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ABSTRACT: In this paper we illustrate how to solve 
the general Helmholtz equation starting from 
Laplace′s equation. The interesting point is that the 
Helmholtz equation has a frequency term whereas  
Laplace’s equation is the static solution of the same 
boundary value problem. In this new formulation the 
frequency dependence is manifested in the form of an 
excitation. A new boundary integral method for 
solving the general Helmholtz equation is developed. 
This new formulation is developed for the two-
dimensional Helmholtz equation with the method of 
moments Laplacian solution.  The main feature of this 
new formulation is that the boundary conditions are 
satisfied independent of the region node 
discretizations.  The numerical solution of the present 
method is compared with finite difference and finite 
element solutions of the same problem. Application of 
this method is also presented for the computation of 
cut-off frequencies for some canonical waveguide 
structures. 

 
I.  INTRODUCTION 

 
The two dimensional Helmholtz’s equation is an 
important equation to be solved in many numerical 
electromagnetics problems such as waveguide related 
problems and appears in a variety of physical 
phenomena and engineering applications, such as, 
acoustic radiation [1], heat conduction [2], and water 
wave propagation [3]. In semiconductor device 
modeling, Helmholtz’s equation arises frequently as 
an intermediate step in the solution of the nonlinear 
Poisson’s problem.  To solve these problems diverse 
numerical methods have been reported which include 
finite difference [4], finite element [5], and boundary 
integral methods (BIM) [6-8].  Using these 

conventional methods, it has been found that fine grids 
and a large number of elements must be employed to 
get satisfactory accuracy [3]. This requires large 
computer core storage, and more computational time 
especially for the iteration scheme of the nonlinear 
Poisson’s problem where the value at each grid point 
needs to be updated at each step of the iteration.  
Further, the BIM formulations are in most cases 
limited to homogeneous Helmholtz equation and tied 
closely to the particular problem at hand [6].  In this 
paper, a simple approach to solve the homogeneous 
and nonhomogeneous Helmholtz equations is 
proposed.  The technique is based on the computation 
of Laplacian potential by the method of moments 
(MoM) [9], without resorting to different formulations 
using Hankel functions as it is commonly done in BIM 
[10].  Besides its generality to solve Laplace’s, 
Poisson’s, and Helmholtz’s equations in one single 
code implementation, the present method will 
considerably reduce the number of domain grids 
compared to the finite difference methods and does 
not require any interpolation.  The accuracy of the 
MOM solution from this new formulation will be 
compared with the solutions of fine difference method 
(FDM) and finite element method (FEM), using the 
ELLPACK implementation [4]. 

 
II. MATHEMATICAL FORMULATION 

 
Consider the following two-dimensional elliptic 

equation for a smooth function Ψ defined in a 2-D 
region defined by ℜ which is bounded by a contour C 
so that 

 

),(),(),(),(2 yxFyxyxyx =Ψλ+Ψ∇        (1) 
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where λ and F are known functions in the domain ℜ.  
The general form of (1) includes, as specializations, 
the following cases: 

1) Laplace’s equation, with λ = 0 and F = 0 
2) Poisson’s equation, with λ = 0 and F ≠ 0. 
3) Helmholtz’s equation, with λ ≠ 0 and F ≠ 0. 

So only one general formulation addresses the solution 
to all of the three cases above. In addition we illustrate 
how to use the frequency independent solution of the 
Laplace’s equation to solve the general Helmholtz 
equation. On the contour C the boundary condition can 
be of Dirichlet, Neumann, or mixed type, as given by 
the general form 

 

γ=
∂
Ψ∂β+Ψα
n

  (2) 

 
where α, β, γ, are known spatial functions and ∂Ψ/∂n 
represents the normal derivative.  It is implied that a 
consistent set of boundary conditions has been chosen 
for the problem. 

