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ABSTRACT
Obtaining far-field patterns in electromagnetics or acoustics, al-
though generally not as computationally expensive as solving for
the sources induced on an object, can none-the-less at times be a
substantial fraction of the overall computer time required for
some problems.  This can be especially the case in determining
the monostatic radar cross section of large objects, since the cur-
rent distribution must be computed for each incidence angle, or
when computing the radiation patterns of large reflector antennas
using physical optics.  In addition, when employing the point
sampling and linear interpolation of the far field that is most
often used to develop such patterns, it can be necessary to sam-
ple very finely in angle to avoid missing fine details such as
nulls.  A procedure based on model-based parameter estimation
is described here that offers the opportunity of reducing the num-
ber of samples needed while developing an easily computed and
continuous representation of the pattern.  It employs windowed,
low-order, overlapping fitting models whose parameters are esti-
mated from the sparsely sampled far-field values. The fitting
models themselves employ either discrete-source approximations
to the radiating currents or Fourier models of the far field.  For
the cases investigated, as few as 1.5 to 2 samples per far-field
lobe are found to be sufficient to develop a radiation-pattern esti-
mate that is accurate to 0.1 dB, and 2.5 samples per lobe for a
simple scatterer.  In general, however, the sampling density is
not determined by the lobe count alone, but by the effective rank
of the field over the observation window, which in turn is a
function of both the aperture size and the spatial variation of the
source distribution within that aperture.

1.  INTRODUCTION
An important goal of all numerical modeling is that of mini-
mizing the number of samples needed of the relevant observables
and equations so as to minimize the total computer operation
count (OC) (or the computer cost) while achieving a desired ac-
curacy, or equivalently reducing the uncertainty to a specified
level, in the computed results.  This topic is considered below in
the context of computing radiation and scattering patterns in
electromagnetics.  The goal of particular interest here concerns
minimizing the number of far-field pattern samples that are re-
quired to represent a radiation pattern and/or the number of inci-
dence angles that are required to develop a monostatic backscatter
radar-cross section (RCS) pattern.  An added benefit of the proce-
dure described below is that of obtaining an estimate of the un-
certainty in the pattern that is developed.

The approach taken employs model-based parameter estimation
(MBPE) [1].  This is a procedure that uses reduced-order, physi-
cally based fitting models (FMs) whose parameters are computed
from samples of first-principles generating models (GMs) such
as Maxwell s Equations.  Computation of a FM sample is trivial
compared with one evaluated from a GM for large, complex
problems, potentially requiring orders-of-magnitude less comput-
ing time.  This makes it possible, using the FM, to develop an

essentially continuous representation of physical observables of
interest as opposed to the pointwise characterization that is usu-
ally accepted when the cost of each GM evaluation is large.  A
list of acronyms used in the article follows the references.

2.  BACKGROUND
One of the most frequently encountered problems in electromag-
netic field computations is that of determining a radiation or
scattering pattern from a current distribution(s) known over some
surface.  For antenna applications, usually a single current distri-
bution is of interest, while for RCS computations, a new current
distribution arises for each incidence angle of a plane-wave excit-
ing field.  In either case, the far field is usually needed at enough
points to develop a smooth, in effect continuous, approximation
of the overall pattern in one or more planes.  The required num-
ber of radiation-pattern samples and resulting OC are proportion-
al to the maximum body dimension, L, in the plane in which
the pattern is being computed.  Furthermore, the number of cur-
rent samples on the surface, S, is itself is proportional to the
body s surface area, i.e., S ∝ L2.  As L, and therefore S, increas-
es, the far-field computation can become a significant cost in ob-
taining radiation and scattering patterns.  Thus, reducing the
number of angle samples could be worthwhile in terms of reduc-
ing the overall computer cost of obtaining the radiation pattern(s)
of a large antenna or RCS of a large scatterer

Some previous work by the author [2,3] and others [4,5] has de-
scribed an approach that uses MBPE to decrease the number of
samples that are needed to determine a far-field pattern.  The
work presented in [2,3], is briefly summarized and extended
here, especially with respect to how the errors in the pattern can
be estimated and controlled and how the pattern itself is mod-
eled.  Further examples of efficient pattern computation can be
found in the work of Bucci and his various collaborators who
have developed signal-processing-like techniques for computing
far-field patterns [see for example 6, 7, and 8].

