
Applied
Computational
Electromagnetics
Society
Journal
Special Issue on 
Neural Network Applications in
Electromagnetics

Guest Editor
Christos Christodoulou

July 2003
Vol. 18 No. 2
ISSN 1054-4887



GENERAL PURPOSE AND SCOPE: The Applied Computational Electromagnetics Society (ACES) 
Journal hereinafter known as the ACES Journal is devoted to the exchange of information in 
computational electromagnetics, to the advancement of the state-of-the art, and the promotion of related 
technical activities.  A primary objective of the information exchange is the elimination of the need to “re-
invent the wheel” to solve a previously-solved computational problem in electrical engineering, physics, or 
related fields of study.  The technical activities promoted by this publication include code validation, 
performance analysis, and input/output standardization; code or technique optimization and error 
minimization; innovations in solution technique or in data input/output; identification of new applications 
for electromagnetics modeling codes and techniques; integration of computational electromagnetics 
techniques with new computer architectures; and correlation of computational parameters with physical 
mechanisms. 
 
SUBMISSIONS: The ACES Journal welcomes original, previously unpublished papers, relating to 
applied computational electromagnetics.  Typical papers will represent the computational electromagnetics 
aspects of research in electrical engineering, physics, or related disciplines. However, papers which 
represent research in applied computational electromagnetics itself are equally acceptable. 
 
Manuscripts are to be submitted through the upload system of ACES web site http://aces.ee.olemiss.edu 
See “Information for Authors” on inside of back cover and at ACES web site. For additional information 
contact the Editor-in-Chief: 

Dr. Atef Elsherbeni 
 Department of Electrical Engineering 
 The University of Mississippi 
 University, MS 386377 USA 
 Phone:  662-915-5382 Fax: 662-915-7231 
 Email:  atef@olemis.edu 
 
SUBSCRIPTIONS:  All members of the Applied Computational Electromagnetics Society who have paid 
their subscription fees are entitled to receive the ACES Journal with a minimum of three issues per 
calendar year and are entitled to download any published journal article available at  
http://aces.ee.olemiss.edu.  
 
Back issues, when available, are $15 each.  Subscriptions to ACES is through the web site.  Orders for 
back issues of the ACES Journal and changes of addresses should be sent directly to ACES Executive 
Officer: 
 Dr. Richard W. Adler 
 ECE Department, Code ECAB 
 Naval Postgraduate School  
 833 Dyer Road, Room 437 
 Monterey, CA  93943-5121 USA 
 Fax: 831-649-0300 

Email: rwa@attglobal.net 
 
Allow four week’s advance notice for change of address.  Claims for missing issues will not be honored 
because of insufficient notice or address change or loss in mail unless the Executive Officer is notified 
within 60 days for USA and Canadian subscribers or 90 days for subscribers in other countries, from the 
last day of the month of publication.  For information regarding reprints of individual papers or other 
materials, see “Information for Authors”. 
 
LIABILITY. Neither ACES, nor the ACES Journal editors, are responsible for any consequence of 
misinformation or claims, express or implied, in any published material in an ACES Journal issue.  This 
also applies to advertising, for which only camera-ready copies are accepted.  Authors are responsible for 
information contained in their papers.  If any material submitted for publication includes material which 
has already been published elsewhere, it is the author’s responsibility to obtain written permission to 
reproduce such material. 

http://aces.ee.olemiss.edu/
mailto:atef@olemis.edu
http://aces.ee.olemiss.edu/


 
APPLIED 
COMPUTATIONAL 
ELECTROMAGNETICS  
SOCIETY 
JOURNAL 
 
Special Issue on  
Neural Network Applications in 
Electromagnetics  
 
Guest Editor 
Christos Christodoulou  
 
July 2003 
Vol. 18 No. 2 
 
ISSN 1054-4887 

 
The ACES Journal is abstracted in INSPEC, in Engineering Index, and in DTIC. 
 
The first, fourth, and sixth illustrations on the front cover have been obtained from the Department of 
Electrical Engineering at the University of Mississippi. 
 
The third and fifth illustrations on the front cover have been obtained from Lawrence Livermore National 
Laboratory. 
 
The second illustration on the front cover has been obtained from FLUX2D software, CEDRAT S.S. 
France, MAGSOFT Corporation, New York. 



THE APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY 
http//:aces.ee.olemiss.edu 

 
ACES JOURNAL EDITORS 

 
EDITOR-IN-CHIEF/ACES 
Andrew F. Peterson 
Georgia Institute of Technology 
Atlanta, GA, 30332-0250, USA 
 
EDITORIAL ASSISTANT 
Matthew J. Inman 
University of Mississippi, EE Dept. 
University, MS 38677, USA 
 
EDITOR-IN-CHIEF, EMERITUS 
David E. Stein 
USAF Scientific Advisory Board 
Washington, DC 20330, USA  

 
EDITOR-IN-CHIEF/JOURNAL 
Atef Elsherbeni 
University of Mississippi, EE Dept. 
University, MS 38677, USA 
 
EDITOR-IN-CHIEF, EMERITUS 
Ducan C. Baker 
EE Dept. U. of Pretoria 
0002 Pretoria, South Africa 
 
EDITOR-IN-CHIEF, EMERITUS 
Allen Glisson 
University of Mississippi, EE Dept. 
University, MS  38677, USA 

 
MANAGING EDITOR 
Richard W. Adler  
833 Dyer Rd, Rm 437 EC/AB 
NPS, Monterey, CA 93943-5121, USA 
 
EDITOR-IN-CHIEF, EMERITUS 
Robert M. Bevensee 
Box 812 
Alamo, CA 94507-0516, USA 
 
EDITOR-IN-CHIEF, EMERITUS 
Ahmed Kishk 
University of Mississippi, EE Dept. 
University, MS 38677, USA 

 
 

ACES JOURNAL ASSOCIATE EDITORS 
 
Giandomenico Amendola 
Universita' della Calabria 
Rende , Italy 
 
John Beggs 
NASA Langley Research Center 
Hampton, VA, USA 
 
John Brauer 
Ansoft Corporation  
Milwaukee, WI, USA 
 
Magda El-Shenawee 
University of Arkansas 
Fayetteville AR, USA 
 
Pat Foster 
Microwave & Antenna Systems 
Gt. Malvern, Worc. UK 
 
Cynthia M. Furse 
Utah State University 
Logan UT, USA 
 
Christian Hafner 
Swiss Federal Inst. of Technology 
Zurich, Switzerland 
 
Michael Hamid 
University of South Alabama, 
Mobile, AL, USA 
 
Andy Harrison 
Radiance 
Huntsville, AL 

Chun-Wen Paul Huang 
Anadigics, Inc. 
Warren, NJ, USA  
 
Todd H. Hubing 
University of Missouri-Rolla 
Rolla, MO, USA 
 
Nathan Ida 
The University of Akron 
Akron, OH, USA 
 
Yasushi Kanai 
Niigata Institute of Technology 
Kashiwazaki, Japan 
 
Leo C. Kempel 
Michigan State University 
East Lansing MI, USA 
 
Andrzej Krawczyk 
Institute of Electrical Engineering 
Warszawa, Poland 
 
Stanley Kubina 
Concordia University 
Montreal, Quebec, Canada  
 
Samir F. Mahmoud 
Kuwait University 
Safat, Kuwait 
 
Ronald Marhefka 
Ohio State University 
Columbus, OH, USA 

Edmund K. Miller 
LASL 
Santa Fe, NM, USA 
 
Krishna Naishadham 
Wright State University 
Dayton, OH, USA 
 
Giuseppe Pelosi 
University of Florence 
Florence, Italy 
 
Vicente Rodriguez 
ETS-Lindgren  
Cedar Park, TX, USA 
 
Harold A. Sabbagh 
Sabbagh Associates 
Bloomington, IN, USA 
 
John B. Schneider  
Washington State University 
Pullman, WA, USA 
 
Abdel Razek Sebak 
University of Manitoba 
Winnipeg, MB, Canada 
 
Amr M. Sharawee 
American University 
Cairo, Egypt 
 
Norio Takahashi 
Okayama University  
Tsushima, Japan

 



 
Special Issue on 

 
Neural Network Applications in Electromagnetics 

 
Guest Editor Introduction 

 
Neural computing and machine learning algorithms have arrived and are here to stay! In 

the last ten years neural networks have experienced an unbelievable growth, both in terms of 
novel neural network architectures that have appeared in the literature, and new applications 
where neural networks have been used successfully. The high-speed capabilities and “learning” 
abilities of neural networks can be applied to quickly solving numerous complex optimization 
problems in electromagnetics, and this special issue shows you how. Even if you have no 
background in neural networks, the papers that appear in this issue will give you a flavor of the 
different applications that neural networks can be applied to.   
 

In the past, neural networks (NNs) have been applied to modeling and design of antennas, 
microstrip circuits, embedded passive components, semiconductor and optical devices, and so 
on. Today, support vector machines (SVM) have also emerged in the area of machine learning 
and have been used mainly in the area of pattern recognition and classification. In this issue, two 
of the papers discuss a machine learning approach to solving electromagnetics problems. One of 
them compares results between classical neural networks and SVM’s.   
 

There are basically four main situations in which NNS and SVMs are good candidates for 
use in electromagnetics.  

1. When closed form solutions do not exist and trial and error methods are the only 
approaches to solving the problem at hand. 

2. When the application requires real-time performance. 
3. When faster convergence rates and smaller errors are required in the optimization of 

large systems.  
4. When enough measured data exist to train an NN or an SVM for prediction 

purposes, especially when no analytical tools exist.  
5. When they can be used in conjunction with other numerical techniques for 

enhancement purposes.  
 
This special issue includes 7 papers all of which are very different yet they have one unifying 
factor which is the use of NNS and SVM in tackling the problem at hand.  The 1st paper is an 
example of how both neural networks and support vector machines can be used to classify buried 
objects (a classification problem). The second paper shows how neural networks can be used 
along with signal processing techniques for bio-medical applications and sensors. In the third 
paper we see an example of how neural networks can be combined with equivalent circuit 
formulations and other approaches for modeling of multilayer printed circuits. The fourth paper 
introduces the use of SVM in training adaptive array antennas for determining the direction of 
arrival of a signal (DOA). The paper includes a brief introduction of machine learning and 
support vector machines and how results compare with the more classical existing techniques. 
The fifth paper demonstrates how measured data can be used to train neural networks to predict 



resonances for microstrip antennas at different frequencies and for different dimensions. The 
sixth paper is an example of  how neural networks can be used in  problems where no closed-
form solutions exist such as  the  estimation of  target  orientation using measured radar cross 
section data. The last paper is a unique example of using neural networks with the asymptotic 
waveform evaluation (AWE) to speed up the analysis of the method of moments. This combined 
approach is applied to the solution of a microstrip antenna. Also,  several references are included 
in each paper and the hope is that the reader will be exposed to the wide range of applications 
that are possible today in the area of electromagnetics using neural networks and machine 
learning! 

 
Finally,  I wanted to thank the following reviewers for helping me with this issue: Chaouki 
Abdallah, Michael Cryssomallis, Said El-Khamy,  K. C. Gupta, Kerim Guney, Nafatli (Tuli) 
Herscovici,  Q. J. Zhang,  and Ahmed EL Zooghby.  Special thanks go to Atef  Elsherbeni for 
coming up with the idea behind this special issue and being  patient and very helpful along the 
way! 
 

 
Christos Christodoulou 
 
University of New Mexico 
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A Comparative Study of NN and SVM-Based
Electromagnetic Inverse Scattering Approaches to

On-Line Detection of Buried Objects

Salvatore Caorsi1, Davide Anguita2, Emanuela Bermani3, Andrea Boni3,
Massimo Donelli3 and Andrea Massa3

1 Dept. of Electronics, University of Pavia, Via Ferrata 1, I-27100 Pavia,Italy
2 Dept. of Biophysical and Electronic Eng., University of Genoa, Via Opera Pia 11A, I-16145, Genova,Italy

3 Dept. of Information and Communication Tech.,University of Trento, Via Sommarive 14, I-38050 Trento,Italy

Abstract— Microwave-based sensing techniques consti-
tute an important tool for the detection of buried targets.
In this framework, a key issue is represented by real-
time scatterer localization. As far as such a topic is
concerned, this paper presents a comparative evaluation
of the performances provided by a conventional NN-
based inverse scattering technique and by a new SVM-
based electromagnetic approach. In order to estimate
the effectiveness values of the two methods, realistic
configurations and noisy environments are considered
and current capabilities, as well as potential limitations,
are pointed out. Finally, possible future research work is
outlined.