The proposed scheme to solve the given boundary 
value problem starts by assuming the term λΨ to be a 
known function, and including it with the given 
excitation function F, and thereby reducing (1) to the 
familiar Poisson’s equation 

 
2 ( , ) ( , )x y x y∇ Ψ = −Θ                (3) 

with 
 

( , ) ( , ) ( , ) ( , )x y x y x y F x yλΘ = Ψ − .  (4) 

 
The solution to Poisson’s equation in (3) can be 
expressed as  
 

h pφ φΨ = +    (5) 

 
where φh is the solution to the homogeneous Poisson’s 
equation (Laplace’s equation) 
 

2 0hφ∇ =    (6) 

and φp is the particular integral, i.e.,  
 

2 ( , )p x yφ∇ = −Θ   (7) 

 
Here we use the particular solution of the Poison’s 
equation given by [12] 
 

2 2

( , )

1
( , ) n

2 ( ) ( )

p
x y

K
x y dx dy

x x y y

φ

π ℜ

=

′ ′ ′ ′Θ
′ ′− + −

 
  
 

∫∫
    

(8) 
 
where the spatial sets (x, y) and (x′, y′) denote the 
spatial coordinates of the field and source coordinates, 
respectively, and K is an arbitrary constant. Here, 

)K(n  represents the value of the scalar potential φ  

at infinity for the two dimensional case. For the 3D 
case, this term does not exist, as the potential at 
infinity is zero. Hence the Green’s function is simply 
1/R instead of the natural log function.  The value of 
the parameter K is chosen to be 100 for the 2-D 
problem as the reference potential at infinity is not 
zero but finite.   

   An expression similar to (8) can be derived to 
approximate the Laplacian potential φh.  The potential 
φh can be assumed to be produced by some equivalent 
sources consisting of electrical charges, σ located on 
the contour C [12].  Then the potential φh at any point 
(x, y) can be obtained from σ(x, y) using the following 
integral [9] 

 

2

( , )

1
( , ) n

2 2( ) ( )

h
x y

K
x y dl

C x x y y

φ

σ
π

=

′ ′ ′∫
′ ′− + −

 
  
 

 

(9) 
 

where l′ is the arc length on the contour C. 
The boundary condition of the homogeneous 

potential φh is obtained from (2) and (5) as 
 

ph
h pn n

φφαφ β γ αφ β
∂ ∂+ = − + ∂ ∂ 

. (10) 

 
It can be seen that (6) along with the boundary 
condition of (10), constitute a similar boundary-value 
problem. A similar problem was addressed in [9] 
almost thirty years ago. 

This completes the formulation of the problem. 
The characteristic features of this formulation are: 

a. The frequency term appears in an explicit 
form. 

b. The Green’s function and the unknowns are 
independent of frequency. The Green’s 
function is in fact the static Green’s 
function.  
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Next we illustrate how to solve these coupled 
equations both for the homogeneous part and the 
particular integral. 

 
III.     NUMERICAL SOLUTION USING 

THE METHOD OF MOMENTS (MOM) 
 

In order to solve the above equations given 
by (8)-(10) we employ the Method of Moments. 

To evaluate the above integral in (8) we 
divide the domain ℜ into N sub-regions.  The 
midpoint coordinates of each of the sub-regions ∆ℜi 
are denoted by (x2i, y2i).  Then the potential φp at the 
field point (x, y) is approximated by 

 

2 2
1

( , ) ( , ) ( , )
N

p i i i
i

x y x y a x yφ
=

≅ Θ∑     (11) 

where 

2 2

( , )

1
n

2 ( ) ( )
i

ia x y

K
dx dy

x x y yπ ∆ℜ

=

 
′ ′ 

 ′ ′− + − 
∫∫

 

(12) 
 

Hence it is assumed that Θ(x, y) is constant within 
each sub-region ∆ℜi and is equal to the value Θ 
(x2i,y2i). 

Next we show how to numerically evaluate (9). 
Here, we take recourse to MOM. We expand the 
surface unknown σ using a pulse expansion. For 
purposes of illustration and simplicity let us choose 
point matching. Through the use of a pulse-expansion 
and point-matching techniques we will solve the 
present problem given by (9). Furthermore, if the 
contour C is segmented by M straight lines of length 
∆Ci between points i and i + 1, then σ can be 
represented by the step approximation 

( )
1

M

i i
i

P lσ σ
=

=∑    (13) 

 
where Pi(l) is a pulse function equal to 1 on ∆Ci and 
zero elsewhere and σi is its unknown amplitude.  
Substituting (13) into (9), we obtain an approximation 
for φh 

1

( , ) ( , )
M

h i i
i

x y c x yφ σ
=

≅ ∑   (14) 

where 

2 2

( , )

n
( ) ( )

i

i

C

c x y

K
dl

x x y y+∆

=

 
′ 

 ′ ′− − 
∫

 (15) 