3.  CHOOSING THE QUANTITY TO MODEL
Estimating a far-field pattern using MBPE requires choosing the
kind of reduced-order FM that is to be used and to what observ-
able that FM is to be applied.  Two obvious choices for mini-
mizing the number of pattern samples or incidence angles are
available: 1) to model the current distribution; or 2) to model the
far-field pattern.  Furthermore, there are two ways in which the
current distribution itself might be modeled.  These various
choices are briefly summarized below.

3.1  Modeling a Current (or Aperture) Distribution
The two approaches to be discussed here for modeling

the current (or aperture) can be best described as Discrete-Source
Approximations (DSAs).  The current over the surface of the ob-
ject under consideration or field over an aperture is replaced by a
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linear array of discrete, or point, sources aligned in space as is
described below.  (Other point-source geometries might also be
used; attention is limited here to a linear geometry).  The param-
eters of the DSA model are obtained by fitting it to far-field
samples obtained from the usual integration of the actual current
distribution.  The DSA is then used to approximate the pattern
between these samples to thereby obtain a continuous estimate of
the pattern without requiring additional current integrations.

3.1.1  Using A Prony Model
Prony s method (or its equivalent) can be used

for the DSA computation, using as a FM [9]

F(θ) = ∑
P

α=1

Sαeikdαcos(θ)

(1)

which involves P point sources of strengths Sα located at posi-

tions dα along the axis of the DSA˚ array, with θ the angle to

the far field measured from that axis. There being 2N unknown
parameters in Eq. 1, the Prony DSA (PDSA) thus requires 2N
far-field samples of the actual pattern.  Furthermore, these 2N
samples need to be spaced uniformly in cos(θ), a feature that
makes PDSA less suitable for the adaptive-sampling approach
described next.  A possible advantage, however, of finding the
locations of the discrete sources is the possibility of developing
an approximate image of the source whose far field is being sam-
pled.

There are two different candidate DSA geometries that might be
considered. In the first, shown in Fig. 1a, the DSA axis is fixed
and a sequence of angle windows are rotated about this axis over
the complete range of observation angles of interest. In the sec-
ond, shown in Fig. 1b, the DSA axis is itself rotated to be per-
pendicular to the angle that defines the midpoint of each angle
window used for the successive DSA computations.  Note that
L  varies in proportion to the length of the object as seen from
the center of the observation window when using the approach of
Fig. 1b whereas L is fixed at the maximum linear dimension of
the object in the observation plane for approach 1a.

3.1.2  Using A Specified DSA
The specified DSA (SDSA) model is the same

as Eq. 1 except that, since the source locations are now specified,
only the N source strengths Sα are unknowns.  As for the Prony

DSA, samples of the actual far-field are used to obtain the
discrete-source strengths.  In contrast to the Prony model, how-
ever, the pattern samples are not constrained in their placement
but can be arbitrarily located in angle and only N are needed, two
distinct over the Prony model.  For the SDSA results presented
here, the sources are equally spaced along the array axis, with the
source numbers 1 and N located at the ends of the aperture L
using the configuration shown in Fig. 1a.  As the order, i.e.,
number of sources used in a particular SDSA FM, is increased,
the source spacing is therefore systematically decreased in pro-
portion to the number of sources that are used.

3.2  Modeling the Pattern
An alternative to using a DSA for the pattern estimation

is to model the pattern itself,  using a Fourier series, an approach

denoted as the Fourier Series Pattern Model (FSPM).  In this
case the FM can be developed as [2]

F(θ) = ∑
F

α = S

Rαeiαθ + ∑
F

α = S'

R'−αe−iαθ

(2)

where we set F equal to Int(L + 1), with Int(X) denoting the
value of X rounded off to the nearest lower integer.  Also,  2F -
S - S  = N with N the total number of terms in the FM, S † S
† S + 1, and Rα and R −α are the amplitudes of the positive and 

(a)

