
Reducing Electromagnetic Coupling in Shielded Enclosures

using a Genetic Algorithm – Finite-Difference

Time-Domain Solver

Russell Iain Macpherson1 and Nick J Ryan2

Department of Engineering
King’s College

University of Aberdeen
Aberdeen AB24 3UE

United Kingdom
r.macpherson@ieee.org1, n.j.ryan@eng.abdn.ac.uk2

Abstract: Comprehensive shielding in modern electronic
equipment may lead to resonant behaviour within the
equipment enclosure. This paper presents a method for
optimising the placement of sources of electromagnetic
(EM) energy and susceptors to this EM energy within an
enclosed resonant cavity. The source and susceptor are
placed on a dielectric slab within a perfectly conducting
enclosure to reduce the level of EM coupling between the
two. Optimisation is facilitated using a genetic algorithm
coupled with a finite-difference time-domain solver. Re-
sults are presented for single objective optimisation and
multi-objective optimisation cases.

1 Introduction

The explosive increase in the use of electronic equipment
in the information age has led to electromagnetic com-
patibility (EMC) and electromagnetic interference (EMI)
issues becoming more important to designers of elec-
tronic equipment. These issues must be considered at the
time of design and not once designs are at the prototype
stage. Higher clock speeds and faster switching transi-
tions lead to greater levels of electromagnetic emissions,
while higher component integration and lower power de-
mands lead to greater sensitivity. So at once systems are
becoming more prone to generating and also more sensi-
tive towards EMI.

An area of interest to the authors is electronic enclo-
sures and the placement of devices inside these enclosures.
Modern electronic items have many different sources of
EMI. These sources are often placed inside a rectangu-
lar shaped metal box to limit the EM emissions from the
equipment. Care is taken to ensure the shielding is as
comprehensive as possible thus apertures are kept to a
minimum and covered in metallic blanking plates. Such
a shielded, rectangular enclosure has a good chance of
forming a resonant cavity so that field strengths gener-
ated by the circuit may well be enhanced once the cir-
cuit is mounted within the casing. Normally the circuit

may have a number of sources within the enclosure, all
of which add to the EM fields within; changing the po-
sitions of the various sources will change the amount of
resonance and constructive interference, [1]. There are
also likely to be a number of susceptors at multiple loca-
tions throughout the circuit.

There is obviously an optimal size and shape of enclo-
sure and component layout however, exhaustively placing
components inside enclosures and then computing the re-
sultant fields is a task that that would require a massive
undertaking on behalf of the designer. A far better ap-
proach to component placement is to use some kind of
optimisation method to place the components to achieve
a desired radiation level. This paper describes the novel
use of a genetic algorithm (GA) and a finite-difference
time-domain (FDTD) solver to optimise source and sus-
ceptor placement inside a perfectly conducting structure,
building upon initial work completed in [2].

Genetic algorithms are briefly introduced in section 2 and
then the Finite-Difference Time-Domain method is intro-
duced in section 3. Section 4 describes the setup of the
computer simulation and section 5 discusses the results of
these simulations. Finally, section 6 presents conclusions
from the work.

2 Genetic Algorithms

GAs are a stochastic search mechanism with their oper-
ation firmly rooted in natural selection and survival of
the fittest, [3] and [4]. GAs have been shown to pro-
vide robust search and optimisation in complex spaces,
[3] and [5]. They use simple operations on a population
of individuals, which lead to an emergent evolution of an
individual or individuals. Each individual in the popula-
tion represents a potential solution to the given problem
scenario and as such is evaluated. After an individual
has been evaluated a figure of merit (FoM) is attributed
to the individual. This FoM is a measure of how well the
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Figure 1: GA Process Flowchart.

individual solves the problem. GAs can lead to the opti-
mal solution to a problem, more often however, they are
used to optimise a problem towards an improved solution
facilitating a trade-off between excessive computational
time and meaningful results. The GA process can be
summarised graphically as shown in figure 1.