 
Using (4), (11) and (14), the Helmholtz potential Ψ at 
an arbitrary field point (x, y) can now be expressed as 

( )
1 1

( , )

( , ) ( , )
M N

i i i i i i
i i

x y

c x y F a x yσ λ
= =

Ψ =

+ Ψ −∑ ∑  

(16) 
 

where for simplicity we have used the following 
abbreviations in (4): 
 

λi  =  λ (x2i, y2i)  
Fi  =  F (x2i, y2i)  
Ψi =  Ψ (x2i y2i) 

 
The unknown function Ψ(x, y) in (16) of Helmholtz 
equation can now be evaluated once the unknown 
terms, σi and Ψi, are determined.  Next a system of 
two matrix equations is derived and solved for the 
unknowns σi and Ψi.  The first matrix equation of this 
system is readily obtained by satisfying (16) at the 
midpoints (x2j, y2j) of each of the N sub-region ∆ℜi.  
Using matrix notation, we obtain 

 

[ ] [ ] [ ]i ji i ji i i ip q Fσ λ   Ψ = + Ψ −       (17) 

 
where pji = ci(x2j, y2j), and qji = ai(x2j, y2j). 

The second matrix equation is now obtained by 
enforcing the boundary condition of (10) as follows. 

We define jr̂ = (xj, yj),  j = 1, 2, …, M, to be the 

midpoints of ∆Cj. The boundary conditions are 

enforced at each jr̂ .  Substitution of (11) and (14) into 

(10) gives the following set of equations 
 

( )
1 1

1, 2,...,

M N

i ji i i i i ji
i i

w F b

j M

σ λ λ
= =

= − Ψ −

=

∑ ∑
  (18) 

 

where )r̂( jj γ=γ  and 

ˆ( , ) j

i
ji i

x y r

c
w c

n
α β

=

∂ = + ∂ 
   (19) 
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ˆ( , ) j

i
ji i

x y r

a
b a

n
α β

=

∂ = + ∂ 
   (20) 

Equation (18) can now be written in matrix notations 
as 
 

[ ] [ ]ji i j ji i i iw b Fσ γ λ     = − Ψ −        (21) 

 

Observe that (17) and (21) form a system of two 
equations in two unknowns σi and Ψi, from which 
they can be solved.  We use (21) to obtain an 
expression for σ and then substitute it into (17), and 
after simple matrix manipulations we obtain the 
following equation for Ψi  

 

[ ][ ] [ ]iA BΨ =        (22) 

where 

[ ] [ ] ( )[ ]1

ji ji ji ji iA I p w b q λ
−

       = + −          

(23) 
 

[ ] (
)[ ]

1

1

ji ji j ji

ji ji ji i

B p w p

w b q F

γ
−

−

       = +       

     − −     

 (24) 

 
and [I] denotes the N × N identity matrix. 

From the last three equations some general 
comments can be made: 

1) Analytic expressions can easily be derived 
for the evaluation of all the terms of the  
matrices [A] and [B] that include the integrals  
(12) and (15). This is true at least for the 2-D 
case. 

2) The matrix elements [wji], which are a part of 
the system matrix of the moment method, are 
similar to the matrix elements obtained in [9].  
For different Helmholtz problems with 
different boundary conditions, [wji] remains 
unchanged. This observation is important in 
an iteration scheme where the boundary 
conditions are kept the same. 

3) Problems with multiple right-hand sides are 
solvable with minimum additional 
computation time since the function F in (17) 
appears only as a term of matrix [B] in (24). 

4) The domain and the contour discretization 
schemes are totally independent.  This feature 
can offer the flexibility to handle boundary 
discontinuities without the need for excessive 
domain grid generations.  This will be 

illustrated through numerical examples in the 
next section. 

5) Once Ψi is determined at the grid points, 
using Gaussian elimination for instance the 
potential at any other point is obtained using 
ordinary matrix multiplications as shown by 
(17).  No interpolations are needed. 

Next, we illustrate these points through some 
numerical examples. 