I. INTRODUCTION

The detection of buried objects by means of interro-
gating electromagnetic waves is usually a very difficult
task. The addressed problem is nonlinear, due to the
relation between unknown quantities (object parame-
ters and field distribution) and problem data, it is ill-
posed and, generally, only aspect-limited measures are
available.

In the past few years, considerable efforts have been
devoted to dealing with detection or, more generally,
reconstruction problems, and several approaches have
been proposed. As far as weak scatterers are con-
cerned, linearized procedures have been applied (see
[1], [2], [3] and references cited therein). The use of
closed forms of the scattering equations (based on the
diffraction theorem) and of the Fast Fourier Transform
(FFT) has made it possible to obtain faster process-
ing rates and real-time imaging. Moreover, numerical
procedures based on higher-order Born approximations
have demonstrated their effectiveness [4], [5].

On the contrary, nonlinear algorithms must be used
when strong scatterers are considered. The retrieval
problem is usually recast into an optimization one and
is effectively solved with minimization techniques [6]-
[10]. Unfortunately, large computational resources and
a high computational load are needed, thus making

these techniques impracticable (particularly when se-
rial implementations are realized) if real-time perfor-
mances are required.

In order to speed up the detection process, a key
point is the reduction in the number of unknowns. To-
ward this end, a-priori information (if available) on the
scenario under test can be very useful. This concept has
been successfully exploited in inverse methodologies
based on artificial neural networks (NNs) (see [11]
(pp. 475-479) and references cited therein). As far
as detection problems are concerned, methods based
on both multilayered-perceptron [12], [13] and radial-
basis-function [14] neural networks have demonstrated
their capabilities for on-line retrieving of buried cylin-
drical scatterers.

Though NN-based approaches have generally of-
fered good performances in solving inverse-scattering
problems, they still suffer from several drawbacks not
completely solved up to now. From the inductive-
theory point of view, the main drawback is the difficult
control of the complexity of underlying NN models.
By the term complexity it is usually meant the capacity
of a learning machine to fit the input data. Briefly, if
a machine is too complex, it will typically overfit the
data, thus losing the property of generalization for new
measures not included in the training set. If complexity
is too low, the machine will fail to correctly interpret
the underlying relations among training samples. The
complexity of a learning machine depends on many
factors. In the case of NNs, the numbers of hidden
layers and neurons, the number of interconnections,
and the learning algorithm used for the training process
[15] are the predominant parameters. Unfortunately,
NNs lack an effective theory suggesting the most
suitable NN topologies and/or calibration parameters.
An NN adapts its internal parameters (i.e., the weights)
automatically in order to best approximate the available
training data, but the topology, the transfer function
and the other parameters are heuristically selected. At
present, there is no good way to determine how many
hidden layers or how many hidden nodes each layer
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should contain, given the sample data with which to
train the NN for the solution of a given problem. From
the computational and optimization points of view,
NNs exhibit drawbacks as well. The learning process
of an NN consists in solving a nonlinear optimization
process. Therefore, any conventional optimization al-
gorithm, including the widely used back-propagation
procedure, leads to reach a solution that corresponds to
one of the local minima of the target cost function. An
empirical way to face such a problem is to train several
NNs with different starting points, thus overloading the
optimization process. However, this choice might result
in inability to unambiguously evaluate statistical and
systematic errors on neural computations.

A possibility to overcome these drawbacks is based
on new results in Statistical Learning Theory (SLT)
[16] which lead to new algorithmic paradigms and
new computational architectures that, though still based
on the NN model, entirely relinquish their biological
plausibility to achieve a firm theoretical background.
SLT allows one to derive statistical and algorithmic
properties that can limit or avoid altogether the NN
problems previously described. One of the main con-
tributions in this field has been provided by Vladimir
Vapnik [16], who has formulated and formalized the
inductive rules that regulate the learning process by
example principles. On the basis of these fundamen-
tals, a new learning paradigm, called Support Vector
Machine (SVM), has been developed. After initial
studies, SVMs are now successfully applied in several
fields ranging from pattern recognition to function
approximation tasks. From a theoretical point of view,
SVMs turn out to be very appealing, as compared with
conventional NNs, for the following two basic reasons:

� the constrained-quadratic structure of the opti-
mization problem solved for the learning process;

� the solid statistical theory on which SVMs are
based.

In this paper, the detection of buried objects by means
of interrogating electromagnetic waves is addressed
by using an inductive approach. Within the frame-
work of electromagnetic retrieval, the effectiveness and
limitations of the SVM-based strategy are evaluated
and a comparative study versus conventional NN-based
methods is made. Finally, selected numerical results
on realistic configurations and noisy environments are
reported and discussed.

II. MATHEMATICAL FORMULATION

Let us consider the problem of determining the
unknown parameters of an object buried in a homo-
geneous soil. With reference to a two-dimensional ge-
ometry, let DS be a lossy region with complex contrast,
�S = ["S � 1]�j �S

2�f"0
, enclosing a circular cylindrical

scatterer of radius �B . The dielectric properties of the

LOS

LS

LS

Soil

 BD

O

y

x

Transmitter/Receiver
d

ρ

DS

DO

LST

(x     , y    )
ACTACT

Fig. 1. Geometry of the problem

object are homogeneous, �B , and the dielectric profile
of the geometry under test (Fig. 1) can be described
as follows:

� (x; y) =

8>>>><>>>>:
�0 if y > L0S

�B if

8<:
0 � x � xB + �Bcos�

0 � y � yB + �Bsin�

0 � � < 2�

�S otherwise
(1)

This scenario is illuminated by multiple transmitters
lying on D0 and located, in the upper half space,
at the positions f(xt; yt); t = 1; :::; Tg. The probing
fields, Eirr(x; y), are radiated in the free space and at
a fixed frequency by a known distribution of current
filaments parallel to the z-axis. The same probes work
as receivers for the anomalous field.

Under these hypotheses, the addressed inverse scat-
tering problem can be mathematically stated as fol-
lows. Starting from the knowledge of the anoma-
lous field, Etot, collected at the receiver positions
f(xr; yr); r = 1; :::; Rg

Etot(xr; yrjxt; yt) = Einc(xr; yrjxt; yt)+

+k2
R
DS

ES(x; yjxt; yt)GS(xr ; yr;x; y)� (x; y) dxdy

(2)
determine the set of unknown parameters
f(xB ; yB); �B ; �Bg defining the scatterer under
test. In eq. (2):
� Einc(xr ; yrjxt; yt) = Eirr(xr ; yrjxt; yt) +

Eref (xr ; yrjxt; yt) is the electric field at the
receivers in the absence of the object;

� Eref (xr ; yrjxt; yt) is the electric field reflected
by the planar interface at the receivers;

� ES(x; yjxt; yt) is the electric field induced inside
the reconstruction domain DS when it contains
the object;

� GS(xr ; yr;x; y) is the Sommerfeld-Green func-
tion for the half-space geometry [6].
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Then the solution of the addressed inverse scattering
problem requires the determination of the nonlinear
function, �, defined as follows

� = �
�
Etot

	
(3)

where � is the “scatterer array” (� = [�p; p = 1; :::; P ]

= [(xB ; yB); �B ; �B ], P being the number
of unknown parameters) and E tot is the data
array defined as E tot = [Etot(xr; yrjxt; yt);

r = 1; :::; R; t = 1; :::; T ]. This is a regression
problem in which the unknown function (�)
must be approximated by the knowledge of a
number of known input-output pairs of vectorsn�
�
�
n
; (Etot)n

o
; n = 1; :::; N .

III. LEARNING-BY-EXAMPLES STRATEGIES FOR

INVERSE SCATTERING PROBLEMS

The inverse-scattering problem described in Section
II can be addressed in several ways. From a math-
ematical point of view, the key issue is to find an
approximation, �̂, for the unknown function � on the
basis of a set of samples f(�n; en); n = 1; :::; Ng, �n
and en being an input pattern (i.e., a data array � n �
Etot) and the corresponding target (i.e., a scatterer
array en �

�
�
�
n

), respectively. This is a typical
learning-by-examples problem, which is usually faced
in the presence of unknown systems with measurable
input/output signals. In the following, two approaches
based on a multilayer perceptron (MLP) neural net-
work and on an SVM, respectively, will be presented.

A. MLP-NN Approach

Neural networks are distributed computational sys-
tems characterized by a multi-layered structure of
neurons fully interconnected by weighted links. MLP-
NNs can be considered as universal approximators for
any function � : <R�T

! <
P [17]. Therefore, they

are suitable for facing with regression problems char-
acterized by complex nonlinear relations between data
and unknowns, such as inverse scattering or buried-
object detection problems. In this context, <R�T is
the space of arrays representing measurement data, and
<
P is the space of unknown parameters describing a

buried object.
MLP-NN theory [11] suggests approximating � by

a nonlinear function of the weighted measurement datab� (�) = 	
n
�
L�1

w(L�1; L) + bL

o
(4)

where L is the number of layers; �
l

=

	
n
�
l�1

w(l�1; l) + bl

o
, l = 1; :::; L being �

0
= �; 	

is the nonlinear activation function (e.g., a sigmoid);
w(l�1; l) and bl are the weight matrix and the bias
array of the l-th layer, respectively. Given known
input-output pairs of vectors (called training set),

�training = f(�n; en); n = 1; :::; Ng, and according
to a backpropagation algorithm, weights and biases
are computed by minimizing the error function  

 
n
w(l�1; l); bl; l = 1; :::; L

o
=

NX
n=1

en � b� (�n)

(5)

by a gradient descent procedure.
Therefore, the direct solution of the inverse-

scattering problem is avoided, and real-time (after the
training phase) solutions to buried-object localization
are obtained [13]. However, as the error function
(5) is non-convex, one of the main drawbacks of
the approach is the presence of local minima where
the optimization algorithm might be trapped and the
solution of which would have no physical significance.

B. SVM-Based Approach

In order to avoid the drawbacks of the NN-based
inverse scattering method related to the nonlinear fit-
ting of the training samples, an SVM-based approach is
presented. The underlying idea of the SVM procedure
is to split the approximation for the nonlinear function
� into two steps. Instead of performing a nonlinear
fitting in the input space, a nonlinear mapping of the
training samples from the input space into a larger
(possibly infinite) space (i.e, the feature space, < eT )
is first performed. Then, a simple linear fitting is
carried out in the new space, thus avoiding typical
nonlinear-fitting drawbacks and keeping the advantages
of a linear approach. Moreover, by exploiting some
mathematical properties of nonlinear mappings, the
evaluation of the data in the feature space is not
required, as the SVM does not have to explicitly work
in this space.

In more detail, each data array �n is mapped into
the feature space through a nonlinear transformation
' : <R�T ! <

eT with eT � R � T . Then, the
samples in the feature space are linearly interpolated
by defining a hyperplane with a normal vector w. Thus,
the approximating function is given by

�̂ (�) = w � ' (�) + b (6)

Among all possible hyperplanes, SVMs find the one
that corresponds to a function �̂ having at most a
deviation � from each target e

(p)
n (*), for all the

measures �n, and that, at the same time, is as “flat”
as possible. As it is impossible for all the points to
lie inside the � band, some errors (�n, ��n, also called
slack variables) are allowed and linearly weighted.
Mathematically, this description leads to a constrained

(*) As up to now it has been possible to synthesize only single-
output SVM, we refer to the estimation of a single scatterer array
component e(p)n = (�p)n; p = 1; :::; P .
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quadratic optimization problem (CQP) where the reg-
ularized cost function 

 fw; bg =

(
1

2
kwk

2
+ C

NX
n=1

(�n + ��n)

)
(7)

is minimized over w and b, subject to the following
constraints:

8><>:
e
(p)
n � w � ' (�)� b � �+ �n

w � ' (�) + b� e
(p)
n � �+ ��n 8n

�n; �
�

n � 0

(8)

The function  is composed of two terms. The first
forces the hyperplane to be as flat as possible, and
the second penalizes the deviation of each target from
the function �̂. The constant C measures the tradeoff
between the two terms. It can be shown that this
approach can be used to control the complexity of
the learning machine, according to the Structural Risk
Minimization principle [16]. This principle guarantees
a considerable generalization ability of the model, and
provides upper bounds to such ability, albeit in a
statistical framework. It is also interesting to note that
this formulation, which derives from SLT, resembles
closely the regularization approach that is usually
exploited when dealing with ill-posed problems, like
inverse ones [18].