(b)
Figure 1.  Two ways of implementing the Discrete-Source Array
Fitting Model.  In (a) the sampling window (denoted by alternately
light and heavy lines) rotates in angle about the long axis of the
object while the DSA FM axis remains fixed along which the dis-
crete sources are located.  In (b), on the other hand, the sampling
aperture L’ is rotated with respect to the long axis of the object
and the sampling window is bisected by a line perpendicular to it.
For the case of the PDSA, an N-source FM requires a minimum of
2N field samples.  Both the source locations (indicated by the
X’s) and their strengths are determined by sampling the far field
as a function of cos(θ), where generally the sources will be non-
uniformly spaced.    Alternatively, for the SDSA used to obtain the
results presented here, the configuration (a) was used with N
sources uniformly spaced along the array axis, thus requiring
only N field samples for computation of their strengths.
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negative modes respectively.  As for the specified DSA, N far-
field samples are required to quantify the parameters of the
FSPM.  Note that the Fourier approach yields estimates of the
far-field Fourier components directly, as contrasted with either of
the DSA FMs where the source strengths, and locations as well
for the PDSA, are the parameters being computed.  Ultimately,
however, the differences between the SDSA and the FSPM are
rather slight, differing most in the former having an observation-
angle dependence given by exp[ikdcos(θ)] while the latter de-
pends on exp(iαθ).

3.3  Adaptive Estimation Using Windowed, 
Overlapping Fitting Models
To be effectively implemented, any adaptive numerical

procedure requires an error estimate. For the specific problem of
adaptive pattern estimation, the error estimate is used to deter-
mine whether a given FM is accurate enough, and if not, where
in angle a new sample should be located.  Various FM configu-
rations might be considered in this application. For example, a
single FM might be used to span the entire angle window of in-
terest with an initial set of sample angles, S, chosen for GM
evaluation. A subset of these GM samples, S-1, could be used to
obtain the S-1 parameters of FM(S-1) while all S GM samples
could be similarly used to find the S parameters of FM(S).
These two FMs could then be sampled more finely, by a factor
of 10 or so, in angle than was used for the initial GM sampling,
with the difference between them serving as an error measure.  If
the error measure exceeds the allowable uncertainty specified by
the modeler, the S+1 th GM sample would be added at the angle
where the difference between FM(S-1) and FM(S) is greatest.
The parameters of FM(S+1) could then be computed and the dif-
ference between FM(S) and FM(S+1) obtained. The process
would be systematically continued until the maximum difference
between FM(S+k-1) and FM(S+k) satisfies the uncertainty speci-
fication, with S+k the total number of GM samples required.
The initial number of GM samples to be used, S, would be cho-
sen to be proportional to the number of pattern lobes expected
over the observation window.

Using a single FM to cover an entire pattern would generally not
be the best approach, however, partly due to the growing cost of
the FM computation itself, but more importantly due to the fact
that the condition number of the data matrix needing solution for
the FM parameters may increase unacceptably, especially for a
large number of pattern lobes. Instead, as is done here, a number
of windowed, lower-order (i.e., fewer parameters) overlapping
FMs are used.  Each FM shares two or more GM samples with
its neighbors, as is illustrated conceptually in Fig. 2 where there
are a total of N FMs.  As above, after their parameters have been
evaluated, the FMs are evaluated more finely in angle than was
the GM pattern initially, and the differences between the sets of
overlapping FMs are computed. A new GM sample then is
added where the maximum difference between all sets of overlap-
ping FMs is found to occur.  The respective parameters of the af-
fected FMs (i.e., those whose windows contain the new sample
angle) are then updated, with the process of computing FM dif-
ferences and new GM samples continuing until the specified un-
certainty is satisfied over the entire pattern window. 

An appropriate choice for the number of FMs for a given prob-
lem might require some experimentation. If it s desired to keep
the order of all FMs below some specified value, then based on
the computer experiments done in getting the results presented
below, each FM should have an angle window that spans just a

few pattern lobes, say three or four at most. The number of lobes
to be expected can generally be estimated from the size of the
aperture whose pattern is being modeled. However, it may hap-
pen that adding a new GM sample to a FM causes its to rank ex-
ceed some specified limit.  By dividing such a FM into two
lower-order, overlapping ones, the problem of excess FM rank
can be avoided and the initial number of FMs will not be so im-
portant.

cosθ
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Figure 2.  A conceptual illustration of the use of overlapping fitting
models for adaptive sampling of a far-field pattern.  The horizontal
lines indicate the angular extent of each FM with the open circles
showing where the pattern (or GM) is initially sampled.  In this par-
ticular case, all interior FMs begin with three GM samples while
those at either end use only two, for a total of N + 1 starting sam-
ples.  Additional GM samples are systematically located where
the maximum difference occurs between two overlapping FMs
until a specified convergence criterion has been satisfied.  Only
two FMs overlap in any of the observation windows here, but
other overlap arrangements could be used as well.