The GA methodology used in this work is the micro ge-
netic algorithm (µGA). The µGA technique has been
shown to reach the optimal area of multi-modal solution
spaces earlier than conventional GA methods, with min-
imal computing time, [6]. It has already been demon-
strated that the µGA can be successfully linked with
an FDTD solver, [7], for optimisation in EM problems.
Initially in a GA a fixed size population is created and
populated with randomly generated individuals of a fixed
length, this length is determined by the encoding of the
problem parameters. The population size for the µGA is
generally kept small e.g. five. This is different from the
classic GA where the population size is typically much
larger, in the order of 100s. These individuals are all
possible solutions to the same given problem. They are
assessed and each one given a score, the FoM, which is
then used to determine the likelihood of reproduction into
the next generation. The FoM is analogous to fitness in
the natural world where fitter individuals survive longer
and hence have a better chance of continuing their ge-
netic lineage. The particularly successful, higher scoring
individuals may be reproduced more than once into the
next generation. In the µGA used here tournament se-
lection is employed. This is perhaps the most effective
for many application types as it has been shown to pro-
vide better convergence towards a solution in the initial
stages of optimisation, [8]. Tournament selection works
by randomly choosing N members of the population, and
in this instance, as in many others, N = 2. These indi-
viduals are then pitched against each other to determine
which has the better FoM, the winner of the tournament
being selected to be a member of the new population; this
is repeated until the new population is filled. In conjunc-

tion with tournament selection elitist reproduction is also
employed. This guarantees that the best individual from
a population is present in the next population, hence pre-
serving the best current solution to the given problem and
maintaining a good genetic stock. After reproduction the
individuals undergo crossover. Here two randomly picked
individuals are mated together, swapping information be-
tween their chromosomes. In a classic GA mutation is
also applied, however in the µGA mutation is turned off.
Mutation serves to alter the genetic makeup of these new
offspring with a small fixed probability. Once again mim-
icking nature, mutation can lead to either a detrimental
or beneficial effect on performance. Mutation allows, in
a classic GA, random search to take place and hopefully
leads to the avoidance of local optima. Once the popu-
lation has converged to a determined optimal value, fur-
ther GA operating is no longer needed and the GA can
be halted. Due to the small population size used in the
µGA premature convergence is often seen to be happen-
ing. To prevent this a restart mechanism is used. This
restart mechanism involves checking for convergence in
the current generation of individuals and then restarting
the next generation with only the elite individual and new
randomly created individuals. The use of a restart oper-
ator ensures random search takes place and leads µGA
away from local optima. Convergence is checked for in
this application by measuring the changes in the chromo-
somes, the individuals, between generations. Once there
are few changes between generations then the population
can be considered to be converged; the setting of this
limit is a parameter that the user has control over. An
important component of any GA code is the device by
which random numbers are generated, or to be more cor-
rect pseudo-random numbers. This is usually a portable
pseudo-random number generator (PRNG) that produces
the same sequence of random numbers for a given seed
value. The quality of the PRNG is an important factor.
The area of PRNG research is vast and not going to be,
for brevity, discussed here. Common references on the
subject are [9], [10], [11] and [12].

A clear difference can be seen here between optimisation
based on calculus methods and GA based optimisation.
GAs make use of interim performance in the optimisation
problem; calculus based methods are only concerned with
optimisation toward an overall optimal point and do not
“remember” any interim performances.

3 The FDTD Method

The FDTD method, [13], [14], has become one of the most
popular methods for solving Maxwell’s equations. It is a
volumetric domain decomposition technique that is sec-
ond order accurate in space and time, easily implemented
in software and accurately models the physical world. It
is a widely used method for EMC/EMI work, [15], as
well as radar, bioengineering and antenna analysis. The
FDTD method is described widely in the literature, [16],
and so only a very brief description is given here.

Maxwell’s equations, in differential form, equations (1) -
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(2), are simply modified to central-difference equations,
discretised, and implemented in software. The equations
are solved in a leap-frog manner, [14], i.e. the electric field
is solved at a given instant in time, then the magnetic field
is solved at the next instant in time, and the process is
repeated over and over again. In equations (1) and (2)
H and E have their usual meanings.