The problem defined by eqs. (7)-(8) is then rewritten
in dual form by using the Lagrange multiplier theory.
By introducing 2N Lagrange multipliers, �n; ��n; n =

1; : : :N , a dual functional, d, to be maximized is
obtained (see [19] or [16] for more mathematical
details):

d f�; �
�
g =n

�
1
2

PN

i;j=1 (�i � ��i )
�
�j � ��j

�
' (�i) � '

�
�j
�
+

��
PN

n=1 (�n + ��n) +
PN

n=1 e
(p)
n (�n � ��n)

o
(9)

subject to

NX
n=1

(�n � ��n) = 0 �n; �
�

n 2 [0; C] (10)

as

w =

NX
n=1

(�n � ��n)' (�n) (11)

Consequently, �̂ is equal to

�̂ (�) =

NX
n=1

(�n � ��n)' (�n) � ' (�) + b (12)

where only the inner product of the nonlinear mapping
function (and not the function itself) appears. This is
the well-known kernel trick that allows one to deal

implicitly with nonlinear mappings through the use of
Kernel functions

k
�
�i; �j

�
= ' (�i) � '

�
�j
�

(13)

The theory of kernels, that is, the conditions under
which equation (13) holds, has been known since the
beginning of the last century; it is based on Mer-
cer’s theorem [16] and has been applied to pattern
recognition tasks since the ’60s [20]. However, only
recently has the connection with learning machines
been well formalized [18]. Kernel functions are pos-
itive semidefinite functionals. Therefore, using this
property and the fact that the constraints of the above
optimization problem are “affine”, any local minimum
is also a global one, and algorithms exist by which
the solution can be found in a finite number of steps
[21]. Furthermore, if the kernel is strictly positive
definite (that is always the case, except in pathological
situations), the solution is also unique. These properties
overcome many typical drawbacks of classical neural-
network approaches, such as the determination of a
suitable minimum, the choice of the starting point, the
optimal stopping criteria, and so on.

Since the publication of early seminal works on ker-
nel functions, many functionals have been found that
satisfy Mercer’s theorem. As far as inverse-scattering
problems are concerned, a Gaussian kernel

k
�
�i; �j

�
= exp

(
�

"�i � �j
2

2�2

#)
(14)

performing a mapping in an infinite-dimensional fea-
ture space [18] and preliminarily used in [19], has
demonstrated its effectiveness.

Concerning the SVM parameters, the threshold b

is computed by means of the Karush-Khun-Tucker
conditions of the CQP at optimality [19], and the
hyper-parameters of the problem (�, q, C and �) are
deduced by accomplishing the model-selection task
proposed in [22].

Finally, the CQP is solved by a standard optimiza-
tion algorithm, namely, Platt’s SMO algorithm for
regression [23].

IV. NUMERICAL RESULTS

In this work, a comparative study of NN and SVM-
based approaches is made concerning the localization
of a scatterer buried in the soil. Let us consider a
square investigation domain LS = �-sided (� being
the free-space wavelength) completely embedded in
the ground. The relative permittivity of the soil is
"S = 20:0 and the conductivity is �S = 0:01 S

m
. The

center of the region under test is LOS = 7
12
� deep. The

buried object is a lossless circular cylinder of radius
�B = 1

12
� and the relative permittivity of the ground

is equal to "B = 5:0. This scenario is illuminated by
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Fig. 2. Training set. Geometrical arrangement of the center of the
cylinder under test
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Fig. 3. Test set. Geometrical arrangement of the center of the
cylinder under test

an electric line source, located in the upper region with
the coordinates xt = 0 and yt = 2

3
�; t = T = 1, and

parallel to the air-soil interface. The anomalous field
is collected at R = 16 measurement points equally
spaced (d = �

16
) and located on a line placed close to

the air-soil interface (LST = �
12

).

The data used to generate the training set and
those used to test the SVM approach, as well as
the MLP neural network, were obtained synthetically
by a Finite Element code and a PML technique
[24]. During the learning phase, the training set,
f�training ; ; N = 729g, was obtained by moving the
center of the cylinder inside DS among the positions
shown in Figure 2 and collecting the anomalous field
at the receiver positions. As far as the test phase is
concerned, M = 84 randomly chosen locations of the
scatterer (Fig. 3) were considered in order to define
the test set �test = f(�m; em); m = 1; :::;Mg. An
additive Gaussian noise, characterized by the signal-
to-noise ratio (SNR)

SNR = 10log10

PT
r=1

PT
t=1 jE

tot(xr ; yrjxt; yt)j
2

2T 2�2noise
(15)

�2noise being the variance of noise, affected the mea-
sured signals.

A two-layer MLP-NN [12], characterized by 32

inputs, 32 hidden neurons, and 2 output neurons, was
trained by using a delta-bar-delta back algorithm [25]
in order to overcome the shortcomings of the gradient-
descent procedure and to increase the convergence rate
of the standard back-propagation learning algorithm.

Concerning the SVM-based approach, two SVMs
were used to estimate the center coordinates of the
buried object. Moreover, after the optimal selection
procedure, the values of the SVM hyperparameters
turned out to be constant quantities equal to (C)xB =

(C)yB = 100 and � = 0:001. On the contrary,
the variance values of the Gaussian kernels,

�
�2
�
xB

and
�
�2
�
yB

, were determined independently of each
scenario under test.

A. Definitions

In order to quantitatively estimate the effectiveness
of the presented approaches, some error values are
defined. Let us introduce the

� local errors on the center location, Æux and Ævy :

Æux =
jx
u

act
�xv(u)

rec j

dmax

u = 1; :::; U ;

v (u) = 1; :::; V (u)

Ævy =
jy
v

act
�yu(v)

rec j

dmax

v = 1; :::; V ;

u (v) = 1; :::; U (v)
(16)

� local average errors on the object localiza-
tion, �x = f�ux ; u = 1; :::; Ug and �y =�
�vy ; v = 1; :::; V

	
:

�ux =

���xuact� 1
V (u)

PV (u)

v(u)=1
xv(u)
rec

���
dmax

u = 1; :::; U

�vy =

���yvact� 1
U(v)

PU(v)

u(v)=1
yu(v)
rec

���
dmax

v = 1; :::; V
(17)

� global average errors, �x and �y:

�x = 1
dmax

s
1
U

PU

u=1

�
xuact �

PV (u)

v(u)=1
x
v(u)
rec

V (u)

�2
�y =

1
dmax

s
1
V

PV
v=1

�
yvact �

PU(v)

u(v)=1
y
u(v)
rec

U(v)

�2
(18)

where the subscripts rec and act refer to the estimated
and actual coordinates of the scatterer, respectively;
dmax = LS is the maximum error in defining the
coordinates of the center of the circular scatterer when
it is contained in the investigation domain, DS .
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Fig. 4. Reconstructed data versus actual data (Noiseless Case). (a)-(b) MLP-NN approach, (c)-(d) SVM-based approach. (a)-(c) xB
�0

and
(b)-(d) yB

�0

B. Numerical Assessment - Scenario 1

The first example is aimed at evaluating the pos-
sibility of locating the buried object starting from
the knowledge of the measured electric field and
assuming the knowledge of the soil characteristics
to be a-priori information about the geometry un-
der test. Consequently, the incident field is a known
quantity and the data array is defined as follows:
Escatt =

�
Etot(xr ; yrjxt; yt)�Einc(xr; yrjxt; yt);

r = 1; :::; R; t = 1; :::; T ]. In this context, the SVM
parameters have been chosen equal to

�
�2
�
xB

= 0:64

and
�
�2
�
yB

= 0:32.
Figure 4 shows the localization results for the ex-

amples making up the test set and obtained by using
the MLP-NN (Fig. 4(a)-(b)) and the SVM-based proce-
dure (Fig. 4(c)-(d)), respectively. As can be observed,
a good accuracy concerning the center location is
achieved along the two reference axes and for both the
MLP-NN and SVM-based approaches. In particular,
even if the detection accuracy decreases as the distance
from the air-soil interface increases, good localizations
are achieved in the whole domain, as confirmed by
the statistics shown in Table I. In particular, as far as
the scatterer depth estimation is concerned, the SVM

sharply reduces the error of the MLP-NN, reaching
an average error equal to < Ævy >SVM= 0:0584

(< Ævy >MLP= 0:1004 being the average error made
by the MLP-NN approach). Moreover, it should be
noted that the time required for the SVM training is
about one tenth of the one required by the MLP-NN,
whereas there is no significant difference between the
computation times taken by the two approaches for the
object localization (i.e, after the learning phase).

TABLE I

SCENARIO 1 (Noiseless Case). LOCAL ERROR STATISTICS

< Æ
u
x > maxfÆuxg minfÆuxg

MLP 0.0347 0.2098 7.14�10�4

SVM 0.0177 0.1243 7.30�10�5

< Æ
v
y
> max

�
Æ
v
y

	
min

�
Æ
v
y

	

MLP 0.1004 0.5631 5.31�10�3

SVM 0.0584 0.3487 7.44�10�4

In order to assess the robustness of the learning-
based retrieval strategies, a noisy environment has
been taken into account. For all the simulations, the
buried cylinder and the electromagnetic scenario are
unchanged and characterized by the same dielectric
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Fig. 5. Scenario 1 (Standard Validation). Local average errors of the MLP-NN and SVM-based procedures for different signal-to-noise
ratios: (a) SNR = 5 dB, (b) SNR = 10 dB, (c) SNR = 20 dB, (d) SNR = 35 dB, (e) SNR = 50 dB, and (f ) SNR = 100 dB

properties as during the training phase. The local aver-
age errors are given in Figure 5. For different signal-to-
noise ratios, the plots of �x and �y related to both the
MLP-NN and the SVM-based procedures are shown.
As expected, the estimation of the scatterer depth turns
out to be more difficult than the horizontal detection.
However, the performances guaranteed by the SVM
procedure generally outperform those achieved by the
MLP-NN approach. Concerning the dependence of
the reconstruction properties on the SNR value, the
scatterer is located quite correctly, and �x � 0:025

whatever the noisy case considered. Moreover, �y is
greater than 0:05 only in the interface regions (i.e.,
near the air-soil interface and at the bottom of the

investigation area). This behavior is not surprising, as
confirmed by the experimental results reported in [26],
where the problem of the pollution of the useful signal
due to the reflections of the air-ground interface is
clearly pointed out.

Another evaluation of the robustness of the proposed
approaches has also been obtained by carrying out
the so-called cross validation test. The two methods
have been trained with a noisy data set (i.e., a data
set whose samples are related to an assigned signal-
to-noise ratio SNRTraining) and tested with a test set
computed in a different noisy environment (SNRTest).
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(a) (b)

(c) (d)

Fig. 6. Scenario 1 (Cross Validation). Global average errors: (a) f�xgMLP�NN
, (b) f�xgSVM , (c) f�ygMLP�NN

, and (d)
f�ygSVM

Figure 6 shows a color-level representation (*) of the
global average errors for different values of signal-
to-noise ratio of the training and test sets ranging
from 5 dB to 100 dB. Figures 6(a)-(c) and 6(b)-(d)
refer to the MLP-NN approach and the SVM method,
respectively. As expected, the smallest values of the
global errors are reached when the same noisy en-
vironment is considered for both the training and
test data-sets. Otherwise, the SVM method always
outperforms the MLP-NN approach in the estimation
of the horizontal coordinate of the scatterer (�x). As
far as the depth of the scatterer location is concerned,
similar conclusions can be drawn for the region defined
by the following ranges: SNRTraining � 10 dB and

* The two pixels at the right-bottom angles of the plots indicate
the minimum and maximum values of the global errors.

