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Abstract:  The locally-corrected Nyström method
is described, and the accuracy of the currents
produced by it and the method of moments are
compared.  Results suggest that when the
underlying representation has the same degree, the
methods are comparable in accuracy.  Additional
results are presented to illustrate the Nyström
approach, and advantages and disadvantages of
the method are reported.

Introduction

The method of moments (MoM) for solving
integral equations [1] has been widely used for
more than three decades, and is generally well-
accepted throughout the electromagnetics
community.  The process involves representing an
unknown quantity with a known basis, and
weighting the moments of the equation to be
solved with suitable testing functions to form a
linear system.  The method is well-suited for
treating equations with singular kernels, since it
incorporates integrals over testing functions which
ultimately reduce the order of singularities.

The Nyström method for the solution of integral
equations was proposed in 1930 [2].  The essence
of the approach is that the integral operator is
replaced with a suitable quadrature rule.  The
integral equation is enforced at nodes (sample
points) of the rule, and leads to a linear system of
equations for the samples of the unknown
function at the node points.  The drawback of the
classical Nyström method is that it cannot be used
directly for integral equations with singular

kernels [3].  Only recently has the method been
extended to treat the singular integral equations
arising in electromagnetic radiation and scattering
problems [4-5].  The extended method is known
as the locally-corrected Nyström (LCN) method.
Reference [4] provides an in-depth discussion of
the LCN method for application to two- and three-
dimensional electromagnetic scattering problems.
Reported advantages of the LCN method are that
it is well-suited for higher-order implementation,
offers reduced matrix fill costs, and is easily
amenable to fast iterative solvers such as the fast
multipole method.

Although references [4-5] provided a comparison
of data for LCN scattering cross section
calculations, they did not specifically report the
accuracy of the currents (or the internal fields in
the case of [5]).  In this paper, the accuracy of the
currents produced by the method of moments and
the locally-corrected Nyström method will be
compared for the TE electric-field integral
equation (EFIE) for conducting cylinders.  The
ease of use and relative efficiency will be
reported, as will differences in philosophy
between the methods and differences in their
implementation.

The Method of Moments Implementation

Consider the MoM approach for solving the TE
EFIE for two-dimensional scattering from
perfectly conducting cylinders.  The operator in
this case is an integro-differential operator with
two derivatives that can be distributed between
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the current density, the Green’s function, or the
testing functions.  This type of operator is also
referred to as a hypersingular integral operator
[4].  Since the TE EFIE operator involves
derivatives, it is generally thought that a key
requirement of the MoM implementation is that
the cell-to-cell continuity of the current be
maintained by the basis functions, to avoid
fictitious line charge densities associated with
jump discontinuities in the current.  A widespread
implementation uses pulse (piecewise-constant)
testing functions to absorb one of the derivatives
and piecewise-linear basis functions to provide a
minimum degree of differentiability while
preserving cell-to-cell continuity [6].

For purposes of this study, an MoM
implementation was developed for the TE EFIE
using pulse testing functions with basis functions
that can range in degree from piecewise linear to
piecewise cubic.  The cylinder contour of interest
is divided into cells, each with parabolic shape to
better represent curved surfaces.  The basis
functions are Lagrangian polynomials that span
each cell and have evenly-spaced interpolation
points throughout each cell.  Continuity between
cells is maintained by associating the functions
interpolating at the boundary between adjacent
cells with the same coefficient.  Matrix entries are
computed with the aid of Gaussian quadrature
rules that incorporate the logarithmic singularity
of the two-dimensional free-space Green’s
function when necessary [7].

The LCN Implementation

The TE EFIE incorporates the scatttered field at
location t obtained from the operator

where the unit vector is tangential to the contour
of the cylinder at t, k is the wavenumber, η is the
medium impedance, J is the current density
phasor, and

where Ωo and Ωs denote the angles between the x-
axis and the contour tangent vectors at the
observer and source points, H0

(2) denotes the
Hankel function, and

The Nyström approach involves replacing the
integral operator in (1) by a suitable quadrature
rule:

where {wp,tp} denote the weights and sample
points of the rule.  If K is nonsingular, (4) can be
evaluated at any location t.  Under these
conditions the EFIE

may be enforced at each of the sample points t = tp

to obtain a linear system in terms of the samples
of the current density as the primary unknown.
(This is the classical Nyström method.)  The TE
EFIE kernel in (2) exhibits a strong singularity,
however, and the rule in (4) cannot be used when
R→0 since the result is infinite.  In that case, a
“local correction” to (4) is used, as proposed by
the authors of [4].