 
III.   STATIC  APPLICATIONS 

 
Example 1—Water Wave Propagation:  As a first 

example, we consider the problem of water wave 
propagation in a rectangular basin 100m  × 100m [3].  
Denoting by Ψ the water evaluation, then the wave 
propagation is governed by (1) with F = 0, and λ = k2 
where k is the wave number.  The boundary conditions 
used are displayed in Figure 1.  The solution by MOM 
is compared to the solutions obtained by finite 
difference method (FDM) and finite element method 
(FEM) for various mesh sizes inside the domain.  The 
minimum number of nodes required for each method 
to converge to the exact solution at any arbitrary point 
is optimized.  Figure 2 compares the solutions 
computed along the line x = 90 by the Method of 
Moments utilizing (1×1),  (2×2) and  (4×4) grids.  
Figure 3 shows the solutions obtained by the finite 
element method utilizing (5×5), (10×10), and (20×20) 
grids.  Figure 4 shows the results obtained by the finite 
difference method utilizing (5×5), (15×15), and 
(35×35) grids.  In all these figures, the solid line 
represents the exact solution.  Referring to these 
figures, one can easily observe that a considerably 
smaller number of nodes is employed with the present 
method than with the conventional methods.  The 
minimum number of the domain nodes required to 
obtain a satisfactory accuracy using MOM for the 
present method is 16 (4×4), compared to 400 (20×20) 
for FEM or up to 1000 nodes for FDM. 

 
Example 2—MOST Modeling:  The nonlinear 

Poisson’s equation plays a key role in numerical 
modeling of semi-conductor devices.  Many important 
characteristics of VLSI devices can be extracted from 
the solution of Poisson’s equation.  The most common 
approach to the numerical solution of the nonlinear 
Poisson’s equation is based on the application of 
Newton’s method to simultaneous discretized 
equations [15].  This approach often requires large 
storage especially for fine meshes, as is the case for 
two-dimensional modeling of the MOST [14]. 
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where ( )
( )

t
f x

cos x if   20 x 80

2 if   x 80

1 if   x 80

α

=

≤ ≤

− <

>






 

fs(x) = sin(αy), fb(x) = cos(αx), and α=2π 
 
Figure 1. Physical structure and the associated boundary conditions 
associated with Example 1. 
 

 
Figure 2. Solution obtained by the present method. 

 

 
Figure 3. The FEM solution for Example 1. 

 

 
Figure 4.  The FDM solution for Example 1. 

 
 
In this section the MOM is applied to solve the 

nonlinear Poisson’s equation that arises in the MOST 
modeling. We consider the MOST structure of Figure 
5 made on a p-type substrate with doping NA.  Under 
the low current approximation the potential Φ is 
governed by the Poisson’s equation [16] 
 

2 2

2 2 2
i A

D i

n N
e e

x y L n
−Ψ Ψ ∂ Ψ ∂ Ψ+ = − − ∂ ∂  

      (25) 

 
where Ψ = Φ/VT  is the normalized potential,  VT is the 
thermal potential, ni is the intrinsic carrier 
concentration, and LD is the Debye length. 
 
 

 
Figure 5.  The physical structure and the associated boundary 
condition for MOST modeling. 

 
The boundary conditions adopted along the edges 

of the device are the same as those used by [16], [12], 
and are displayed in Figure 5.  On the oxide-
semiconductor interface the following boundary 
condition is assumed 

 

yt

VV
s

ox

FBG
ox ∂

Φ∂ε=−Φ−ε    (26) 
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where ε ox, and ε s are, respectively, the oxide and 
silicon permittivities, VFB is the flat band voltage, and 
tox is the oxide thickness. 

To solve the above elliptic problem we proceed 
first by dividing the boundary into M segments.  Finer 
segments are used on the top edge of the device to 
handle its boundary discontinuities.  Using the 
boundary conditions, and the technique described in 
[9], matrix [wji] is computed, then inverted and stored.  
Independently, the base region is also divided into N 
finite elements or cells.  We seek to determine the 
electric potential at each midpoint of the cells using 
(25) which is nonlinear.  To solve it we set up an 
iterative procedure, based on Newton’s linearization 
[15].  At the k-th iteration we replace the right-hand 
side of (25) by its Fourier expansion about Ψk.  Then 
the following Helmholtz’s equation is obtained 

 

( )
( )

2 ( 1) 2 ( 1)
( ) ( 1)

2 2

( )

k k
k k

k

G
x y

F

+ +
+∂ Ψ ∂ Ψ+ − Ψ Ψ =

∂ ∂

Ψ
 

(27) 
where F and G are given by 

            
( )( )

( )( ) ( )( ) ( )( )

2
1 1

kk

k

k ki A

D i

F

n N
e e

L n
−Ψ Ψ

Ψ =

 
Ψ + + Ψ − − 

 