SNRTest � 10 dB. Otherwise, the comparative study
does not provide any significant information.

C. Numerical Assessment - Scenario 2

In the second example, a more complex scenario
has been preliminarily considered. No information
about the soil is available and the problem data
are the measures of the anomalous field, E tot =

[Etot(xr ; yrjxt; yt); r = 1; :::; R; t = 1; :::; T ] . As
far as the choice of the hyperparameters is concerned,
the same value equal to 0:04 has been assumed for�
�2
�
xB

and for
�
�2
�
yB

.
As expected (Fig. 7), the performances of the

learning-by-examples strategies considerably reduce,
as compared with Scenario 1. However, the higher
effectiveness of the SVM-based procedure than that
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Fig. 7. Scenario 2 (Standard Validation). Local average errors of the MLP-NN and SVM-based procedures for different signal-to-noise
ratios in the range between SNR = 5 dB and SNR = 100 dB

of the MLP-NN method is confirmed. Starting from
SNR = 20 dB, the local error values turn out to be
smaller than 0:15. On the contrary, the performances
of the MLP-NN method strongly worsen, as indicated
by the dashed lines in Figure 7.

V. CONCLUSIONS

In this paper, two inductive methods for the detec-
tion of buried objects have been extensively compared.
Starting from an integral formulation of the scattering
equations, the buried-object localization has been re-
formulated as a regression problem and successively
solved by means of two learning-by-examples strate-
gies, namely, the MLP-NN approach and the SVM-
based procedure. The estimation of the effectiveness

of the proposed procedures has been carried out in
different test cases that have clearly confirmed the
higher robustness of the SVM-based approach in solv-
ing difficult approximation problems as compared with
traditional neural networks. Several scenarios have
been considered and the behaviors of the two inductive
models have been illustrated for different operating
conditions. The obtained results have demonstrated the
successful application of the SVM-based procedure to
solve inverse-scattering problems. Future work, cur-
rently under development, will be devoted to improving
the performances of the SVM-based procedure and to
determining customized kernel functions.
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Abstract
Learning theories and algorithms for both supervised and 
unsupervised Neural Networks (NNs) have already been 
accepted as relevant tools to cope with difficult problems 
based on the processing of experimental electromagnetic 
data. These kinds of problems are typically formulated as 
inverse problems. In this paper, in particular, the 
electrical signals under investigations derive from 
experimental electromyogram interference patterns 
measured on human subjects by means of non-invasive 
sensors (surface ElectroMyoGraphic, sEMG, data). The 
monitoring and the analysis of dynamic sEMG data 
reveals important information on muscles activity and 
can be used to clinicians for both preventing dramatic 
illness evolution and improving athletes performance. 
The paper proposes the use of Independent Component 
Analysis (ICA), an unsupervised learning technique, in 
order to process raw sEMG data by reducing the typical 
“cross-talk” effect on the electric interference pattern 
measured by the surface sensors. The ICA is 
implemented by means of a multi-layer NN scheme. 
Since the IC extraction is based on the assumption of 
stationarity of the involved sEMG recording, which is 
often inappropriate in the case of biomedical data, we 
also propose a technique for dealing with non-stationary 
recordings. The basic tool is the wavelet (time-
frequency) decomposition, that allows us to detect and 
analyse time-varying signals. An auto-associative NN 
that exploits wavelet coefficients as an input vector is 
also used as simple detector of non-stationarity based on 
a measure of reconstruction error. The proposed 
approach not only yields encouraging results to the 
problem at hand, but suggests a general approach to 
solve similar relevant problems in some other 
experimental applications of electromagnetics.    

1. Introduction 

Most relevant medical problems are today faced 
by processing (by visual inspection or some automatic 
means) electrical signals detected on the human body. 
Evaluation of patient populations often includes the use 
of ancillary tests for diagnosis and/or prognosis. Data 
sets collected from these diagnostic tests, such as the 
Electroencephalogram (EEG), the Electromyogram 
(EMG), the Electrocardiogram (ECG) and, more 
recently, functional Magnetic Resonance Imaging 
(fMRI), tend to be complex, large and high-dimensional. 
The trend towards digitization of the traditionally analog 

EEG, EMG and ECG signals has coincided with the 
development of computing power and multivariate signal 
processing techniques capable of manipulating and 
analyzing such large data sets [Akay M.,1997]. 

The use of Independent Component Analysis 
(ICA), an unsupervised learning technique which 
generalizes Principal Component Analysis (PCA), 
commonly implemented through Neural Network (NN) 
schemes, is proposed in this study to process 
experimental biomedical data. Applied to sEMG (surface 
ElectroMyoGraphy) data, ICA results in numerous 
spatially-independent patterns, each associated with a 
unique time-course, providing a way to separate different 
electrical signals coming from different muscle activities 
[Jung T.P., 2000]. In contrast to the variable nature of the 
surface EMG recorded from a single muscle in isolation, 
ICA of the sEMG from several muscles simultaneously 
allows the detection of highly reproducible components 
for example in the sEMG of the face and the throat 
during swallowing and in the sEMG of arm muscles 
during reaching movements [McKeown M.J., 2002]. 

The researches reported in the present study 
show important applications in the study of some 
neurological diseases, and in the monitoring of athletic 
activities for improving significantly the potential of 
athletes as well as the capabilities of normal subjects in 
daily actions, since it makes it possible, in principle, to 
enhance motor coordination. Also, musculo-skeletal 
disorders are the first cause of patient-physician 
encounters in the industrialized countries [IEEE 
Engineering in Medicine and Biology, 2001]. 

This paper is organized as follows. In Section 2 
the type of data coming from electrical activity of 
muscles will be discussed. In Section 3 we shall propose 
the McKeown idea of motion through integration of sub-
movements [McKeown M.J., 200b]. The computational 
model incorporating sub-movements will be presented in 
Section 4. Section 5 is devoted to the proposal of NN 
schemes to implement ICA. Section 6 will report the 
results achieved by processing the experimental data. 
The assumption of stationarity of the electrical signals 
will be relaxed in Section 7, where the wavelet approach 
will be proposed. Finally, some conclusions are drawn.  

2. ElectroMyographic Data 

When skeletal muscle fibers contract, they 
conduct electrical activity (action potentials, APs) that 
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can be measured by electrodes affixed to the surface of 
the skin above muscles [Akay M., 1997]. As the APs 
pass by the electrodes, spikes of electrical activity are 
observed and pulses of muscle fiber contractions are 
produced. Small functional groups of muscle fibers, 
termed motor units (MUs), contract synchronously, 
resulting in a motor unit action potential (MUAP). To 
sustain force, an MU is repeatedly activated by the 
central nervous system several times per second. The 
repetition, or average, firing rate is often between 5 and 
30 times per second (or faster). The electromyographic 
(EMG) signal is widely used as a suitable means to have 
access to physiological processes involved in producing 
joint movements. The information extracted from the 
EMG signals can be exploited in several different 
applications. The typical sensors used for EMG are 
needle (unipolar or bipolar) sensors. The experimental 
data here analysed come from non-invasive surface EMG 
sensors, that present the cross-talk effect, i.e., they detect 
electrical activities from several muscles simultaneously 
in action. 

3. Sensorimotor integration of sub-movements 

A growing body of evidence suggests 
movements which appear smooth to the naked eye are 
actually composed of the temporal and spatial 
superposition of discrete sub-movements precisely 
recruited and coordinated by the central nervous system 
[Harris C.M., 1998]. However, the spatial and temporal 
overlap of sub-movements has generally made it 
impossible, with the common computational tools 
available to the neuroscientist, to isolate the effects of 
individual sub-movements [Sejnowski T.J., 1998].  
 Extensive computational expertise is required to 
adequately interpret the data gleaned from the 
experiments. Detection of non-stationarity in the sEMG 
and kinematic variables is necessary to detect the onset 
of temporally overlapping sub-movements. We 
investigate the information-theoretic considerations of 
channel capacity and bandwidth as important 
determinants in the selection and sensorimotor 
integration of individual sub-movements.  

4. Computational Models incorporating Sub-
movements

Some computational approaches have attempted 
to model reaching movements as incorporating sub-
movements; however, they have not addressed many of 
the unanswered questions regarding the characteristics of 
sub-movements. Others have attempted to model 
reaching movements without considering sub-
movements at all. Smoothness, an empirical observation 
of motor movements, has often used as a cost function to 
optimise the models. Rather than define sub-movements 
on the basis of the velocity profiles, in this project the 
sub-movements are defined on the basis of muscular 
activity. Empirically, experienced physical therapists 
describe “efficiency” of motor movements as subjects 

progressively recover. At some stage of rehabilitation, 
people are able to mimic normal kinematics but still 
complain of muscle aching and fatigue due to excessive 
muscle co-contraction.  

Intuitively, sub-movements are groups of 
muscles that have the tendency to activate together 
following a common neural input. We assert that a sub-
movements is “hard-wired” by adulthood, in the sense 
that it may be encoded in the spinal cord as part of a 
Central Pattern Generator (CPG), and also partly reflect 
the anatomical distribution across several muscles of a 
single nerve root exiting the spinal cord. To suggest a 
computational model of sub-movements, we initially 
make the stationarity assumption. Since the EMG is an 
indirect measure of the neural command to the muscle, 
the Mutual Information (MI) can be used as a metric to 
infer the recordings from two EMG electrodes contain 
common neural input. M. McKeown has proposed using 
ICA for the analysis of sEMGs, demonstrating that the 
Independent Components (ICs) are more strongly 
coupled with ongoing brain rhythms (EEG) than the 
sEMGs recordings of individual muscles [McKeown 
M.J., 2000a]. The ICA model can be used to provide a 
useful starting point for the rigorous definition of a sub-
movement upon which more elaborate models can be 
created. Consider numerous simultaneous sEMG 
recordings deriving from several electrodes distributed 
over many muscles during a coordinated cortically-
controlled movement. If we model the sEMGs recorded 
from each electrode to be the linear superposition of 
activity from different group of muscles (possibly 
encoded with CPGs) that tend to co-activate, the, the goal 
is to estimate the cortical modulation of the commonly 
influenced muscles. A single sub-movement is defined as 
m(t) = U C(t), t=t0 tn, where m is a column vector, 
with mj representing the muscle electrical activity 
contributing to the jth electrode as a function of time, U 
is a stationary column vector representing the relative 
weighting that a given cortical command gives to the 
different muscle areas, and C(t) is the unknown scalar 
neural command over time. If several, e.g. p, sub-
movements during a complex movement are temporally 
(and spatially) overlapping, the linear combination of 
mk(tk) outputs M(t), the total muscle electrical activity 
over the duration of the whole movement and Mj is the 
electrical activity recorded from the jth electrode, Ck 
represents the relative activation of the kth sub-
movement by an independent cortical command, and the 
matrix Uj,k has as its columns, Uk, the vectors defining 
the different sub-movements. If we assume that for a 
given time-period, say T, a constant number of sub-
movements, c, are simultaneously active, thus, we have 
M = UC, where M is the matrix of the electrical activity, 
C is the matrix of presumed independent cortical 
commands, and U is a matrix defining the sub-
movements. The goal is then, given the recordings from 
the electrodes, and not knowing U, to estimate the 
different cortical influences, C. If the Ck are assumed to 
be independent, and c can be estimated, this is possible 
through the ICA. 
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5. Neural models of ICA sAx (2)

then the mixing and unmixing matrixes are related by the
following equation:

Independent Component Analysis (ICA) can 
easily be introduced as a straightforward evolution of the
well-known statistical technique referred to as Principal
Component Analysis (PCA). Nevertheless, it is also
possible to investigate the main ideas behind ICA from
the perspectives of both learning/neural systems and 
signal processing (blind source separation). A good 
definition of ICA can be found in [Lee T.W., 1998]: ICA
is a method for finding a linear non-orthogonal co-
ordinate system in any multivariate data. The directions
of the axes of this co-ordinate system are determined by
both the second and higher order statistics of the original
data. The goal is to perform a linear transformation
which makes the resulting variables as statistically 
independent from each other as possible. In contrast to 
correlation-based transformations such as PCA, ICA not
only decorrelates the signals, through second-order
statistics, but also reduces higher-order statistical 
dependencies. Blind source separation by ICA has 
received attention because of its potential applications in 
signal processing. Here, the goal is to recover
independent sources given only sensor observation that
are unknown linear mixtures of the latent (unobserved),
possibly independent, source signals. In parallel to blind
source separation researches, the ICA emerged within the
framework of unsupervised learning. In particular,
Linsker [Linsker R.] firstly proposed an algorithm based 
on information theory that was then used to maximize the
mutual information between the inputs and the outputs of
a NN. Each neuron of an “output” layer should be able to
encode features that are as statistically independent as 
possible from other neurons over another ensemble of 
“inputs”. The statistical independence of the outputs
implies that the multivariate probability density function
(pdf) of the outputs can be factorised as a product of 
marginal pdf’s. Bell and Sejnowski [Bell A.J., 1995],
derived stochastic gradient learning rules for achieving
the prescribed maximization. The same Authors put the
problem in terms of an information-theoretic framework
and demonstrated the separation and deconvolution of
linearly mixed sources [Bell A.J., 1996].