The LCN discretization process is as follows.  The
cylinder contour is divided into cells, and a
quadrature rule of a certain order is defined for
each cell.  (In the present study the quadrature
order was the same in all cells.)  For widely-
spaced cells, the classical Nyström approach of
equation (4) is employed for the interactions.  For

− t̂  . Ēs = j
η
k ∫K(t,t′) J(t′) dt′ (1)

     K(t,t′) =  {k2cos(Ωo−Ωs) 

       +  cosΩo cosΩs 
∂2

∂x2  

       +  sin(Ω o+ Ωs) 
∂2

∂x∂y

 +  sinΩo sinΩ s 
∂2

∂y2
} 

1
4j

 H
(2)
0 (kR) (2)

R = [x(t)−x(t′)]2
 + [y(t)−y(t′)]2 (3)

− t̂(t) . Ēs =  j
η
k

 ∑
p

 wp J(tp) K(t,tp) (4)

t̂(t) . Ēinc =  − t̂(t) . Ēs (5)
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unknowns {J(tn)}, the LCN matrix entry for an
observer at point with global index tm and a source
at point with global index tn is given by the
integrand sample

Since most of the matrix entries represent widely-
spaced interactions, the vast majority of the matrix
entries have the form of (6).

When the observer and source points occur within
closely-spaced cells (in the same cell or adjacent
cells, in the present study), however, a completely
different procedure is employed.  This alternative
approach involves replacing the singular kernel K
by a nonsingular kernel L so that the scattered
field can be computed using a similar expression:

The process requires the synthesis of the needed
samples of L so that the summation in (7)
produces a correct overall result for the scattered
electric field at each of the closely-spaced
observation points.

A relatively small number of samples of L are
required.  These are obtained by selecting a set of
“basis” functions {Bn(t)} representing sources and
enforcing the relatively small system of equations

where tm is the observer location, tp is the location
within the source cell, and Bn represents a basis
function for the current defined over the source
cell.  (The source and observer cells may
coincide.)  The expression on the right-hand side
of (8) involves the scattered electric field at
location t, produced by source function Bn, given
by

By this process, L is synthesized so that the
summation in (7) yields the correct near fields of
any source function J(t) that can be represented by
the set {Bn}.  The system in (8) must be solved for
each observer location tm.

As suggested by [4], an obvious choice for {Bn} is
the polynomial set underlying the quadrature rule
(specifically, Legendre polynomials for Gauss-
Legendre quadrature).  We employ enough
Legendre polynomials (constant, linear, etc.) to
obtain a square linear system for (8).  The basis
functions are abruptly truncated at the cell edges,
and the right hand side of (9) must incorporate the
jump discontinuities in the basis functions at the
source cell edges.  To mitigate the effect of the
singularity in the scattered field produced at each
discontinuity, the scattered field is averaged over
an interval of length Tm, centered at observation
point tm.  The resulting expression is similar to an
MoM matrix entry — and hence offers the
convenience of using established procedures and
legacy MoM software to obtain the right-hand
side of (8).  To maintain the linear independence
of the equations in the case of P quadrature points
per cell, and to mimic a direct sampling of the
field so that the result in (7) smoothly merges with
that of (4), we used an interval size 0.2/P of the
cell extent.  Experimentation showed little
variation in the results as this interval size was
perturbed.

The extent to which samples of L replace samples
of K can vary; in this study (7) was used for all
interactions between points in the same cell and in
immediately adjacent cells.  For an observer cell
with P quadrature points, 3P solutions of P × P
matrices are required to compute the entries of L.
A more robust approach for small cells would
monitor the extent to which samples of the
integrand agree with those produced by the local
correction procedure and adapt the size of the
local correction region accordingly.  (The
singularity only arises for the real part of the
kernel K; in [5] this is exploited by only
correcting the real part of K.  For simplicity, we

− t̂(t) . Ēs =  j
η
k

 ∑
p

 wp J(tp) L(t,tp) (7)

t̂  (t) . Ēs(Bn) = −j
η
k ∫ K(t,t′) Bn(t′) dt′ (9)

j
η
k

 wn K(tm,tn) (6)

j
η
k

 ∑
p

 wp Bn(tp) L(tm,tp) 

      = − 1
Tm ∫

                 tm+Tm/2

       tm−Tm/2

  t̂(t).Ēs(Bn) dt (8)
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used the local corrections for both real and
imaginary parts of K.)