∂H

∂t
= −

(
1
µ
∇× E +

ρ′

µ
H

)
, (1)

∂E

∂t
=

1
ε
∇× H − σ

ε
E. (2)

Using a three dimensional Cartesian co-ordinate system
we can now write out the vector components of the curl
operator. Given below is only one of these components,
namely the x component of the H field,

∂Hx

∂t
=

1
µ

(
∂Ey

∂z
− ∂Ez

∂y
− ρ′Hx

)
, (3)

where µ is magnetic permeability and ρ′ is a magnetic loss
parameter. It is the complete set of coupled partial dif-
ferential equations, six in total, that are the fundamental
basis of the numerical FDTD algorithm. The discretised
form of equation (3) is shown below:

m = MEDIAHx|i,j,k
,

Hx|n+ 1
2

i,j,k = Da(m)Hx|n−
1
2

i,j,k

+Db(m)

(
Ey|ni,j,k+ 1

2
− Ey|ni,j,k− 1

2

+Ez|ni,j− 1
2 ,k

− Ez|ni,j+ 1
2 ,k

)
, (4)

where n is the time step under consideration and i, j, k
are the three orthogonal spatial co-ordinates. The integer
array MEDIA defines material conditions for each field
vector component. This allows the medium at each point
to be mapped out. The arrays Da, Db are magnetic field
update coefficients, there are corresponding electric field
update coefficients also. A full explanation of all of these
equations is presented in [13].

4 Simulation Setup

The initial results are obtained from using the GA to
place a source and susceptor point relative to each other
on the surface of a dielectric slab (DS) to achieve the low-
est electromagnetic coupling between the two. The com-
plete simulation is implemented in Fortran 77 compiled
on a SUN ENTERPRISE server with 512MB of RAM
utilising 4 of 8 processors.

Figure 2: Enclosure geometry showing the representations
of the internal structure and dielectric slab, all sizes are
in millimetres, mm.

4.1 Physical Problem Description

The problem geometry is that of a simplified metal box,
which has perfectly electrically conducting (PEC) walls,
an internal structure and DS representation. The inter-
nal structure is modelled as two PEC sheets in the top
corner of the geometry. The DS can be thought of as a
representation of the substrate of a printed circuit board
(PCB). The problem geometry is shown in figure 2. The
DS has a relative permittivity, εr, of 4 and possesses unity
magnetic permeability µr.

4.2 µGA and FDTD Setup

The µGA used is based on the implementation by Carroll,
[17], modified to accommodate the given task of moving
the source point and susceptor point on the DS. The two
points are specified in a three dimensional Cartesian sys-
tem with the y ordinate being held constant as this rep-
resents the surface of the DS. Binary encoding is used in
the µGA and this leads to a chromosome string length
of 24 bits, 4 bits per x, y and z co-ordinate of the source
and susceptor. It should be noted that it would be pos-
sible to omit the y ordinate from the chromosome; how-
ever, the memory saving would be insignificant especially
when compared to the coding effort required to convert
the GA for this one specific case. Care must be taken
to avoid the y ordinate being altered during reproduction
and crossover, this is achieved using a uniform crossover
operator. Uniform crossover, [18], has also been found to
give faster convergence than single point crossover in a
µGA, [6], [19]. The population size is maintained at five.
These co-ordinate values are passed to the FDTD solver
which computes the resulting field distribution inside the
enclosure. The peak electric field at the susceptor point
is returned as the FoM to the µGA, no fitness scaling is
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used as tournament selection is the method of selection
employed in this GA implementation, [18]. The µGA
attempts to minimise this FoM, i.e. minimise the peak
electric field at the susceptor point.

The FDTD solver is based on the equations given in [13].
The DS is one cell thick and has one cell of free space be-
tween itself and the enclosure wall. The PEC sheets are
modelled as infinitely thin. A soft Ez directed sinusoidal,
continuous wave, ideal Hertzian dipole of 2.05GHz fre-
quency and amplitude of 10V m−1 is used as the source
in the FDTD simulation. The domain is discretised into
dimensions of 7.2727mm in the x and z directions and
7.2mm in the y direction. Based on these dimensions
and the material within the computational domain the
time step size for the solver is set at the Courant limit,
in this instance approximately 14ps.