AW 1
.

(3)

5.1 The ICA based on the information maximization
by using a neural network approach 

Bell and Sejnowski derived a self-organizing
learning algorithm to maximize the information
transferred to a NN of non-linear units. The non-linear
transfer functions pick up the higher-order moments of 
the statistical distribution of the input data, and, 
moreover, they are able to reduce the redundancy in the
output data. Higher-order methods use information on
the distribution of x that is not contained in the
covariance matrix. This fact becomes meaningful when 
the distribution of x is non Gaussian, since it is possible
to assume that the covariance matrix of a zero mean
Gaussian variable, contains the whole information
carried by this variable. By defining the differential
entropy for a continuous random variable x as: 

dxxfxfxH xx ln (4)

when fx(x) is the probability density function of the
considered variable. The conditional differential entropy
is defined as follows:

dxdyxyfxyfxfxyH yyx |ln||
(5)

It represents to the variations that occur in the
information carried by y when x is observed. Finally the
mutual information between two variables x and y is
given by:

xyHyHyxHxHyxMI ||, .
(6)

This quantity measures the information that is
added to x when y is observed, or to y when x is
observed. The mutual information of (x, y) zeroes, when 
and only when the variables are independent. The Bell-
Sejnowski approach is based on the use of a NN able to
minimize the mutual information between the input x and 
the output y of the neural network where y  are the 
independent components. If we suppose to have noise-
free input data, y can be obtained from x by a 
deterministic manner: in this case, H(y|x) assumes its 
lowest value (- ). The problem in this case is that the 
density functions of the unknown components cannot be 
computed, and therefore the H(y|x)  is difficult to be
estimated. This drawback can be overcame by taking into
account that, if y can be computed from x by an 
invertible continuous  deterministic mapping, the
maximization of M1(x|y)  corresponds to maximize the
entropy of the outputs. In the NN case, we have to
maximize the H(y) with respect to the network
parameters w. If we have just one input x and one output
y, if the mapping from x to y is defined as y=g(x), and if

Among the various approaches proposed in the
literature to implement the ICA, the approach used by
McKeown [Lee T.W., 1999] is the algorithm developed
by Bell and Sejnowski [Bell A.J., 1995] which is based
on an Infomax NN, where a self-organizing algorithm is 
used to maximize the information transferred in a
network of non-linear units. The general framework of
ICA is now simply described as the blind separation
problem, typically introduced by the “cocktail party
problem”: we have n different sources sj  (that is, the
speakers i=1,…,n) and m different linear mixtures xj (that 
is, the microphones j=1,…,m). By referring to x as the 
matrix of the observed signals, and as s the matrix of the
independent components, the matrix W, called unmixing
matrix, satisfies the following property:

xWs (1)

or, by defining the mixing matrix A as: 
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g( ) has a unique inverse, then the probability density
function of y can be computed as:

)(
1

xf
x
y

yf xy
.

(7)

The differential entropy of y is given by:

.))(ln(ln

ln))][ln(

xfE
dx
yE

dyyfyffEyH

x

yyy
(8)

To maximize the differential entropy, we need
to maximize just the first term. This maximization is
carried out by a stochastic gradient ascent learning
rule, where the update step can be computed as:

x
y

wx
y

x
y

ww
Hw

1
ln

.

(9)

If g( )  becomes the logistic transfer function, of
the scaled and translated input: 

01
1

wxwe
y

(10)

the update term can be rewritten as the update step for
the weight w: 

yx
w

w 211 (11)

and the update step for the bias weight can be computed
as:

yw 210 .
(12)

In the most general multivariate case, we have:

NxxxNyyy xxxfJyyyf
NN

,...,,,...,, 21,...,,
1

21,...,, 2121
(13)

where J, is the transformation Jacobian. The update step 
for the matrix weight becomes:

TT xyWW 21 (14)

where 1  is a unit column vector and the update step for 
the bias weight vector can be computed as: 

yw 210 .
(15)

The input data are measurements of N different 
input sources, and, therefore, they can be referred to as a 
matrix x, where the i-th column represents the i-th 
sample of the each source. The inputs of the neural 
network are h=W.x s  and xs are called sphered data. The 
sphered data are computed by zero-meaning the input 
data x and by sphering these data with the following 
matrix operation: 

0xSx
s

(16)

][0 xExx (17)

1

00 ][2 TxxES
(18)

where S is called sphering matrix, and it is used to speed
the convergence. The infomax NN estimate the matrix y,
where the i-th column represents the i-th sample of the 

each independent component. The architecture of the
neural network is depicted in Figure 1. 

Figure 1- Architecture of the Infomax Neural Network 

5.2  ICA-NN scheme based on contrast functions

The Infomax NN described in the previous
Section has some limitations, both on the kind of source 
signals pdf and in the computational load. In this Section
we will describe a different NN scheme to extract ICs 
that is most suitable to solve our problem. The proposed
NN is also useful to cope with time-varying mixtures
[Koivunen V., 2001].

The goal of ICA is to make a transform into a
signal space in which the signals are statistically 
independent. Sometimes independence can be attained, 
especially in blind source separation in which the 
original signals are linear mixtures of independent source 
components and the goal of ICA is to invert the unknown 
mixing operation. Even when independence is not 
possible, the ICA transformation produces useful 
component signals that are non-Gaussian. The ICA
allows us to approximately take into account all higher-
order correlations and make the signals truly
independent. Higher order statistics are needed to
determine ICA expansion. In the framework of NNs, the
ICA structure is that of a linear network that after
learning is of the purely feed-forward type. However, 
during learning non-linearity must be used for separating 
sources. We assume here that we have a set of noisy
linear mixtures representing the observed signal. By
denoting with xk = [xk (1), … , xk(M)]T the M-
dimensional kth data vector corresponding to the 
measurements carried out at discrete point, we can write 
the ICA signal model in the vector form:

xk = Ask + nk. (19)

Here sk is the source vector consisting of the 
independent signal components (sources), sk(i), i=1, N, A
= [a(1), …, a(N)] is a constant MxN “mixing matrix”
whose columns a(i) are the basis vectors of ICA, and nk
denotes possible corrupting noise, often omitted, because
it is not possible to distinguish noise from source signals. 
The source separation aim is to determine sk, knowing 
only xk.  Several assumptions must be made in ICA, in
particular, only one of the source signals is allowed to 
have a Gaussian marginal distribution. Typically, the 
basis vectors a(i) are normalized to unit length and
arranged according to the powers E [sk (i) 2] in a similar
way as in standard PCA. In PCA, the data model has the
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same form, but the coefficient sk(i) are required to have 
sequentially maximal powers (variances), and the basis 
vectors a(i) are constrained to be mutually orthonormal.
Usually, the basis vectors of ICA are not mutually
orthogonal, in order to better characterize the data. The 
ICA allows to determine a sparse encoding of the input
vector, where histograms show a high probability of a 
large response as well as of no response at all. The code
increases first-order redundancy (histograms) by
decreasing higher-order redundancy. This redundancy
transformation can be described in terms of kurtosis, that
is defined by (E[.] denotes expectation): 

k[s(i) 4] = E[s(i) 4]-3[E[s(i)2]] 2. (20)

The separation capability of various algorithms
depends on the kurtosis [Ref, Kar]. It is possible to 
realize the estimation procedure by using a feed-forward 
scheme. The inputs of the NN are the M components of 
the vector x. In the hidden layer, we have N nodes. The
first layer of weights carry out a MxN whitening (and
compression) of the input vector, After this, the sources
are separated by means of an orthonormal matrix (WTW
= I N) that the NN should learn. The ICA network, firstly
proposed in [Karhunen J., 1997] is shown in Figure 2. 
Non-linearity (i.e., hyperbolic tangent function)  must be 
used in learning the separating matrix. The learning
algorithm here used is described in [Karhunen J., 1997]
and can be summarized as follows: whitening of the 
original data x by v = D –1/2 E T x, where E is the matrix

of the eigenvectors of x and D is the diagonal matrix of 
eigenvalues that produces a starting point for an iterative 
process that finds vector W. The learning rule is: 

W (k+1) = E [v g(W(k) T v) – g (W(k)T v) W(k)], (21)

where g(.) is the hyperbolic tangent. After finding W, the 
IC’s can be found by linear combination y = WT v and 
the mixing matrix A by A = E D 1/2 W.

The use of ICA network allows us to determine
the ICA separating matrix.

6. Experimental EMG data processing results

The ICA-NN scheme proposed in the previous
Section has been used to extract ICs from sEMG
recordings. In what follows, we will report some results 
that have been achieved in this study. The following 
Table reports the correspondence between the
placements of sEMG electrodes and the related muscles.
Figure 3 reports an example of the signal acquired during
about 2 s of exercise (corresponding to pointing the
monitor of a computer with alternatively the right and the 
left hand). Figure 4 reports the time-course of the 6th ICs,
that appears to be mostly correlated with the 4th sEMG 
sensor.

y = WT V x
Components of y as independent 
as possible 

Weight matrix Q minimizes the 
MSE error 
E ||x - Q y||2

WT Orthonormal
(WT W = I) separation matrix
that the network should learn 

Fig. 2- The Neural Network feed-forward scheme for computing ICA.

1 SPec
Superior Pectoralis 

9 DBic
Distal Bicep 

2 IPec
Inferior Pectoralis 

10 PTri
Proximal Tricep 

3 LPec
Lateral Pectoralis 

11 DTri
Distal Tricep 

4 LDel
Lateral Deltoid 

12 PWEx
Proximal Wrist
Extensors

5 ADel
Anterior Deltoid 

13 DWEx
Distal Wrist Extensors 

6 MTrp
Medial Trapezius 

14 PWFl
Proximal Wrist Flexors 

7 LTrp
Lateral Trapezius 

15 DWFl
Distal Wrist Flexors 

8 PBic
Proximal Bicep

16 APB
Abductor Pollicus Brevis

Table 1: Correspondence between the electrode locations 
and the investigated muscles
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Each ICs consists of a temporally independent
waveform and a spatial distribution over the electrodes. 
The spatial distributions of the electrodes is shown on a 
cartoon body. The diagram has been obtained by making
use of the MATLAB Toolbox for Electrophysiological
Data Analysis, Version 3.2 (S. Makeig, et al, available
online, http://www.cnl.salk.edu/scott/ica.html).

The electrodes are positioned according to Table 
1. The colouring of each electrodes is proportional to the 
particular IC contributes to the electrode’s raw recording. 
In the example, it is shown that the 6th ICs mostly
contributes to the 4th electrode reading. Note the 
unmixing of the related components, basically activating 
just one electrode. Figures 6 to 8 reports the same signals
for the 16th electrode and the 16th ICs. In this case, the 
16th component mainly activates the same electrode. 

Measuring the ICs of sEMG will provide a more
reliable and robust measure of motor performance than 

interpreting the activity of each individual muscles in 
isolation [Jung T.P., 2001].