 

(28) 
 

( )( ) ( ) ( )( )2

k kk i

D

n
G e e

L
−Ψ ΨΨ = +    (29) 

 
The iteration scheme starts by taking some initial 
guess value for Ψ(0) so that (27) can be solved for the 
first approximation Ψ(1).  Then Ψ(1) is used to find the 
second approximation Ψ(2).  The procedure is repeated 

until the norm )k()k( Ψ−Ψ +1  is less than a 

desired tolerance.  However, this iteration scheme 
often diverges [13], [15], and some damping factor 
was found necessary to improve the convergence of 
the iterative solution.  At the beginning of the k-th 
iteration step, the following formula was used for all 
inner nodes 
 

( 1) ( 1) ( )(1 )k k kR R+ −Ψ = − Ψ + Ψ   (30) 

 
where R ( <  1) is the relaxation factor. 

The accuracy of the solution obtained by the 
present technique is demonstrated by comparing it 
with the FDM (5-point) solution.  For both methods, 
MOM and FDM, we let the values of the electric 
potential to be updated at each mesh point by means of 
an explicit formula, that is, without the solution of 
simultaneous algebraic equations [15].  We assign Ψ = 
0, as an initial guess for all the inner nodes.  Once the 
convergence is attained for the domain nodes, then the 
electric potential at any other point in the device is 
determined by a matrix multiplication as shown in 
(17), and without the need of any interpolation.  For 
numerical computations, the following data were used:  
The thickness of the oxide layer was tox = 0.5 µm, the 
flat band voltage is VFB = –1 V and the doping profile 
is assumed to be uniform with  NA = 1018   cm–3, ni = 
1.5×1010 cm–3, thermal potential, VT = 0.0258 V, and  
R = 0.1.  The results of the computations are shown in 
Figure 6, where the distribution of the electric 
potential at the thermal equilibrium is plotted along 
different lines parallel to the x-axis.  The solid lines 
represent the solution obtained using the FDM and (o) 
symbol is reserved for the solutions obtained by the 
present method.  Close agreements can be observed 
between the two methods.  However, for FDM 721 
nonuniform mesh points are employed to reduce the 
total number of nodes {for uniform meshes over 4900 
(70×70) nodes ought to be used}.  Finer meshes were 
chosen in the depletion region and near the junctions 
to reproduce accurately the fast variation of the 
electric potential [16] and the surface discontinuities 
of the potential; whereas for MOM, the number of the 
uniform meshes was 529 (23×23) or 400 for 
nonuniform cells.  The number of iterations required 
for the convergence was 51 with the present technique 
as compared to 108 iterations with FDM to reach the 
point at which the absolute maximum between two 
subsequent iterations was less than 0.05 (tolerance). 

Next we apply this method to the solution of the 
cutoff-frequencies of various waveguides.  

 
Figure 6: The distribution of the electric potentials along the lines 
parallel to the x-axis. 
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IV.     SOLUTION OF THE GENERAL 
HELMHOLTZ EQUATION FOR  

HOMOGENEOUSLY FILLED 
WAVEGUIDES 

 
In waveguides, solution of the Helmholtz 

equation determines the electromagnetic field 
configuration within the guides.  It is convenient to 
divide the possible field configurations within the 
waveguides into two sets, namely TM waves and TE 
waves, each of which is governed by similar 
Helmholtz equations. 

If we consider a waveguide in which the 
direction of propagation of the wave is along the z-
direction, then the Helmholtz equations are as follows. 

TMz Case (Hz ≡ 0): 
 
2 2 2( , ) ( ) ( , ) 0z z zE x y K E x yω µε∇ + − =      (31) 

 
with the appropriate boundary conditions Ez = 0, on 
the conductor walls and for the  

TEz Case (Ez ≡ 0): 
 

2 2 2( , ) ( ) ( , ) 0z z zH x y K H x yω µε∇ + − =      (32) 

 
with appropriate boundary conditions ∂Hz/∂n = 0,on 
the conductor walls where ∂Hz/∂n represents the 
normal derivative. Here, 
 Ez z-component of the electric field; 
 Hz z-component of the magnetic field; 

ω angular frequency = 2πf; 
 f frequency of interest; 

µ permeability of the homogeneous 
medium; 

ε permittivity of the homogeneous 
medium; 

Kz propagation constant in the z-
direction. 

