be

unsuitable for use.   Both FS2 and Jn
performed poorly, both globally and locally, for
dipole lengths of 2h=1.50 and 2h=2.00.   Pol
was associated with high condition numbers
which exceeded the threshold of Cn = 10.0 for
n>6 for all dipole lengths.   Consequently,
these three series are not included in
subsequent discussion and are not
recommended for use in this type of
application.

2) CH1, CH2 and LEG were found to give
identical results, except in their values of Cn.
This is not surprising as they are each an
orthogonal representation of a simple power
series.

3) FS1 and J0 gave identical results except that
FS1 typically showed a lower value of Cn.

4) FS3 and Jmax also provided identical results
except that FS3 provided slightly lower values
of Cn.

The only difference within each of these latter
three groups was in the values of Cn.   For these
reasons, the reported results are limited to the
series that shows the lowest value of Cn for each
group.   These were CH2, FS1 and FS3.   Results
from the application of each of these series to
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each of the four dipole lengths are the basis for
the following discussion.

The linear dipole with plane wave excitation.
Figure 2a shows the values of alpha for the twelve
test cases. For each of the four lengths studied
CH2 exhibits behavior indicative of Type II
categorization.   Neither FS1 nor FS3 exhibit Type
II, or better, behavior. 

The classical approach to displaying convergence
in electromagnetic studies of convergence is
provided in Figure 2b.   As can be seen, it is
difficult to visually distinguish between the
convergence of the various plots.   It is here that
the scatter plots of (|I| - Iref) versus n.dI/dn, which
correspond to the model of (10b), are useful.
Such plots are shown here in Figure 2c.    Only
terms corresponding to values of n>10 are plotted.

Although FS1 and FS3 perform well for specific
lengths, only CH2 performs reasonably well for all
four lengths examined.

With the preceding observations in mind, it is
concluded that, for a plane wave excitation of a
linear dipole, the best series of those examined is
the Chebyshev series of the second kind which
provides Type II convergence.   The Chebyshev

series of the first kind and the Legendre series
have identical performance except, as indicated
earlier, that the resulting condition numbers are
somewhat higher.

The linear dipole with a magnetic frill excitation.
When excitation by a magnetic frill was examined
it was found that none of the series described in
Table I was able to adequately represent the

Table I.   Definitions of the entire-domain functions examined in this study.

Name Type Description
; /h z h x z h− ≤ ≤ + =      

Ch1 Chebyshev
series of the first
kind

( ) ( )1 2( 1)
2

n
I x a a T xi i

i
∑= + −=

  

Ch2 Chebyshev
series of the
second kind

( ) ( )1 2( 1)
2

n
I x a a U xi i

i
∑= + −=

  

FS1 Fourier series
( ) cos((2 3) )1 22

n
I x a a i xi

i

π
∑= + −
=

  

FS2 Fourier series
( ) cos(( 1) )1

2

n
I x a a i kzi

i
∑= + −
=

  

FS3 Fourier series
( ) cos(( 1) )1

2

n
I x a a i xi

i
π∑= + −

=
  

J0 Bessel series
( ) ( ) where , , ..1 0 1 1 2 3

2

n
I x a a J j x j j ji i

i
∑= + −=

      denote the positive zeros of

0 ( )J y  arranged in ascending order of magnitude.

Jmax Bessel series
( ) ( ) where , , ..1 0 1 1 2 3

2

n
I x a a J j x j j ji i

i
∑= + −=

      denote the location of the

maximums between the positive zeros of 0 ( )J z  arranged in ascending

order of magnitude.
Jn Bessel series

( ) (( 1) )1 0
2

n
I x a a J i xi

i
∑= + −
=

  

Leg Legendre series
of the first kind ( ) ( )1 2( 1)

2

n
I x a a P xi i

i
∑= + −=

  

Pol Polynomial
expansion

2( 1)( ) ( )1
2

n iI x a a kzi
i

−∑= +
=
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current on the dipole in a global sense.   When the
scatter plots associated with (10b) were examined
it was observed that CH2 performed very poorly.
The best that can be said for the series in this part
of the study is that FS1 and FS3 provide a weak
form of Type III convergence.

In an attempt to improve the convergence
properties of the series under study, each of them
was supplemented with a term intended to model
the out-going wave from a frill generator.
Application of this concept was originally proposed
by Richmond [22].   The form of this term is:

0 0
2

00

2 [ ( ) ( )]
( ) cos( )

ln( / ) ( )
injkV K a K b

I z gz dg
b a K a

γ γ
η γ γ

∞ −
= ∫

where inV  denotes the generator voltage,

2 2 2 , ,g k k
µ

γ ω µε η
ε

= − = =   and

0K  is the modified Bessel function.   In this

section of the study, the additional term is the
second in any one series – the first term always

being the 1α  term. Again, none of the series

exhibited desirable alpha results.   When the
scatter plots were examined CH2 performed better
than when the special term was not present but
still at unacceptable levels.   The scatter plots for
FS1 and FS3 are shown in Figure 3a and Figure
3b – without and with the special term to account
for the outgoing wave.   Examination of these
results clearly shows the benefits of incorporating
the special term with either FS1 or FS3, with FS1
being the better performer.   In fact, it is essential
to incorporate the special term to assure the
performance of FS1 over the four dipole lengths.