There are practical advantages of separating the 
sEMG signals into temporally ICs, namely, the ICs are
less susceptible to changes in position of the electrodes, 
and therefore more suitable for serially monitoring
performance; the ICs are, in addition, more likely to 
correspond to brain activations [Jung T.P., 2001], by
looking for common cortical influences in the muscle
activity.

As previously mentioned, the experiment
described in the present Section have been carried out by
using a Neural Network scheme to implement ICA. It is,
of course, possible, to use different techniques to
implement ICA, however, it could be demonstrated that 
the use of a NN approach is equivalent to other 
approaches, like maximum likelihood estimation. The 
NN scheme is most suitable to achieve hardware
implementation.

Figure 3: Raw EMG recording from the 4th electrode 
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Figure 4: Time-course of the 6th extracted  ICs

Figure 5: Spatial distribution of the activations corresponding to the 6th ICs

18 ACES JOURNAL, VOL. 18, NO. 2, JULY 2003, SI: NEURAL NETWORK APPLICATIONS IN ELECTROMAGNETICS



Figure 6: Raw EMG recording from the 16th electrode 

Figure 7: Time-course of the 16th extracted  ICs
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Figure 8: Spatial distribution of the activations corresponding to the 16th ICs

7. Treatment of non-stationarity The sequence h (k) is the so-called refinement
filter. The wavelet basis functions are constructed by 
dyadic dilation (index j) and translation (index k) of the 
mother wavelet: 

The extraction of ICs is based on the assumption
of stationarity among different trials of the same
experiment. In the practice, for such sEMG data, this is a
hardly acceptable assumption. We would like now to 
propose a time-frequency approach to the analysis of
sEMG data (or their ICs counterparts) that allows to cope 
with signal non-stationarity. The sEMG is indeed non-
stationary as its statistical properties change over time.
The MUAPs (Motor Unit Action Potentials) are
transients that exist for a short period of time: for that 
reason, time-frequency methods are useful to
characterize the localized frequency content of each 
MUAP. The use of a time-frequency representation also 
allows, in principle, to detect the onset of sub-
movements, according to what we explained in the
previous Sections. We have carried out the wavelet 
analysis in both the time domain of sEMG and of the
ICs, in order to show that this kind of analysis should be
carried out on the original space (the IC space is 
generated by already making a stationarity assumption).

)2/(2 2/. kx jj
jk

(24)

The sequences h and g can be selected such that 
2)( Zjkjk constitutes an orthonormal basis of L2, the

space of finite energy functions. This orthogonality 
permits the wavelet coefficients jkj fk ,d  and 

the approximation coefficients jkj fk ,)(c  of any

function f(x) to be obtained by inner product with the 
corresponding basis functions. In practice, the
decomposition is only carried out over a finite number of 
scales J. The wavelet transform with a depth J is then 
given by:

J

j Zk Zk
JkJjkj kckdxf

1
)()()( .

(25)

The wavelet transform also guarantees to
possibility of not specifying in advance the key signal
features and the optimal basis functions needed to project 
the signal in order to highlight the features. An 
orthogonal wavelet transform is characterized by two 
functions:

In the present study, we shall use the WT in
order to derive a set of features that can reveal singularity
of the signal (corresponding to the onset of activity of
single muscles) and to detect the precursors of the non-
stationarity. A set of features derived from the inspection
of the scale-dilation plane have been used as input vector 
of an auto-associative NN that is able to alarm the user 
about modification of the energy content of the spectrum.
The features are extracted by considering the 
correspondence between singularities of a function and
local maxima of its wavelet transform. A singularity
corresponds to pairs of modulus maxima across several
scales. Feature extraction is accomplished by the 
computation of the singularity degree (peakiness), i.e., 

1) the scaling function, 

Zk
kxkhx )2()(2 (22)

and 2) its associated wavelet: 

Zk
kxkgx )2()(2 (23)

where g(k) is a suitable weighting sequence (function). 
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the local Lipschitz regularity, which is estimated from
the wavelet coefficients decay [Mallat S., 1992, Arkidis
N.S., 2002].

Figures 9 and 10 reports the amplitude sEMG
signal for channel 4th, and the wavelet transform obtained
by using Daubechies 1 and 4 mother wavelet. The
modulus maxima plots have been drawn and a
thresholding operator is used in order to reduce the
number of effective wavelet coefficients needed to 
represent the original functions. Once the features have
been extracted by inspecting the modulus maxima plot,
we can use the corresponding nonzero coefficients in 
order to predict the raising of non stationarity. A MLP
NN with an input layer of corresponding size acts as a
bottleneck network (the output size is the same of the 
input one, while the hidden layer size is considerably
reduced). The NN fed by the wavelet coefficients
computes the estimation of the corresponding wavelet 
coefficients at the output: a reconstruction error is 
computed. If the error overcomes a prescribed threshold
level, the non-stationarity signal is activated and the
following trials are used to compute a novel matrix (ICs)
weights. The use of a MLP-NN is not obliged to ensure
accuracy or success in the reconstruction; for example, a 

different compression scheme could be used, like the 
Singular Value Decomposition. The bottleneck layer is, 
in principle, able to work as principal component
extractor, but the idea here is to build a compressed
representation which is deliberately redundant. The
reconstruction error could be sub-optimal with respect to 
different schemes, but optimality comes at the expenses
of quite low fault tolerance. Finally, the MLP NN can be 
implemented easily in a FPGA hardware chip. A typical
case of non-stationarity is the onset of fatigue. The
Figure 11 describes how the activation intervals [Micera
S., 2001] of the muscles during the exercise cycle are 
determined starting from the ICs. 

The standard approach to determine on-off
activation patterns is to process each epoch by means of
a double threshold statistical detector [Bonato P., 1998, 
Balestra G., 2001] to obtain the muscle detection 
intervals. We have compared the results achieved by our 
method with the one described and we have found an 
improvement of about 20% in the performance.

Figure 9: The wavelet transform of the 4th sEMG channel (mother wavelet, Daubechies 1): the raw 
data recording (top), the plot of the absolute values of the WT coefficients (middle) and the modulus
maxima extracted (bottom). A thresholding is applied to suppress WM that are not of interest. White 
colour corresponds to high value of the coefficients. If one uses a wavelet with one vanishing moment,
then the bottom plot corresponds to the maxima of the smoothed first-order derivative of the function. 
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Figure 10: The wavelet transform of the 4th sEMG channel (mother wavelet, Daubechies 4): the raw
data recording (top), the plot of the absolute values of the WT coefficients (middle) and the modulus
maxima extracted (bottom). White colour corresponds to high value of the coefficients. A wavelet 
function with 4 vanishing moments is used. 

Figure 11: The determination of the activation intervals (the wavelet envelope is used). 

22 ACES JOURNAL, VOL. 18, NO. 2, JULY 2003, SI: NEURAL NETWORK APPLICATIONS IN ELECTROMAGNETICS



8. Conclusion 

The paper proposed the use of some NNs to 
process experimental electrical data derived from non-
invasive sEMG experiments. The original (raw) data 
have been analysed by a neural IC processor aiming to 
obtain signals that can be easily correlated to cortical 
activity. The assumption of stationarity is then relaxed in 
order to cope with time-varying mixing systems, more 
adherent to the biophysical problem at hand. An auto-
associative NN exploits the features obtained by wavelet 
transforming the raw data for making a quick and 
efficient prediction of non-stationarity. The results we 
have shown can be considered just as preliminary to 
solve the difficult problem. 
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Abstract : In this paper, we present a new approach for 
modeling the high-frequency effects of embedded passives 
in multilayer printed circuits, utilizing state space equations 
or equivalent circuit together with neural network 
techniques. In this approach, the neural network based 
model structure is trained using full wave electromagnetic 
(EM) data. The resulting embedded passive models are 
accurate and fast, can be used in both frequency/time 
domain simulators. Examples of embedded resistor and 
capacitor models demonstrate that the combined model can 
accurately represent EM behavior in microwave/RF circuit 
design. In high-level circuit design, we applied our 
combined EM based neural models for signal integrity 
analysis and design of multilayer circuit to illustrate that the 
geometrical parameters can be continuously adjusted by 
using neural network techniques. Optimization and Monte-
Carlo analysis are performed showing that the combined 
models can be efficiently used in place of computationally 
intensive EM models of embedded passives to speed up 
circuit design. 

I. INTRODUCTION 

The drive in the electronics industry for manufacturibility-
driven design and time-to-market demands powerful and 
efficient computer-aided design (CAD) techniques. As the 
signal frequency increase, the dimensions of embedded 
passives in multilayer circuits become a significant fraction 
of signal wavelength. The conventional time/frequency 
domain electrical models for the components are not 
accurate anymore. As EM effects play an important role in 
microwave/RF circuit design, models with continuous 
physical/geometrical information must include EM effects 
[1]. Furthermore, the need of optimization and statistical 
analysis taking into account process variations and 
manufacturing tolerances in the components makes it 
extremely important that the component models should be 
accurate and fast so that the design solutions can be 
achieved feasibly and reliably. 
 
Recently, artificial neural network (ANN) modeling 
approach has been studied for microwave modeling and 
design [2-4]. The neural models can be as fast as empirical 
models and as accurate as detailed physics models. 

 
For high-level circuit design, the component models should 
be continuously varied both with frequency, geometrical 
and/or electrical parameters. Therefore, modeling 
techniques that can provide such continuous variations are 
essential and ANN models exactly meet for these 
requirements. They are continuous, multi-dimensional and 

can easily handle nonlinearities in problem behaviours. 
Neural network techniques have been widely used to model 
variety of microwave device/circuits such as transmission 
line components [5], bends [6], vias [7], spiral inductors [8], 
and FET devices [5, 9].   
 
Embedded passives represent an emerging technology area 
that has the potential for increased reliability, improved 
electrical performance, size shrinkage, and reduced cost. 
The conventional approach for circuit and system design 
requires equivalent circuits to capture the response of 
embedded passives [10]. But the equivalent circuit method 
may not be accurate enough to reflect high frequency EM 
effects. Recently, neural network techniques have been 
introduced to model frequency behavior of embedded 
passives [1]. However, such ANN models, trained to learn 
S-parameters data, cannot be used directly into time-domain 
circuit simulation and optimization. Our target was to 
develop passive ANN based models from EM data that can 
be used directly in both time and frequency domain circuit 
design. 
 
In this paper, we present a novel approach to model high-
frequency effects of embedded passives in multilayer 
printed circuits based on combined equivalent circuit or 
state space theory together with neural networks. Our 
combined model is a hierarchical structure with two levels. 
In the lower level, a neural network maps the 
geometrical/physical parameters of the passive component 
into coefficient matrices of state equations or lumped 
component values of a given equivalent circuit. In the 
higher level, we export the coefficient matrices into the state 
space equation or component values into the equivalent 
circuit to compute the EM response in either frequency or 
time domain circuit design. The accurate and fast ANN 
based embedded passive models are trained from full wave 
EM data. Our method combines existing modeling 
techniques and recent neural network approaches to 
efficiently perform simulation and optimization. Based on 
neural network techniques, geometrical/physical 
parameters become design variables to improve circuit 
performance and reduce design/manufacture cost.   
 
In Section II, the problem for neural modeling of embedded 
passives is summarized. In Section III, we present the 
combined equivalent circuit and neural network (EC-NN) 
modeling approach. The combined State space equation and 
neural network (SSE-NN) modeling approach is presented 
in section IV. The method is demonstrated by embedded 
resistor and capacitor examples in section V. Signal 
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integrity of multilayer circuit, which includes SSE-NN 
models of embedded passives, is used to demonstrate the 
application of the model for circuit simulation. Optimization 
and Monte-Carlo analysis are performed showing that the 
geometry inputs can be continuously adjustable by using 
our combined models and the model evaluation is much 
faster than computationally intensive physical/EM model of 
passives in microwave design. 