3.4  Specification of the Fitting-Model Error and 
Computing the Final Pattern Estimate
In contrast to specifying a fixed FM difference, or

fitting-model error (FME), between overlapping FMs as was
done in [2,3], the maximum FME can also be scaled relative to
how the magnitudes of the far-field samples vary.  For example,
as the magnitude decreases the FME might be proportionately
increased to accommodate the fact that side-lobe maxima may
not be needed to the same accuracy as the main lobe.  In the re-
sults to follow, the maximum permitted FME at the observation
angle θ is given by

FME(θ) = A1 + A2

 


 |GM(θmax) − 1

M∑
M

α = 1

FMα(θ)|
 




(3)

where A1 and A2 are specified parameters, GM(θmax) is the

maximum value of the pattern being modeled, and FMα(θ) is

the value of the a th FM at θ where a total of M FMs overlap.
The parameter A1 determines the maximum acceptable FME in
the vicinity of the peak(s) of the GM.  The parameter A2 increas-
es the allowable FME in proportion to the decrease in the FM
values relative to GM(θmax).  For the results that follow, the

nominal values for A1 and A2 were 0.1 and 0.05 dB, respective-
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ly, but FME(θ) limited to a maximum value of 3 dB.  There are
many possible variations that might be used for setting the ac-
ceptable error or uncertainty, among which would be relaxing the
desired accuracy in certain angular regions or increasing it in oth-
ers consistent with the requirements of a particular application.

The final pattern estimate is then obtained by computing the av-
erage of the successively overlapping FMs as the observation
angle is scanned over the angle pattern.  Thus, for M overlapping
FMs at angle θ we would have

Fave,M(θ) = 1
M

[Fi(θ) + Fi+1(θ) + … + Fi+M−1].
.

(4)
For the results presented below, M = 2 was used.

Note that in addition to controlling the adaptation process, the
error specification provides a measure of the uncertainty in the
average FM values of Eq. 4.  Since Eq. 3 gives the maximum
variation permitted between the FMs that overlap at a given
angle, it s proposed that

Fave,M±(θ) = Fave,M(θ) ± 1
2

FME(θ)
(5)

will yield realistic upper and lower error-bound estimates for the
average pattern values.  That Eq. 5 does indeed provide a realis-
tic error bound relative to the FM estimates of GM is demon-
strated in the following examples.

It s worth emphasizing that, in contrast to using an entire-
domain basis for the far field, cylindrical- or spherical-wave ex-
pansions, for example, the windowed approach employed here
together with discrete point sources can be applied to smaller, or
limited, angular sectors with no computational penalty.  Also
observe that in implementing the SDSA, angle sampling is done
in terms of cos(θ) rather than θ.  This is because the pattern
lobes tend to be distributed uniformly in terms of the former
variable.

To summarize then, the following steps are involved in the
MBPE modeling of radiation and scattering patterns:

1)  The quantity to be modeled, i.e., the source distribu-
tion or pattern itself, is first selected.

2)  The total angle window over which the pattern is to
be estimated is specified.

3)  The number of pattern lobes, L, that are anticipated
over the angle window of interest, considering the aper-
ture size in wavelengths whose pattern is to be found, is
estimated.

4)  The number, N, of initial fitting models to be used
then needs to be chosen.  Choosing a value for N be-
tween L/2 and 2L/3, with L expressed in wavelengths,
should provide a reasonable starting point, noting that
the smaller the value of N that is used the larger will be
the required FM order. 

5)  The configuration of the FM overlap then needs to
be selected.  This can be fairly flexible.  Arranging each

window to be half overlapped with its nearest neighbors
seems to be a good choice.  Note that using half-
overlapped FMs leads naturally to a minimum of 3 ini-
tial GM samples per FM window as shown in Fig. 2.

6)  Finally, the kind of FM error to be used and its nu-
merical parameters, as in Eq. (3), must be specified.

4.  USING THE SPECIFIED DISCRETE-SOURCE 
APPROXIMATION
In previous work [2,3] the FSPM approach was described and
some initial results presented, demonstrating that the far-field
pattern could be estimated to an amplitude uncertainty of 0.01
(about 0.05 dB) using only ~ 3 to 3.5 samples per lobe.  Several
results obtained using the alternate SDSA model are presented
here together with an illustration of how the model performance
depends on the uncertainty specification.  The particular patterns
used for testing the MBPE approach here were chosen as being
representative of the kinds of patterns encountered in typical ap-
plications, as well as their having closed-form analytical expres-
sions, except for the last example of the random-source array. 