In summary, interaction terms for “widely-
spaced” source and observer points are obtained
by sampling the integrand of the EFIE.  Since
these matrix entries are samples of the integrand
in (1), and not an actual integral as the MoM
matrix entries are, the LCN matrix fill time is
usually substantially faster than the typical MoM
fill time.  Matrix entries for closely-spaced source
and observer points are obtained by synthesizing a
nonsingular integrand that, if sampled by the same
quadrature rule, yield results for the integral
equivalent to the actual field.  As noted in [4], this
process is similar to that proposed by Strain [8] to
create quadrature rules for integrating singular
functions.  In the present implementation, the
additional computational burden associated with
solving the equations in (8) is only incurred for
source and observer points in the same cell or
immediately adjacent cells.

An interesting aspect of this Nyström approach is
that no attempt is made to enforce cell-to-cell
continuity.  The representation for the current is
implicitly defined by the quadrature rule (eg., a
polynomial up to the degree that the rule can
integrate) and is not constrained to be continuous
across cell boundaries.

Representation Error

The MoM uses explicit basis functions to
represent the current.  The error in the current
should follow the expected polynomial
interpolation error for the particular basis
functions.  Consider a polynomial basis of degree
p, where p=1 represents linear, p=2 represents
quadratic, etc.  For a problem with uniform cell
size ∆, the expected interpolation error is of order
O(∆p + 1).  This error has been confirmed by
example for integral equation formulations and
the current density error appears to be
independent of the testing function degree [9].

The underlying representation used by the LCN
with Gauss-Legendre quadrature is also

polynomial in nature, and an implementation
using p+1 quadrature points per cell involves a
polynomial representation of degree p.  Thus, we
again expect an error of O(∆p+1) in the current
produced by a (p+1)-point LCN implementation.
For instance, the error produced by an MoM
implementation with quadratic basis functions
(p=2) should generally exhibit the same decay rate
of O(∆3) as the cell sizes are reduced as an LCN
implementation with 3 quadrature points per cell.

Results for circular cylinders

As an initial test case, we compare results from
the MoM and LCN implementations for a circular
cylinder of 6 λ circumference illuminated by a
normally-incident plane wave.  The angle φ =
180° represents the specular point on the cylinder
in all cases.  Figure 1 shows the error in the
surface current density for the results of the MoM
for linear, quadratic, and cubic basis functions
when a 20-cell model is used to represent the
cylinder contour.  This error is defined as

and is determined at the quadrature nodes.  Figure
2 shows LCN results for 2, 3, and 4 nodes per cell,
for the same 20-cell model.  For convenience,
straight lines are used to connect samples of the
error in both figures (the actual error may vary
between nodes in a more complex manner).  Both
methods illustrate an improvement in accuracy as
the order of the representation is increased.  The
reference solution was obtained to at least 5
decimal places using the eigenfunction series [10]
and compared with the complex-valued surface
current phasor at the interpolation points on the
surface.  The solution has a current magnitude that
approaches 2.0 around the specular point and the
errors in Figures 1 and 2 are the absolute errors on
that same scale.

Absolute error = Jref − Jnumerical (10)
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Figure 1.  The error in the MoM current for a
circular cylinder, ka=6.  Linear, quadratic, and
cubic bases are used with a 20-parabolic-cell
model.

In Figures 1 and 2, the linear-basis MoM
(involving two overlapping basis functions per
cell) exhibits current error that is generally
comparable to that produced by the LCN
implementation with 2 quadrature points per cell.
The quadratic-basis MoM appears to produce an
overall error level similar to the 3-point LCN
result.  These findings support the anticipated
behavior of the current error as discussed above.
However, the MoM basis functions impose cell-
to-cell continuity, so one unknown coefficient is
shared between cells.  As a consequence, the
MoM uses fewer unknowns to achieve a given
level of accuracy.  The unknown density in
Figures 1 and 2 ranges from 3.3 unknowns/λ (20
unknowns distributed around 6 λ for the linear-
basis MoM) to 13.3 unknowns/λ (80 unknowns
distributed around 6 λ for the 4-point LCN).  (The
quadratic-basis MoM result used 40 unknowns;
the 3-point LCN result with similar accuracy

required 60 unknowns.)  Relative to the peak
current magnitude of 2.0, the cubic basis MoM
(10 unk/λ) and 4-point LCN (13.3 unk/λ) reduce
the peak error in the current to 1 % or less.