II. Embedded Passives Neural Modeling: Problem 
Statement 

Let x represent a Nx-vector containing parameters of a 
microwave device/circuit, e.g., length and width of an 
embedded resistor, or thickness and dielectric constant of an 
embedded capacitor. Let ŷ  represent a ŷN -vector 
containing the responses of the component under 
consideration, e.g., Y- or S-parameters. The physics/EM 
relationship between ŷ  and x can be highly nonlinear and 
multi-dimensional. The theoretical model for this 
relationship may not be available, or theory may be too 
complicated to implement, or the theoretical model may be 
computationally too intensive for online microwave design 
and repetitive optimization (e.g., 3D full-wave EM analysis 
inside a Monte-Carlo statistical design loop). We aim to 
develop a fast and accurate neural model by 
teaching/training a neural network to learn the embedded 
passive problem. Let the neural network model be defined 
as 

 ( )wxy ,ANNfˆ =                                  (1) 

where w represents the parameters inside the neural network 
also called as the weight vector. The most widely used 
neural network structure is the feedforward multilayer 
perceptrons (MLP) [2, 5, 7] where neurons are grouped into 
layers, and each neuron in a layer acts as a smooth switch 
that produces a response between low and high state 
according the weighted responses of all neurons from the 
preceding layer. The neural network structure allows the 
ability to represent multidimensional nonlinear input/output 
mappings accurately, and to evaluate ŷ  from x quickly. To 
enable a neural network to represent a specific microwave x 
- ŷ  relationship, we first train the neural network to learn 
the microwave data pairs (xi, di) where xi is a sample of x, di 
is a vector representing the ŷ  data generated from 
microwave simulation or measurement under given sample 
xi, and i is the sample index. For training purpose, we define 
an error function )E(w  as 
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where dki is the kth element of di, fANN k (xi ,w) is the kth 
output of the neural network for input sample xi and Tr is an 
index set of all training samples. The objective of neural 
network training is to adjust neural network connection 

weights w such that E(w) is minimized. A trained neural 
model can then be used online during microwave design 
stage providing fast model evaluation replacing original 
slow model from EM simulators. The benefit of the neural 
model is especially significant when the model is 
repetitively used in design processed such as optimization, 
Monte-Carlo analysis, and yield optimization [11]. 
However, MLP models, trained to learn S-parameters data, 
cannot be used directly into time-domain circuit simulation 
and optimization. We aim to develop a fast and accurate 
combined model, which uses equivalent circuit and neural 
network, through EM data to learn the embedded passive 
problem.  
 
Let gp = {R, L, C} be a Np-vector containing the values of 
lumped components of a given equivalent circuit topology Tp. 
We use a neural network to represent gp as  

),( wxg ANNp f=    (3) 

and then the combined model can be defined as 

( ) ( )( )( )ωω ,,ˆ wxy ANNpf fTf=   (4) 

 ( ) ( )( )( )t,,fTft ANNpt wxy =    (5) 

where ω is the angular frequency, )(ˆ ωy  and y(t) are the 
combined model response in frequency and time domain 
respectively, e.g., )(ˆ ωy can be S- or Y-parameters and y(t) 
can be the currents i(t) and voltages v(t) of a two port 
embedded passive. Therefore, a combined model realizes 
the x - /yŷ  relationship through a MLP and then equivalent 
circuit.  

III. Combined Equivalent Circuit and Neural 
Network (EC-NN) Modeling Approach 

A. Introduction of EC-NN Model 

A number of fast equivalent circuit models of embedded 
passive components are available. In [12, 13], two methods 
are presented for developing equivalent circuit using 
optimization methods. Synthesize lumped element 
equivalent circuit from rational function is presented in 
[10]. Although we can get equivalent circuit in many ways 
from measured or simulated EM data, an equivalent circuit 
only represents a fixed embedded passive structure. If the 
embedded passive’s geometrical/physical parameters need 
to be changed, we have to re-generate a new equivalent 
circuit to match it. 
 
In this paper, EC-NN model exploits neural network 
features to accurately predict element values of equivalent 
circuit based on geometrical/physical parameters. EC-NN 
model, motivated by [14], is a hierarchical model with two 
levels. At the lower level, a neural model maps the 
geometrical/physical parameters of the passive component 
into lumped component values of a given equivalent circuit. 
At the higher level, we supply these values into the 
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equivalent circuit to compute the EM response in frequency 
or time domain circuit design. 

B. EC-NN Model development 

We utilize an existing equivalent circuit and combine it with 
a MLP together to make the model automatically as 
function of geometrical/physical parameters. The EM data 
of embedded passives, which consists of 
geometrical/physical parameters as inputs and 
real/imaginary parts of S-parameters as outputs, are 
generated by simulation or measurement. 
 
To create data for neural network training, we extract the 
lumped component values based on the existing equivalent 
circuit through a set of measured/simulated sample pairs of 
EM data. Considering some measurement noise in the EM 
data, the parameter extraction criterion for each set of input 
geometry is defined as an optimization objective function as 

 ( )( )∑∑
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This objective function shows that adjusting the lumped 
component values gp to map the S-parameters of high-
frequency response of the equivalent circuit best match the 
EM data in the interested frequency bandwidth. Due to the 
complexity of the error function, iterative algorithms are 
used to explore the lumped component values. The 
optimization algorithms we used are gradient and quasi-
Newton methods. We collected the lumped component 
values versus geometrical/physical parameters as neural 
network training data. We teach/train a MLP to learn the 
relationships between equivalent circuit component values 
and geometry. Let gpi be a vector representing gp data under 
given sample xi. The error function is defined as 
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where gpki is the kth element of gpi. After training, the MLP 
can accuratly calculate the component values varied with 
continous geometry for the given equivalent circuit. The last 
step is to export the EC-NN model into a user defined 
simulation format, e.g., SPICE sub-circuit netlist format. 
The EC-NN model includes two sections. The first section 
is a set of mathematical equations to represent the internal 
structure of neural network that calculate the lumped 
component values based on different geometry/physical 
inputs. The second section is the updated equivalent circuit, 
which receives the element values from MLP outputs. In a 
circuit simulator, the EC-NN model will be feed by 
geometrical/physical parameters as inputs. The MLP 
automatically calculates the element values in a user defined 
equivalent circuit and supply the values into the equivalent 
circuit to represent EM behavior in frequency and time 
domain. 
 
 

IV. Combined State Space Equation and Neural 
Network (SSE-NN) Modeling Approach 

A. Formulation in Frequency-Domain 

Topology of equivalent circuit is a sensitive factor of the 
combined model accuracy and a given topology may not be 
suitable for different geometry and frequency range. In 
order to develop an accurate model, which can be 
represented more efficiently in both time and frequency 
domain simulation, we proposed the combined SSE-NN 
modeling approach. 
 
EM data of an embedded passive can be collected 
depending on different geometrical/physical parameters 
from full wave EM simulation/measurement. For a given 
frequency range, we can use transfer functions (polynomial 
rational functions) to represent the electrical behavior (e.g., 
admittance Y matrix) of the embedded passives. For any 
two-port embedded passives, the following three transfer 
functions are adequate to represent Y11, Y21, and Y22, 
respectively. 
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where s = jω, and n is the number of effective order of the 
passive. Let us define a real coefficient vector, as gv = {a0, 
a1, … an-1; b0, b1, … bn; c0, c1, … cn; d0, d1, … dn}. Using 
space-mapping concept [6], a relationship exists between 
the coefficients and geometrical/physical parameters. 
However, the relationship would be highly nonlinear and 
too complicated. Therefore, we utilize neural network 
features to learn the highly nonlinear relationship between 
the coefficients and geometrical/physical parameters. 
 
In the coefficient parameter extraction procedure, we used 
gradient and quasi-Newton optimization algorithms to 
enforce H(s) to best match EM data. The objective function 
was defined as 

∑∑
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3
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vg

       (9) 

and we use a neural network to learn the relationship 
between coefficient vector gv and EM input parameters x,  

 ),( wxg ANNv f= .   (10) 

We used the center point of input space as the initial point 
to optimize the coefficient vector values.  
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B. State Space Equation for Time-Domain Simulation  

Using coefficients gv in (8), we can define  
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where x(t) is a vector of internal states, u and y are vectors 
of the input and output signals, e.g., input voltages and 
output currents of the embedded passive respectively. Our 
combined model can be then implemented into a time 
domain circuit simulator using the state space equation (12) 
or into a frequency domain circuit simulator using (8).  

C. Stability and passivity 

To assure stability requirement in time domain simulation, 
the poles of the combined SSE-NN model need to be on left 
half plane (LHP) [15]. To enforce all the poles of the 
transfer functions of embedded passives to be into LHP, we 
added a set of constraints in the parameter extraction as 

Peven-order=∏
=

T

i
iP

1
2 ; where P2i=(s2+k2is+k3i) and T = n/2, if 

k2i>0 & k3i>0; all of real and complex roots in LHP. 

Podd-order= ∏
=

⋅
T

i
iPP

1
21 ; where P1=(s +k1) and T = (n-1)/2, if 

k1>0 , k2i>0 & k3i>0; all of real and complex roots in LHP.  
 
where k ={k1, k21, k31, … k2T, k3T} is a vector of 
components that lead to elements in the matrix A. For 
example, in a 3rd order combined model, the denominator 
coefficients are defined as 310 kka ⋅= ; 3211 kkka +⋅= ; and 

212 kka += , respectively.  
 
The criterion for passivity can be defined if the eigenvalues 
of G = Re{Y} are positive [15, 16]. This condition can be 
assured if 22112112 yyyy ≤ , where the yjk (j,k = 1,2) are real 
parts of the Y matrix elements. It has been used as an 

optimization constraint in the gv parameter extraction 
procedure. 
 
The above criterions are added in the parameter extraction 
to ensure that the rational functions not only accurately 
represent EM behavior but also enforce the time domain 
model to be stable and passive.  

D. Structure of the Combined SSE-NN Model  

Our combined SSE-NN model is a hierarchical structure 
with two levels. At the lower level, a neural network maps 
the geometrical/physical parameters into gv vectors. At the 
higher level, we insert the coefficient vectors into the state 
equations to compute the EM response in frequency or time 
domain simulation. Fig. 1 shows the structure of the 
combined model for both EC-NN and SSE-NN. 
 
For circuit CAD tools in time domain, we export our SSE-
NN into SPICE sub-circuit format. The lower neural 
network will be described by a set of mathematical 
equations, which calculate the coefficient values based on 
different geometrical/physical parameters and pass them 
into higher level. The equivalent circuit can be generated 
from (11) and (12). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Structure of the combined EC-NN and SSE-NN 
models illustrating the model development process and the 
testing phase. E.C. and S.S.E. represent equivalent circuit 
and state space equation respectively. 
 

E. Combined SSE-NN Model Development 

EM data has component’s geometrical/physical parameters 
and frequency as inputs and S-parameters as outputs. The 
next phase is parameter extraction, which is carried out for 
each geometry over the entire frequency range. The 
objective here is to determine the coefficient values that 
best fit the original EM data. Different geometrical 
parameter values and their corresponding coefficient values 
are then re-arranged into neural network training data. A 3-

Y-/S-parameters from combined model 

EM 
Data 

E.C or S.S.E 

Geometrical/Physical Input Parameters xi

Y-/S-parameters

Neural 
Network

   Test 

Refined 
Training 

Neural 
Network 
Training 

Parameter 
extraction 

Vector 
gp or gv 

28 ACES JOURNAL, VOL. 18, NO. 2, JULY 2003, SI: NEURAL NETWORK APPLICATIONS IN ELECTROMAGNETICS



 

 

layer MLP neural network is trained using quasi-Newton 
algorithm in NeuroModeler [17]. For any given geometrical 
dimensions of the component within the range of the 
training data, the trained MLP can predict the elements of 
vector gv. We combine the state equation with the neural 
model using our hierarchical setup to obtain the overall 
combined model. The inputs to the combined model are the 
geometrical dimensions of the embedded component. The 
intermediate outputs of the model are the corresponding 
coefficient vector values. The final outputs of the combined 
model are component’s EM behavior, e.g., S-parameters. In 
the test phase, an independent set of test data containing S-
parameters versus new geometrical parameter values (i.e., 
never seen during training) is generated using the EM 
simulator. This data is used to test the accuracy of the 
combined model. In the final phase, we formulate the 
combined model into a set of mathematical expressions to 
be directly used to carry out high-level circuit design in 
time-domain simulators. 