4.1  The Far Radiated Field of the Uniform Current
Filament
The far field, F(θ)UCF, of a uniform current filament (or

uniform aperture) is proportional to [10]

F(θ)UCF = L
sin[πLsin(θ)]

πLsin(θ) (6)

where the filament length L is expressed in wavelengths and the
observation angle θ is measured from the filament axis.  A total
of N = 13 FMs was used for an L = 20-wavelength UCF, ar-
ranged as shown in Fig. 2, with the parameters of Eq. 3 given
by A1 = 0.1 and A2 = 0.05 dB.  Thus, all FMs initially have
three GM samples except for those on either end, which have
only two.  This results in each FM sharing two samples with its
nearest neighbors except for those on the end, which overlap
with one adjacent FM.  Applying the SDSA to GM samples of
Eq. 6 yields the results of Fig. 3, normalized to a maximum of
0 dB, where the upper and lower error-bound estimates for the
pattern peaks, using Eq. 5, and the actual pattern from Eq. 6 are
plotted.  The actual pattern is seen to lie between the upper- and
lower-bound peaks throughout the entire window.  In Fig. 4 the
average values of the overlapping FMs from Eq. 4, FMave, are

compared with the actual pattern, where 34 of the 35 GM sam-
ples used for computing the final FM parameters are also shown.
The maximum difference between the actual pattern and FMave
is consistent with the error specification of Eq. 4 and the numeri-
cal values used for its parameters.  With 35 samples needed to
estimate a pattern having 20 lobes or maxima, 1.75 samples are
required per lobe for the UCF.
The behavior of three different error measures for the L = 20
UCF is presented in Fig. 5 as a function of the number of GM
samples used for computing the FM parameters.  The upper plot
on this graph shows the maximum difference between all pairs of
the 13 finely sampled, overlapping FMs as a function of the
number of GM samples used for their computation.  The middle
plot exhibits the difference between all pairs of overlapping FMs
averaged over the angles they commonly sample.  The bottom
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plot displays the angle-averaged difference between FMave and
the actual pattern, or the GM.  Of these three, only the first two
would be available in actual application since the GM samples
needed to compute the last error measure would be limited to
those available up to that point in the adaptation process.  It s
useful to include the latter error measure, however, as the differ-
ence between the FMave and the GM provides a reality check on

the MBPE performance.

Observe that the difference between the overlapping FMs for this
example always exceeds the corresponding FMave - GM differ-
ence.  This shows that the FM-FM error measure provides a con-
servative, or high-side, estimate of the error (or uncertainty) in
FMave relative to the true GM values.  Note also that the maxi-
mum FM difference does not decline monotonically.  This is be-
cause updating two FMs can at times increase the maximum dif-
ferences that then results with their overlapping neighbors. 

Figure 3.  One quadrant of the normalized
radiation pattern for the field of an L = 20
(wavelengths) UCF as obtained using the
specified discrete-source approximation.
The lower- and upper-bound peaks estimat-
ed from Eq. 5 are shown together with the
actual pattern from Eq. 6.  The pattern is cut-
off at -40 dB to show the difference be-
tween the various plots more clearly. 

Figure 4.  One quadrant of the normalized,
actual field of the 20-wavelength UCF com-
pared with FMave.  The circles indicate 34

of the 35 GM samples computed from Eq. 6
(one is below -60 dB), that were used in the
estimation process.  Because the cosine-
angle values used to obtain the average
and actual patterns do not always precisely
match those used to obtain the original GM
samples, some of the latter do not coincide
with the pattern plots.
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Figure 5.  Three error measures discussed
in the text for the UCF shown as a function
of the number of GM samples used up to
that point in the adaptation process over an
observation window -90 to 0 deg, with the
parameters in Eq. 3 given by A1 = 0.1 dB

and A2 = 0.05 dB.  The open squares de-

note the maximum pointwise difference be-
tween all pairs of overlapping FMs with the
addition of a new GM sample.  The closed
and open circles exhibit the angle-averaged
difference between the overlapping FMs
and between the average FM and the GM it-
self.  The fact that the latter is smaller than
the former shows that the FM difference
provides a conservative measure of the ac-
curacy of FMave.

Figure 6. One quadrant of the normalized
radiation pattern for the field of an L = 20
(wavelengths) SCF as obtained using the
SDSA.  The lower- and upper-bound peaks
estimated from Eq. 5 are shown together
with the actual field from Eq. 7.  The pattern
is plotted over a limited dB range to show
the difference between the various plots
more clearly. 