 

 Comparing (31) and (32) with (1), and also 
the boundary conditions of the TMz and TEz cases with 
those of the general equations, we can draw the 
following analogies as outlined in Table I. 

By examining (32)  that  

( )
1

1

[ ] [ ][ ] [ ]

[ ][ ] [ ] [ ] [ ]

ji ji j

ji ji ji ji i

B p w

p w b q F

γ−

−

=

+ −
 

it can be inferred that [B] = 0, since F = 0 and γ = 0 for 
TMz and TEz cases. 
 In the case of TMz, (22) reduces to the form 
 

0][][ =⋅ ziEA     (33) 

 
In the case of TEz, (22) reduces to the form 
 

0][][ =⋅ ziHA    (34) 

 
Here again, Ezi and Hzi refer to the values of Ez and Hz 

at the midpoints of the subregions of the discretized 
waveguide cross section. 
 For (33) and (34), nontrivial solutions exist 
for [Ezi] and [Hzi] only if the matrix [A] is singular.  
The condition for nontrivial (i.e., nonzero) solutions to 
exist for [Ezi] and [Hzi] it is essential that  
 

0][det =A     (35) 

where det[A] stands for determinant of [A].  We know 
from (23) that 
 

( )1[ ] [ ][ ] [ ] [ ] [ ] [ ]ji ji ji ji iA p w b q Iλ−= − +  

    
and we also know that for the cases of the TMz and 
TEz waves 
 

2 2
zKλ ω µε= − .   (36) 

 
 

Table I 
Special cases of the General Helmholtz Equation 

General Equation (3) TMz Equation (1) TEz Equation (2) 

F=Ψλ+Ψ∇2  0222 =⋅−εµω+∇ zzz E)K(E  0222 =⋅−εµω+∇ zzz H)K(H  

Ψ  zE  zH  

λ  22
zK−εµω  22

zK−εµω  

F  0 0 

γ=∂Ψ∂⋅β+Ψα n/  0=zE  0/ =∂∂ nHz  
γ  0 0 
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Hence, given the frequency at which the Helmholtz 
equation is to be solved, det [A] would be a function of 
Kz, the roots of which will provide the values of Kz for 
which det [A] = 0.  Once these Kz values are known, 
the eigenvector of [A] corresponding to the minimum 
eigenvalue gives the nontrivial solutions for [Ezi] and 
[Hzi] in case of TMz and TEz cases, respectively. 
 Once [Ezi] and [Hzi] are determined at the grid 
points, using Gaussian elimination for instance, the 
values of Ez and Hz at any other point can be obtained 
using ordinary matrix multiplications, as explained in 
[1]. 
 

IVa.  Calculation of Propagation Constants for 
Different Waveguide Modes 

 
It is evident that for the existence of nontrivial 

(nonzero) solutions for [Ezi] and [Hzi], it is necessary 
that (35) be satisfied. Let us define a matrix [Z] such 
that 

 

( )1[ ] [ ][ ] [ ] [ ]ji ji ji jiZ p w b q−= − .   (37) 

 
Hence, (35) becomes 

 

0)][][]([det =+λ IZ i   (38) 

 
which can be rewritten as 

 

.0][
1

][det =
















λ
−− IZ

i
   (39) 

 
Equation (39) is similar to the characteristic equation 
of matrix [Z], with its eigenvalues given by –1/λi.  

Knowing that λi above 22
zK−εµω≡ for TMz and 

TEz cases, it can be concluded that 
 

[ ]
2 2

1 1
,

( )

1,2,..., .

Z
ii

i z

EV
K

i N

λ ω µε
− = =

−
=

   (40) 

 

where i
zK  is the propagation constant of the ith mode 

and ≡][Z
iEV  ith eigenvalue of [Z]. 

 
Equation (40) can be rearranged as 

2 2
[ ]

1
( )i

z Z
i

K
EV

ω µε= + .  (41) 

Therefore, the propagation constants of different 
modes in the waveguide are given by the following: 

For ,0)( 2 >i
zK  

][
2 1

Z
i

i
z EV

K +εµω= propagating modes 

(42) 

For ,0)( 2<i
zK  

][
2 1

Z
i

i
z EV

jK +εµω= nonpropagating modes 

(43) 
 
Results of propagation constants of various modes in a 
rectangular waveguide computed by this method are 
shown next. 
 