Figure 2.  The error in the LCN current for a
circular cylinder, ka=6.  A 20-parabolic-cell
model is used with 2, 3, and 4 points per cell.

Figure 3 shows a plot of the error in the current
for a circular cylinder with ka=11.  The peak and
average errors from the MoM with quadratic basis
functions and LCN with 3 points per cell are
compared, for cylinder models ranging from 10
cells to 100 cells.  Both the peak and average error
curves exhibit an O(∆3) behavior as the cell sizes
are reduced, as predicted above.  As in the
previous example, the LCN requires more
unknowns than the MoM for the same cell
density.
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Figure 3.  Comparison of the peak and average
current error produced by the MoM with quadratic
basis functions and the LCN with 3 points per
cell, for a circular cylinder with ka=11.  The
current magnitude has a maximum value of
approximately 2.0 at the specular point and the
errors shown are the absolute errors on this scale.
Averaging is performed around the circumference.
The data appear to exhibit O(∆3) behavior.

From a comparison of Figures 1–3, and an
investigation of other circular cylinder geometries,
it appears that the overall accuracy between the
MoM and the LCN is similar when the number of
overlapping basis functions (MoM) equals the
number of quadrature points (LCN).  This result is
in accordance with the expected O(∆p+1) behavior.
It also appears that because the MoM imposes
cell-to-cell continuity, it uses fewer unknowns
overall to achieve this accuracy.

Given the widespread notion that cell-to-cell
continuity is a necessary condition for accurate
solutions of the TE EFIE with the MoM, it is of

interest to examine the behavior of the surface
current error within each cell.  The LCN does not
impose cell-to-cell continuity, and consequently
one might expect to find larger errors near the cell
edges.  In fact, such behavior does seem to arise in
the 4-point result in Figure 2.  The opposite
behavior is exhibited to some extent by the MoM
result for cubic basis functions in Figure 1.
However, the overall error of the 4-point LCN is
no worse than the cubic basis MoM.  From an
examination of these data and other circular
cylinder results (not shown), we find no evidence
of a reduction in overall accuracy due to the non-
continuous currents used by this LCN
implementation.  (This observation confirms that
of the authors of [4].)  This conclusion implies
that a relaxation of continuity conditions might
also be possible in MoM formulations.

Results for other cylinder shapes

As an additional comparison of the MoM and
LCN for similar representation orders, Figure 4
shows the magnitude of the current density for a
square cylinder with side dimension 5.2 λ.  The
cylinder is illuminated by a plane wave in an
edge-on configuration.  Results are shown for a
32-cell model (8 cells per face) with 4-point LCN
and cubic-basis MoM implementations.  A 3-point
LCN result obtained from a 160-cell model is
shown for comparison.  (This reference solution
was obtained from a combined-field formulation
to ensure the absence of spurious internal
resonance currents [11].)

Both the MoM result, involving a density of only
4.6 unknowns/λ, and the LCN result, involving
6.2 unknowns/λ, exhibit a noticeable but similar
level of error compared with the reference
solution.  If the model is refined from 32 cells to
40 cells, the 4-point LCN (7.7 unk/λ) and cubic
basis MoM (5.8 unk/λ) results for that model (not
shown) are indistinguishable from the reference
solution on the scale of Figure 4.  These data
support the previous findings that the MoM and
LCN results for a given order of representation are
similar.
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Figure 4.  Comparison of the surface current
produced by the MoM with cubic basis functions
and the LCN with 4 points per cell, for a square
cylinder with cross-sectional dimensions 5.2λ by
5.2λ, modeled with 32 cells.  A reference solution
obtained from a 160-cell model is shown for
comparison.

As a final example, consider an elliptical cylinder
with overall cross sectional dimensions 24λ by
6λ, illuminated along the narrow axis.  This
cylinder has a perimeter dimension of
approximately 51λ.  Figures 5, 6, and 7 show
various LCN results obtained with 200, 100, and
70 cell models and 2–6 quadrature points per cell.
This series of plots attempts to demonstrate the
relative density of unknowns, for different degree
representations, needed to obtain accurate
solutions from the LCN approach, or equivalently,
how the cell sizes used in the models may vary
with changes in the number of quadrature points
per cell.