Figure 7.  One quadrant of the actual field of
the 20-wavelength SCF compared with
FMave.  The circles indicate 28 of the 40 GM

samples, computed from Eq. 7, that were
used in the estimation process.
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4.2  The Far Radiated Field of the Sinusoidal 
Current Filament
The normalized far field of a center-fed sinusoidal cur-

rent filament (SCF)˚L wavelengths long is proportional to [10]

FSCF(θ) = cos(πLcosθ) − cos(πL)
sinθ . (7)

Application of adaptive MBPE to an L = 20-wavelength SCF
using N = 13 overlapping FMs as shown in Fig. 2 leads to the
upper- and lower-bound estimates for the far field shown together
with the actual pattern in Fig. 6.  Again, the actual field values
are seen to lie between the bounding curves provided by MBPE
adaptive sampling.  A comparison of FMave with the actual pat-
tern is presented in Fig. 7 where most of the 40 GM samples
used for the FM computation are also shown (some fall below -
20 dB).  The actual and FMave curves are essentially graphically
indistinguishable on the scale used.  The 20-wavelength SCF
has only 10 lobes rather than the 20 lobes of the 20-wavelength
UCF over the same -1 to 0 cos(θ) interval, but requires 6 more
unknowns to achieve the same estimation uncertainty, or 4 sam-
ples per lobe.  This indicates that the number of GM samples
needed to achieve a given pattern-estimation uncertainty is sensi-
tive not only to the lobe structure of the pattern itself, but also
to the spatial variation of the source distribution that produces
that pattern.

4.3  The Far Field Scattered from a Thin, Circular 
Cylinder
The GM here is the approximate far, scattered field of a

thin, circular cylinder L wavelengths long, which is proportional
to [11]

RCS ∝ F2
CYL(θ) =

 
cosθi

sin(2πLsinθi)
2πLsinθi  



2

(8)

for which MBPE adaptive sampling produces the results shown
in Figs. 8 and 9 for L = 10 wavelengths with 7 FMs being used.
In contrast with an L-wavelength SCF, where the number of
lobes over a -1 to 0 interval in cos(θ) is ~ L/2 and the UCF
which has ~ L lobes over that same interval, the L-wavelength
scatterer has ~ 2L lobes, 20 in this example.  As for the previous
cases, the FMave, as obtained from 48 GM samples, and a finely

sampled GM plot for the scatterer are graphically indistinguish-
able.  The number of samples required per lobe for the 10-
wavelength cylinder scatterer is thus 2.4, greater than the 1.75
needed for the UCF even though their patterns are quite similar,
as can be seen by comparing Figs. 4 and 9. 

4.4  The Far Radiated Field of a Randomized Array
of Point Sources
The last example considered here is a linear array of 21,

isotropic point sources having random amplitudes varying be-
tween -1 and +1 and located randomly within a 10-wavelength
aperture.  Results for cos(θ) varying from -1 to 0 are shown in
Figs. 10 and 11, again using 13 FMs.  A total of 26 GM sam-
ples is needed to achieve the same specified estimation error as
used for the previous cases.  Since there are on the order of 8.5
maxima in the pattern, this works out to about 3 samples per

lobe, midway between that required for the scatterer and the
SCF.  The number of samples needed per lobe or per wavelength
of aperture to achieve the same specified estimation accuracy (as
given by Eq. 3 with A1 and A2 0.1 dB and 0.05 dB, respective-
ly) for the various sources considered here is summarized in
Table I below.

5.  CONCLUDING OBSERVATIONS CONCERNING 
ESTIMATION UNCERTAINTY AND SAMPLING
The preceding examples demonstrate that adaptive sampling of
radiation and scattering patterns using MBPE with discrete-
source-approximation FMs can be effective in not only reducing
the number of samples needed to obtain a reduced-order, continu-
ous representation of a pattern, but also in constraining the esti-
mated pattern to satisfy an uncertainty specification.  Some addi-
tional computations are included here to shed further light on the
sampling requirements.  The L = 20 UCF problem was repeated
using A1 = 0.05 and A2 = 0 dB to reduce the estimation uncer-

tainty to a smaller, and constant, value compared with the criteri-
on used in obtaining the previous results.  Using these coeffi-
cient values in the FME given by Eq. 3 results in a maximum
acceptable difference between overlapping FMs, and hence, a
maximum estimation error, of no more than 0.05 dB.  This is
much less than might normally be sought in practice but pro-
vides a more stringent test of the MBPE procedure.  It should be
noted that if the GM samples are of limited accuracy, for exam-
ple being derived from a numerical first-principles model for a
complex problem, then seeking an accuracy in the pattern esti-
mate that the GM samples cannot provide might result in stag -
nating  the estimation process, i.e., convergence may not occur.
But when using an analytical expression for a pattern, as is done
here, this will not be a problem.  It s also worth noting that the
variational relationship between the far fields and the sources that
produce them results in errors in the latter not translating into
comparable errors in the former.