Discussion.

The work reported above was performed with
great attention to detail.   In particular, a precision
of 15 digits was used, and the condition number
rarely exceeded 6 digits except when the out-
going wave from a frill generator was included, in
which case it rose to 8 digits.   Unfortunately, no
estimate of the matrix-coefficient accuracy was
available.   The results identify two distinct families
of expansion functions.   In the first group are the
two kinds of Chebyshev polynomials and the
Legendre polynomials.   In the second group we
find two types of Fourier series and two types of

Bessel Series.   Whenever entire domain
expansions are encountered in the literature, it is
invariably the Fourier series.   As no references
can be found that explore this issue, it is not clear
why this is.   It is possible that familiarity and
mathematical convenience play a role.   As stated
in the introduction, in a paper in 1965 Richmond
[6] examined not only the performance of the
Fourier series, but also the series of Maclaurin (in
this paper POL), Chebyshev of the first kind,
Hermite and Legendre.   He examined them up to
the first five terms.   His comments were “it would
be advantageous to expand the current in a series
of functions which converges more rapidly than
the Fourier series……the Chebyshev and
Legendre series appear most promising, but this
matter requires further investigation”.   No record
of this further investigation can be found.   The
present work suggests that five terms is an
insufficient number from which to draw any
conclusions.   To increase the number beyond five
would have been very expensive (computer wise)
in 1965.   Furthermore, the combination of the first
two terms causes the condition number, Cn, to
exceed a value greater than 4.0 which then
increases monotonically up to a value in excess of
8.0 when n=64.   This observation puts the
approach outside the realm of single-precision
calculations, probably in use in 1965, except for
small values of n.

Accuracy/convergence in electromagnetic
problems is frequently discussed in terms of

( )pO ∆  where ∆  is a cell size and p  is some

exponent – either to be determined or expected
[19, p197].   Such an approach presumes a sub-
domain model for the expansion functions,
functions not used in this study.   Nevertheless,
there is a strong parallel between the use of

( )pO ∆  and the use of || ||~ne nαβ .   Both

approaches expect the errors to decrease as the
number of expansion functions is increased.
However, as shown in this study because the error
term can be calculated explicitly it is possible to
calculate α as each expansion function is added.
When α  becomes small there is then no point in
adding further terms.   In this way it is a strong
indicator on when to terminate the addition of new
expansion functions.   In the case of the infinite
cylinder, this termination point is very clear-cut.   In
the case of the dipole excited by a plane wave,
there is some oscillation initially but the
termination point is subsequently clear for each of
the four dipole lengths.   Use of the model,
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|| ||~ne nαβ , leads to the development of (10b).

This latter equation was successfully applied,
using backward differences to estimate the first
derivative, to better discriminate between the
performance of each of the series in place of the
classical method of visually examining the
magnitude of the current as a function of the
number of expansion functions.

The preceding findings produce the results
reported in Table II.

Plane wave Frill (b/a=2.3)
Converg-

ence
Type II Type III

Series CH2 FS1*
Dipole
length

2h=0.50 2.8247 -j1.9275 8.317 -j3.703
2h=1.00 0.5442 -1.3483 0.989 +j1.655
2h=1.50 -1.7095 -0.2114 6.707 -j1.980
2h=2.00 0.1289 -j0.0 1.201 +j1.733

* series includes the term for an outgoing wave
due to the frill excitation.
Table II.   Values of admittances, in mmhos, for
dipoles of various lengths for two forms of
excitation.

Conclusions.

• When a problem can be represented by an
excellent model, it is possible to get both
global and local convergence with relatively
few terms.   This was illustrated with the aid of
an infinite cylinder.   Such a statement is
intuitively obvious but the truth of the
statement is dramatically illustrated in this
study.

• The best model for a dipole excited by a plane
wave uses an orthogonal polynomial series
which gives acceptable global convergence
and excellent local convergence.   In the case
of the CH2 model, the number of terms
required to reach convergence is 12, 17, 22
and 25 for dipole lengths of 2h=0.4, 1.0, 1.5
and 2.5 respectively.

• The best model for a dipole excited by a
magnetic frill uses a Fourier series but this
provides no global convergence and only
acceptable local convergence with a relatively
large number of terms in the series, including
the special representation of the out-going
wave.

As already mentioned, Richmond [22] commented
that “it would be advantageous to expand the
current in a series of functions which converges
more rapidly than the Fourier series…”.
Richmond was referring to a dipole excited by a
plane wave arriving at an oblique angle.    For a
plane wave normally incident on a dipole the
current work suggests that a better series has
been found.   However, for a magnetic frill
excitation the search must go on.   This will be
explored in future studies.
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