Figure 5 shows results from 2 and 3-point LCN
for a 200-cell model.  The P=2 result (7.8 unk/λ)
exhibits a noticeable error, while the P=3 result

(11.8 unk/λ) is in good agreement with the
reference solution on the scale of the figure.

Figure 5.  Results from the LCN method using a
200-cell model of an elliptical cylinder of
dimensions 24λ by 6λ.

Figure 6 shows similar results from 3-point (5.9
unk/λ) and 4-point (7.8 unk/λ )  LCN
implementations obtained with a 100-cell model.
The 3-point implementation exhibits considerable
error, but the 4-point implementation appears
correct on the scale of the figure (and at the same
unknown density that produced a substantial error
with the 2-point representation of Figure 5).

Figure 7 shows 5-point and 6-point LCN results
obtained with a 70-cell model.  The 5-point result,
obtained with a density of 6.9 unknowns/λ ,
exhibits a slight error relative to the other curves.
These figures suggest a slight trend toward
reducing the number of unknowns per wavelength
as the polynomial degree of the representation
increases.  (Since these results are obtained with
relatively large cells, these figures do not show
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the substantial improvement in accuracy possible
with higher orders at sufficiently high cell
densities.)

Figure 6.  Results from the LCN method using a
100-cell model of an elliptical cylinder of
dimensions 24λ by 6λ.

Comment on program complexity

For a fixed degree of representation, an LCN code
requires a developmental effort similar to that of
an MoM code.  Both procedures use MoM-like
convolution integrals for the near-diagonal terms.
The LCN code also requires samples of the kernel
for the off-diagonal terms, an additional routine
not required by MoM codes (however, some
implementations of MoM codes may use other
approximate expressions for widely spaced source
and observer points).

Figure 7.  Results from the LCN method using a
70-cell model of an elliptical cylinder of
dimensions 24λ by 6λ.

The primary difference between the LCN and
MoM codes is that a P-point LCN implementation
essentially includes all the functionality needed to
implement lower degrees.  By adding the
appropriate lower-order quadrature weights and
sample points, the LCN code can easily treat
degrees from 1 to P.  An MoM implementation of
degree p does not necessarily include lower
degrees.  To extend either approach to higher
degrees, the programmer must add the additional
basis functions, their derivatives, and appropriate
procedures to compute the necessary integrals.  If
numerical quadrature is used to compute the
integrals, the extension of either code to other
degrees is a relatively straightforward task.
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Conclusions

By comparing the accuracy of the current density
produced by the MoM and LCN implementations
for a number of examples, we arrive at several
interesting observations.

First, for the same model and the same number of
overlapping functions per cell (MoM) and sample
points per cell (LCN), the overall accuracy of the
surface current density appears similar.  This
behavior is observed despite the fact that the LCN
representation does not impose cell-to-cell
continuity.  Because the MoM representation uses
one fewer unknown per cell for a given number of
overlapping functions, the overall accuracy of the
MoM for a given number of unknowns appears to
be slightly superior.  Both methods produce
results that generally appear to follow the
expected O(∆p + 1) behavior associated with
polynomial interpolation error.

Second, the fact that the LCN can produce
accurate results without imposing cell-to-cell
continuity suggests that it might be possible to
relax continuity conditions in MoM formulations
as well.  Relaxed continuity conditions may
permit the use of non-conformal models that may
simplify the meshing procedures for 3D
applications (at the cost of slightly more
unknowns for a given accuracy).

Third, while the MoM matrix entries are integrals
of a particular field, the LCN entries represent
samples of the associated integrand, and as such
are fundamentally easier to compute in most
situations.  Thus, the fill time associated with the
LCN is usually much faster than that of the MoM
for the same equation.  Furthermore, the LCN
appears to offer advantages for problems where
the MoM integrals are especially expensive to
compute (one possible example is a multilayer
structure where the associated Green’s functions
typically involve Sommerfeld integrals).

Finally, once a computer program has been
developed for a (p+1)-point LCN implementation,
it is trivial to extend it to a lower number of
points.  (Essentially all that is required is

including the quadrature rule for the lower
orders.)  Thus, the LCN offers a relatively easy
implementation of p-refinement strategies, where
the polynomial degree of the representation can be
increased until some measure of accuracy is
achieved.  Both theory and experience suggest
that p-refinement schemes are more efficient than
h-refinement schemes (reducing cell sizes to
improve accuracy).  Adaptive p-refinement
techniques, where each cell in a model can have a
different order, should also prove easier to
program in the context of an LCN approach than
in an MoM approach.
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