Initially two optimisation cases are run; a non-lossy and
then a lossy dielectric slab, in the lossy case the conduc-
tivity is set to 0.04Sm−1. After this a multi-objective
simulation is run where two objectives are to be op-
timised, these being the reduction in coupling between
source and susceptor points at two specific frequencies.

5 Results

5.1 Single Objective Optimisation

The progress of the optimisation process can be seen in
figure 3 where the results of both the non-lossy and lossy
simulations are presented. This figure shows the evolu-
tion of the best individual in the simulation, the elite
individual. While this individual remains the best the
FoM remains at the same value, when a superior one is
bred, a step change occurs indicating the presence of a
new elite value.

Figure 3: Generation optimisation of both the non-lossy
and lossy cases.

The final value for the non-lossy case is 0.0541V m−1

from an initial value of 0.1172V m−1, and the final
value for the lossy case is 0.0240V m−1 from a value of
0.0685V m−1. Both of the curves are normalised to the
value of 0.1172V m−1 for ease of comparison. As expected
the values of field strength for the lossy case are lower
than those for the non-lossy case as in the lossy case en-
ergy is dissipated in the dielectric slab. Figure 3 also
shows us that the lossy case reaches its best FoM at gen-
eration 66, earlier than the non-lossy case which reaches
its best FoM at generation 91. This is a random dynamic
of the GA and attributable to the solution surface topol-
ogy and the choice of PRNG used with the µGA. The
number of generations was limited to 100 as experience
with this code has shown that there is a minimal return
on computing time by exceeding this point. Testimony
to this is given by the fact that running the code to 200
generations gives only a final value of 0.0507V m−1 for
the non-lossy case and 0.0204V m−1 for the lossy case, a
marginal increase in performance for a doubling of com-
putation time. This embraces one philosophy of using a
GA, namely to produce an acceptable improvement to-
ward an optimal point for a limited amount of effort.

The final field distribution on the surface of the DS can
be seen in figure 4 for the non-lossy case and in figure 5
for the lossy case. These plots are generated by applying
a peak hold to the Ez component at each location on the
surface of the DS throughout the simulation.

The final positions of the source and susceptor points on
the DS are indicated; for the non-lossy case these are at
(2,16) and (3,35) respectively, and for the lossy case the
co-ordinates are (2,35) and (23,11). These co-ordinate
values given are of course on the x and z axes as the
y ordinate is constant. These false colour plots clearly
show that the µGA has indeed found good solutions but
not the best solutions. The global minimum point in fig-
ure 4 is at (2,2) with a value that is 2.1dB down on the
position found by the µGA. In figure 5 the global mini-
mum is at (12,14) with a value that is 1.4dB down the
µGA position. The final values found by the µGA are
57.6dB and 64.6dB down on the global maximum for the
non-lossy and lossy cases respectively. It should be noted
that the patterns presented in these figures are ones of
over 1 million possible patterns due to source and sus-
ceptor placement. Finding the global minimum on each
of them would require direct evaluation of each pattern.
The µGA vastly cuts down on the number of evaluations
required to arrive at an acceptable result.

5.2 Multi-objective Simulations

Multi-objective optimisation(MO) is often sought in prac-
tice as often compliance in one particular objective upsets
the compliance of another objective. MO aims to achieve
a solution that can not be improved upon, simultaneously,
in each of the objectives. This is called a Pareto optimal
solution, and the set of all these solutions is called the
Pareto optimal set, [20]. For the MO simulations some
changes had to be made to the GA-FDTD code. As two
objectives were being optimised a method of measuring
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Figure 4: False colour plot of final field distribution on
surface of dielectric slab after non-lossy simulation. The
x and z axes are marked in FDTD cells. Source and
susceptor positions are indicated on the figure.

their fitness at one and the same time is required. To ac-
complish this the method of objective weighting is used,
[20]. This method is explained mathematically by equa-
tion (5),