Upon running the L = 20-wavelength UCF problem using these
new values for the FME coefficients and plotting the same error
measures as for Fig. 5, the results shown in Fig. 12 are ob-
tained.  Also included in Fig. 12 are lines of the form Aexp(-Bx)
where x is the number of GM samples and A and B are best-fit
parameters.  It s interesting to see that the three best-fit lines are
nearly parallel, with all decreasing exponentially as a function of
the number of GM samples.  This behavior is similar to the con-
vergence of numerical solutions for various wire geometries as
the number of unknowns in a moment-method solution is in-
creased.  A 0.1 dB in the angle-averaged FM difference and the
difference between the FMave and the actual pattern is achieved
using about 37 GM samples.

This computation was repeated for UCFs having lengths of L =
10, 15 and 25 wavelengths, yielding the results of in Fig. 13
where, for clarity, only the FM-FM differences are plotted.  The
data for each of these UCF˚ lengths are found to be fit compara-
bly well by exponentials having different slopes.  This is an ex-
pected result since the number of GM samples needed to achieve
a given uncertainty for a specified source distribution is expected
to be related to the number of pattern lobes which are, in turn,
proportional to the aperture size.  When the latter effect is re-
moved by replotting the data of Fig. 13 as a function of the
number of GM samples per wavelength of aperture, the results
shown in Fig. 14 are obtained.  The best-fit lines for the various
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UCF lengths are nearly coincident, shifting to the left slightly
with increasing L and exhibiting slopes that are within about
1.5%.  A 0.1 dB angle-averaged FM difference is seen to require
about 2 samples per wavelength of aperture.

Since a UCF L-wavelengths in extent produces L lobes per 90
deg in its pattern, this sampling density translates to about 2
samples per lobe as well.  As can be deduced from Table I, it s
clear that the far-field sampling density depends on more than
just the lobe count in the pattern.

Figure 8.  One quadrant of the normalized
scattering pattern for the field of an L = 10
wavelengths thin cylinder as obtained using
the SDSA.  The lower- and upper -bound
peak estimates of the far field from Eq. 5 are
shown together with the actual field from
Eq. 8.

Figure 9.  One quadrant of the actual scat-
tered field of the 10-wavelength cylinder
compared with FMave.  The circles indicate

some of the 48 GM samples, computed
from Eq. 8, that were used in the estimation
process.

How this sampling density might generalize to 2D or 3D source
distributions needs to be considered.  First note that the sam-
pling density of 2 per wavelength of aperture for the UCF ap-
plies to a pattern symmetric about broadside where an angle-
observation window of only 90 deg needs to be sampled.  For a
non-symmetric, but otherwise equivalent, linear source distribu-
tion this would then work out to 4 samples per wavelength since
a far-field window of 180 deg would then need to be sampled.
For a true 2D source whose pattern has to be sampled over 360
deg, this would imply that 8 samples per wavelength of its max-
imum linear aperture are needed to achieve a comparable pattern
accuracy of 0.1 dB.  This measure would seem to hold in planar

cuts for the radiation patterns of 3D source distributions as well.

Results obtained for the cylinder scatterer indicate, on the other
hand, that nearly 5 samples per wavelength of cylinder length are
required for the same kind of pattern-estimation accuracy for a
90-deg sector of the scattered field to be estimated.  Following
the same line of reasoning as above for a general 2D scatterer, or
for planar cuts of 3D objects, sampling over 360 deg can be esti-
mated to require on the order of 20 samples per wavelength.
One obvious question arises about why a greater sampling densi-
ty is apparently needed for a scattering pattern as compared with
a radiation pattern when the two are similar-appearing, as exhib-
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ited by Figs. 4 and 9?  Perhaps the answer is that for the latter
situation a single current distribution produces the entire radiated
field.  For the former, on the other hand, the current distribution,
being a function of the angle of incidence, changes with every
viewing angle when determining the monostatic radar cross sec-
tion.