IV b.        Calculation of Cutoff Frequencies for 
Different Waveguide Modes 

 
The cutoff frequencies for the various propagating 

modes in the waveguide are given by 
  

))((
2

22 i
z

i
c Kf −εµω

π
υ=    (44) 

where ≡i
cf  cutoff frequency of the ith mode. Here, 

≡υ  velocity of light in the homogeneous medium 

εµ≡ /1  and it can be deduced from (41) that 
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Using (45) in (44), we find the cutoff frequencies for 
the first N propagating modes as 
 

[ ]

1
, 1, 2,...,

2
i

Z
i

f i N
EV

υ
π

−= = .  

 (46) 

The cutoff wave number i
ck of the ith mode can be 

calculated from the cutoff frequency using the relation 

2
, 1, 2,...,

i
i c
c

f
k i N

π
υ

= =  

 
This method thereby provides a straightforward 
approach to find the cutoff frequencies (and, hence, 
cutoff wavenumbers) of any waveguide structure 
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without resorting to scanning over a wide range of 
frequencies, as is done in the Ritz-Galerkin and 
surface integral-equation methods.  
 

V a.   Results: Rectangular Waveguide 
 

Consider a rectangular waveguide.  For the 
waveguide in Figure 7, the region was divided into 
100 subregions and the boundary was discretized into 
96 subcontours.  The maximum matrix size involved 
in the computations was 100 × 100.  Results have been 
displayed in Table II for the cutoff wave numbers of 
the first eight TMz/TEz modes.  The computational 
time involved in finding the cutoff wavenumbers of 
the first 100 modes on a Sun SPARC 10 workstation 
was 16 s.   

 

4 cm

3 
cm

 
Figure 7. A rectangular waveguide. 

 
 

Table II 
Cutoff  wavenumbers  for  air-filled  rectangular  waveguide 

Mode 
No. 

Mode ke actual 
(rad/cm) 

kc 
computed 
(rad/cm) 

Diff. 
% 

1-0 TEz 0.7857 0.7921 0.81 
0-1 TEz 1.0476 1.0536 0.57 
1-1 TEz, 

TMz 
1.3095 1.3239 1.00 

2-0 TEz 1.5714 1.5827 0.72 
2-1 TEz, 

TMz 
1.8886 1.9108 1.10 

0-2 TEz 2.0952 2.1095 0.68 
1-2 TMz, 

TMz 
2.2377 2.2610 1.00 

3-0 TEz 2.3571 2.3896 1.30 
 

 
Vb.      Single-Ridge Waveguide 

 
A single ridge waveguide is a popular means of 
getting higher bandwidth.  The first four TMz and TEz 
mode cutoff wavenumbers were computed for the 
single-ridge hollow waveguide shown in Figure 8.  
Results have been displayed in Table III and compared 
with published data.  For the waveguide, the region 

was divided into 96 subregions and the boundary was 
discretized into 112 subcountours.  The maximum 
matrix size involved in computations was 96 × 96.  
The computational time involved in finding the cutoff 
wavenumbers of the first 96 modes in each case on a 
Sun SPARC 10 workstations was 18 s. 
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25

 c
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Figure 8. A single-ridge waveguide. 
 

Table  III 
Cutoff  wavenumbers  for  air-filled  single-ridge  waveguide 

Mode 
No. 

Mode kc 
published 
(rad/cm) 

kc 
computed 
(rad/cm) 

Diff. 
% 

1. TMz 12.16405 12.2338 0.57 
2. TMz 12.293817 12.4106 0.95 
3. TMz 13.996417 14.2152 1.56 
4. TMz 15.587117 15.8221 1.50 
5. TEz 2.25665 2.2688 0.54 
6. TEz 4.943617 5.0149 1.44 
7. TEz 6.518917 6.6289 1.68 
8. TEz 7.564217 7.7097 1.92 

 
 

VI.       CONCLUSION 
 

An efficient technique based on MoM formulation 
for solving a general Helmholtz equation starting from 
Laplace’s equation is presented.  The main feature of 
this new formulation is that the boundary conditions 
are satisfied independent of the discretizations of the 
regions and the nodes. This feature was found 
especially useful when the boundary conditions have 
discontinuities.  Considerable reduction in the domain 
grids is realized with the present method as compared 
to the conventional methods such as finite difference 
method or the finite element methods. In addition, one 
need not use a frequency dependent Green’s function 
which can reduce the computational cost significantly.  
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