Z =
N∑

i=1

wifi(x) where x ∈ X. (5)

In equation (5) Z is a scalar valued variable that is a
weighted sum of the individual objectives, where there
are N objectives in total. The function f is the function
that returns the FoM, in this case the FDTD solver, and
x represents the parameters of the function, co-ordinate
values in this case. The feasible region of solutions is
denoted by X. The sum of the individual weights adds to
1 and each weight lies in the range 0 to 1 i.e. 0 ≤ wi ≤ 1.
It is the scalar value Z that is optimised by the GA. The
method of objective weighting is an easily implementable
scheme that produces a solution from the Pareto optimal
set.

The problem setup for the MO optimisation involves the
same geometry as previously with the only change being
the source. A Gaussian pulse modulated onto a sine wave
is now used as the source. This gives a symmetrical spec-
trum about the carrier frequency, no DC component, and
a bandwidth controlled by the length of the pulse. Its
mathematical form given in [13] is described by equation
(6),

Ez = E0e
−

[
n−n0

ndecay

]2

sin(2πf0(n − n0)∆t). (6)

The Gaussian pulse is centred around frequency f0 at
step n0 with a 1/e characteristic decay of ndecay steps,
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Figure 5: False colour plot of final field distribution on
surface of dielectric slab after lossy simulation. The x and
z axes are marked in FDTD cells. Source and susceptor
positions are indicated on the figure.

and ∆t is the step size. The time series and frequency
response of the source is shown in figure 6. The centre
frequency for the source is chosen at 1.500GHz and the
objectives for optimisation were chosen as the minimisa-
tion of the 1.002GHz and 2.004GHz components in the
frequency response which is computed on the fly as the
FDTD simulation progresses as detailed in [13]. These
frequencies were chosen as they tie in with equipment
used in a related measurement study. Only non-lossy sim-
ulations were run in this setup.

The resulting frequency response from the Ez component
at the susceptor point the simulations can be seen in fig-
ure 7. The dashed line in figure 7 shows the initial DFT
before the optimisation process begins; the solid line in
the figure displays the final DFT after completion of the
optimisation process. A clear difference in the two curves
at the respective objective frequencies can be seen. Also,
it can be clearly seen that the field values at the objective
frequencies, on the final DFT, are considerably lower than
at other frequencies, within the same response, excepting
of course at the tails of the response where there is mini-
mal energy from the source. The values of the objectives
on the final response are 54dB down for the 1.002GHz
objective on the max value in the response and the value
at 2.004GHz is 44dB down. Relative to the initial DFT
the final response in down 27dB at the 1.002GHz objec-
tive and down 35dB at the 2.004GHz objective.

6 Conclusions

A method of using a µGA in conjunction with a FDTD
solver to facilitate electromagnetic optimisation has been
shown. The conjoining of the two codes allows a dif-
ficult design problem to be tackled, namely that of ra-
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Figure 6: Time series of the pulsed source, upper graph,
and its DFT, lower graph. This is the source character-
istic used in the multi-objective optimisation simulations.

diating and susceptible component placement within an
arbitrary metallic structure to minimise coupling. The
µGA technique is used as this gives a significant reduc-
tion in computation time with little loss in performance
of the final optimised result. Ensuring that the µGA finds
the global optimum in difficult optimisation problems is
an area that needs further attention, but the ability of
the technique to reach a near optimal solution has been
demonstrated. Both single and multiple objectives for
optimisation have been presented with promising results
from each. It is worth noting that if an exhaustive search
were to be completed on the problems presented then over
one million simulations would be required taking over one
year to complete; the GA based search, however, took ap-
proximately four hours.

The design optimisation cases presented are rather sim-
plistic but do prove the concept of the hybrid code. More
challenging problem geometries can easily be accommo-
dated in the FDTD code with little burden to comput-
ing time as once the domain has been discretised it is the
number of resulting cells that chiefly determines the com-
putation time. It is envisaged that this tool can be used
to provide design rules for component placement within
an enclosed resonant cavity and that it can can also be
used to assess specific designs.
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