It would also seem to follow then that the number of GM sam-
ples needed to achieve a specified estimation uncertainty must
depend on both the aperture size and spatial variation of the
source within it, a dependence that ultimately is exhibited by the
pattern rank  (R) or the number of degrees of freedom of the
pattern, over the chosen observation window.  As a specific ex-
ample of how the source characteristics and aperture might influ-
ence the rank, consider an aperture L-wavelengths long having N
point sources uniformly spaced within it.

For the simplest case of two point sources, as L is increased, the
number of pattern lobes over 360 deg in an observation plane
containing the sources will be of order 4L.   However, R, as de-
termined by eigenvalue analysis of the data matrix that arises
when using Prony s method remains fixed at two when L ex-
ceeds 0.5, regardless of how large the aperture is made and how
many lobes are in the pattern.  On the other hand, if L is fixed
and the number of point sources is systematically increased, R
will increase proportionately until N > 2L whereupon R remains
fixed at ~ 2L since only about 2 source/wavelength can be re-
solved in the far field.  Because it can model such point-source
arrays, a Prony-based procedure can exploit the reduced rank of
such special problems, but the discrete-source approximation and
a Fourier model of the far field are not as well-suited for doing
so.  Generally speaking, with everything else being equal, the
best  pattern estimator would be one for which the number of

GM samples can be reduced to as close to R as possible.  More
investigation is needed to settle these issues, and to generalize
the results beyond the simple cases considered here.

Figure 10.  One quadrant of the radiation
pattern for the field of 21 isotropic point
sources having random amplitudes be-
tween -1 and + 1 and randomly located
along a an L = 10 wavelengths linear array.
Upper-bound estimates of the pattern are
shown by the x’s and the lower-bound esti-
mates by the open circles with the actual
pattern shown by the solid line.

Figure 11.  The actual pattern of 21 isotrop-
ic sources having random amplitudes and
located at random positions along a 10-
wavelength aperture compared with
FMave.  The circles indicate the 26 GM sam-

ples used in the estimation process.
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Figure 12.  The three error measures shown
in Figure 6 are plotted here for the 20-
wavelength UCF but with A1 = 0.05 and A2
= 0 in Eq. 3 to obtain an estimate that is both
more accurate and remains constant over
the dynamic range covered by the pattern
sampled in a -90 to 0 deg observation win-
dow.  A best-fit straight line is computed for
all three, where R^2 is the square of the cor-
relation coefficient.  All three best-fit lines
are seen to be nearly parallel on this log-
linear plot, being well-described as expo-
nential functions of the number of GM sam-
ples.

Figure 13.  The angle-averaged FM-FM dif-
ferences for a UCF varying from 10 to 25
wavelengths using A1 = 0.05 and A2 = 0 in

Eq. 3 yields the results shown here, again
for a -90 to 0 deg observation window.
Best-fit straight lines are also shown togeth-
er with their respective correlation coeffi-
cients.  The constants in the exponentials
for the best-fit lines are seen to decrease
with increasing filament length.  The expo-
nential decrease of the error measures as
the number of GM samples increases is a
very beneficial attribute of a numerical pro-
cess.

Figure 14.  Upon replotting the results of
Fig. 13 but with the number of GM
samples/wavelength as the independent
variable, the best-fit angle-averaged FM-FM
differences become nearly coincident.
These results show that for this particular
case the number of GM samples needed for
a specified angle-averaged FM difference in
the pattern is linearly proportional to the fila-
ment length.  They also show that the sam-
pling density required for a given value of
error measure decreases somewhat as the
UCF increases in length.
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TABLE I:  FAR-FIELD SAMPLING REQUIRED OVER A 90-
deg WINDOW FOR SOURCES TESTED USING A1 = 0.1

AND A2 = 0.05 dB in Eq. 3.

SOURCE TYPE

TESTED

NUMBER

OF SAM-

PLES

FAR-FIELD

SAMPLES/

LOBE

FAR-FIELD

SAMPLES/

WAVELENGTH

OF APERTURE 

20-WL
SINUSOIDAL

CURRENT
FILAMENT

40 4 2

10-WL
RANDOMIZED

ARRAY

26 3 2.6

10-WL CYLINDER
SCATTERER

48 2.4 4.8

20-WL UNIFORM
CURRENT
FILAMENT

35 1.75 1.75
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