V. Examples  

In order to demonstrate the proposed modeling approach, 
we developed embedded resistors and capacitors in EC-NN 
and SSE-NN models. We applied the SSE-NN models in 
signal integrity of multilayer circuit design to efficiently 
perform optimization and statistic analysis.  

A. Embedded Resistor 

Accurate modeling of EM behaviors of embedded passive 
used in high-speed multilayer printed circuit board is 
important for efficient high-speed circuit design. In this 
example, a combined EC-NN model of an embedded 
resistor shown in Fig. 2 is developed. The EM data of the 
embedded resistor is automatically generated from EM 
simulation of Sonnet [18]. Length (L) and width (W) are 
used as inputs. The outputs are real and imaginary parts of 
S11 and S21 in the EM data. Fig. 3 shows the structure of the 
EC-NN model for the embedded resistor, which includes an 
equivalent circuit and a 3-layer MLP neural network.   
 
 
 
 
 
 
 
 
 
Figure 2. 3-D physical structure of embedded resistor. 
 
The neural network is trained to learn the relationship about 
the input geometry and the four lumped component values 
(R1, R2, C1, C2). After the MLP is well trained, it can 
accurately calculate the component values based on any 
within geometrical/physical parameters for the given 
equivalent circuit even the parameters was never used in 
training. Testing is performed by comparing the outputs of 
the overall EC-NN model and EM data, shown in Fig. 4(a). 

Because the neural network can provide the accurate 
component values continuously varied with geometry for 
the equivalent circuit, the combined EC-NN model can be 
in place of the computationally intensive physical/EM model 
to efficiently provide EM effects in optimization and statistic 
design. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. The structure of the combined EC-NN model for 
embedded resistors. The equivalent circuit is user defined. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(a) 

 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 
Figure 4. Comparison of real part of S21 of embedded resistor 
EC-NN model outputs (a) or SSE-NN model outputs (b) and 
independent EM data which was never used in training. Curves 
A are generated based on W = 1.346 and L = 0.279 mm. 
Curves B are generated based on W = 0.99 and L = 0.254 mm. 
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The test error of combined EC-NN model is 5.8%. Further 
improvement of accuracy requires new topology of 
equivalent circuit. Instead of using human based trial and 
error process, we use the proposed SSE-NN modeling 
method. As the equivalent circuit for the embedded resistor 
uses three capacitors, a 3rd order transfer function can 
express the behavior of the embedded resistor in the SSE-
NN model. 
 
Table I shows the model test error, which we achieved, 
based on various orders of state equations in SSE-NN 
modeling development. The test error demonstrated that the 
optimal number of internal states is three. In 4th order 
model, the additional internal state could not play an 
important role in the EM behavior representation. However, 
more coefficients are needed in transfer function, more 
freedom in parameter extraction and neural network 
training. 
 
The best results are obtained with the 3rd order SSE-NN model. 
The agreement between 3rd order SSE-NN model and EM 
data is achieved even though the independent testing data 
was never seen in training, shown in Fig. 4(b).  To verify 
stability and passivity, the three LHP poles of the embedded 
resistor model are -1.4411 and -0.0144 ± j0.0539, and the 
passivity condition is satisfied as shown in Fig. 5. 
 
Table I. Comparison of resistor SSE-NN model with different 

order formulations. 
 

Order Test Error 
2nd  1.59% 
3rd  1.12% 
4th  2.38% 

 
 
 
 
 
 
 
 
 
 
 
Figure 5. The 3rd order SSE-NN model in frequency-
domain simulation and yjk (j,k = 1,2) are real part of the Y 
matrix elements. The W is swept from 0.952mm to 
1.397mm. 
 

B. Embedded Square Capacitor  

The physical structure of an embedded square capacitor is 
shown in Fig. 6.  The input parameters include length (L), 
capacitor dielectric constant (εrcap), and frequency. Real and 
imaginary parts of S-parameters are generated from 3D full 
wave EM simulator, Ansoft-HFSS [19]. Fig. 7 shows the 

equivalent circuit used in our combined EC-NN model for 
the embedded capacitor.   
 
 
 

 
 
 
 

 
 
Figure 6. 3-D physical layout of embedded capacitor. 
 
The neural network is trained to learn the embedded 
capacitor inputs and lumped component values. For 
example, L1=0.035nH, C1= 1.135pF, C2=0.537pF when 
L=0.736mm and εrcap=17.5. The S-parameter comparison 
between the EC-NN model and original EM data is shown 
in Fig. 8(a). Table II illustrates the different test error, 
which we achieved, based on varied order formulas in SSE-
NN modeling development.  
 
The optimal transfer function is 3rd order to represent the 
EM based capacitor. Testing is performed by comparing the 
outputs of combined SSE-NN models and EM data. The 
agreement between our 3rd order SSE-NN model and EM 
data is obtained even though the independent testing data 
was never seen in training, shown in Fig. 8(b).   
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. The combined EC-NN model structure for 
embedded capacitor. The equivalent circuit is user defined. 
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(b) 
 
Figure 8. Comparison of real part of S21 of embedded 
capacitor EC-NN model outputs (a) or SSE-NN model outputs 
(b) and independent EM data. Curves A and B are generated 
based on inputs L = 0.736mm and L = 0.787mm respectively. 

Table II. Comparison of capacitor SSE-NN model with 
different order formulations. 

 

Order Test Error 
2nd 2.20% 
3rd 1.67% 
4th 2.57% 

3. Signal Integrity Example 

To further confirm the validity of the proposed combined 
model in time-domain, we plugged the above resistor and 
square capacitor SSE-NN models into a time-domain 
simulator, i.e., Hspice [20] to perform circuit simulation and 
optimization including geometrical and physical parameters 
of the embedded passives. The models help to achieve a 
convenient link between EM behaviors and high-level 
circuit design, improving design accuracy and efficiency. In 
this paper, we use signal integrity of multilayer circuit as 
shown in Fig. 9, where the length and width of embedded 
resistor and length and dielectric constant of embedded 
capacitor are adjustable.   
 
 
 
 
 
 
 
 

Figure 9. Three dimensional illustration of signal integrity 
of multilayer circuit with embedded resistor and capacitor.  
 
In optimization process, whenever optimization changes the 
geometry, the corresponding combined models are called 
with the new geometrical dimensions as inputs. From output 
comparison, as shown in Fig. 10, the output curves have 
been improved in terms of distortion and time delay.   
 

 
 
 
 
 
 
 
 
 
 
 

Figure 10. Comparison of signal from input buffer, and output 
signals before and after combined SSE-NN models 
optimization. 
 
The optimization used 136 iterations including repetitive 
evaluation of combined SSE-NN models to reach the 
criteria of the optimization goal and the total computation 
time based on our combined SSE-NN models is 
3.75minutes. The results show that the combined models 
provide possibility to adjust the geometry of embedded 
passives in high-frequency circuit design. Because we used 
neural models to learn the nonlinear relationship between 
geometry and coefficient vectors, the geometry becomes 
variable in circuit design.  

 
We also performed statistical analysis of the signal integrity 
circuit with our SSE-NN models in a three-coupled 
transmission line circuit as shown in Fig. 11. Monte-Carlo 
analysis of signal integrity curves with geometrical 
parameters as statistical design variables are shown in Fig. 
12. The total simulation time for 500 output curves based on 
the geometry tolerance around the nominal design center is 
8.24 minutes using proposed neural models by Hspice. 
However, the required time of Ansoft-HFSS for 500 
different geometry is more than 8 hours. The proposed 
combined models retain the advantages of neural network 
learning, speed, and accuracy, and provide EM effects in 
high-level circuit design. 
 
 

 
 
 
 
 
 
 
 
 
Figure 11. The three coupled transmision line circuit. 
                    : EM capacitor SSE-NN model;       
                    : EM resistor SSE-NN model 
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Figure 12. Output of Monte-Carlo analysis of the 3-coupled 
transmission line example using SSE-NN models of 
embedded passives. Here 20 randomly chosen curves are 
shown out of 500 simulations of the circuit of Fig. 11. 
 

VI. Conclusions 

In this paper, we presented a new method for modeling 
embedded passives suitable for both frequency and time 
domain simulation. The combined models, which utilize 
neural network and equivalent circuit or state space 
equation techniques, are developed from EM data. 
 
The accuracy of the combined EC-NN model will depend 
on the equivalent circuit in the combined model for the 
entire frequency range. If the accurate and reliable 
equivalent circuit is available, EC-NN will be generated 
efficiently, because the number of lumped elements in 
equivalent circuit is less than the number of coefficient 
values in state space equations. 
 
In combined SSE-NN model development, we 
automatically generate an accurate solution for modeling 
embedded passives, avoiding human based trial and error 
process in conventional approach. The combined SSE-NN 
modeling technique acts as a bridge to combine slow 
physical EM model and fast equivalent circuit model to 
together. In high-speed circuit design, the combined neural 
models allow geometrical/physical parameters to become 
design variables in circuit simulation. Therefore, 
manufacture geometrical tolerance can be taken into 
account in circuit design efficiently and accurately. 
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Abstract— This paper presents a multiclass, multilabel im-
plementation of Least Squares Suppor t Vector Machines (LS-
SVM) for DOA estimation in a CDMA system. For any
estimation or classification system the algorithm’s capabilities
and performance must be evaluated. This paper includes a vast
ensemble of data suppor ting the machine learning based DOA
estimation algorithm. Accurateper formancecharacter ization of
the algor ithm is required to justify the results and prove that
multiclassmachinelearning methodscan besuccessfully applied
to wireless communication problems. The learning algorithm
presented in this paper includes steps for generating statistics
on the multiclass evaluation path. The error statistics provide
a confidence level of the classification accuracy.

I . INTRODUCTION

Machine learning research has largely been devoted to
binary and multiclass problems relating to data mining, text
categorization, and pattern recognition. Recently, machine
learning techniques have been applied to various problems
relating to cellular communications, notably spread spectrum
receiver design, channel equalization, and adaptive beam-
forming with direction of arrival estimation (DOA). In our
research we present a machine learning based approach for
DOA estimation in a CDMA communication system [1].
The DOA estimates are used in adaptive beamforming for
interference suppression, a critical component in cellular
systems. Interferencesuppression reduces themultipleaccess
interference(MAI) which lowers therequired transmit power.
The interference suppression capability directly in�uences
the cellular system capacity, i.e., thenumber of active mobile
subscribers per cell.

Beamforming, tracking, and DOA estimation are current
research topics with various technical approaches. Least
mean square estimation, Kalman filtering, and neural net-
works [2],[3],[4], have been successfully applied to these

Sandia is a multiprogram laboratory operated by Sandia Corporation, a
Lockheed Martin Company, for the United States Department of Energy
under Contract DE-AC04-94AL85000.

problems. Many approaches have been developed for calcu-
lating the DOA� three techniques based on signal subspace
decomposition are ESPRIT, MUSIC, and Root-MUSIC [1].

Neural networks have been successfully applied to the
problem of DOA estimation and adaptive beamforming in
[4], [5], [6]. New machine learning techniques, such as
support vector machines (SVM) and boosting [7], perform
exceptionally well in multiclass problems and new op-
timization techniques are published regularly. These new
machine learning techniques have the potential to exceed
the performance of the neural network algorithms relating
to communication applications.

The machine learning methods presented in this paper
include subspace based estimation applied to the sample
covariance matrix of the received signal. The one-vs-one
multiclass LS-SVM algorithm uses both training data and
received data to generate the DOA estimates. The end result
is an efficient approach for estimating the DOAs in CDMA
cellular architecture [1].

This paper is organized as follows. Section II presents
the system models for an adaptive antenna array CDMA
systems. A review of binary and multiclass machine learning
methods is presented in Section III, along with background
information on the LS-SVM algorithm. Section IV includes
a brief review of classic DOA estimation algorithms and
the elements of a machine learning based DOA estimation
algorithm. Section V presents a one-vs-one multiclass LS-
SVM algorithm for DOA estimation and simulation results
are presented in Section VI. Section VII includes a compar-
ison between standard DOA estimation algorithms and our
machine learning based algorithm.

I I. SYSTEM MODEL S

This section includes an overview of system models for
the received signal and adaptive antenna arrays designs.
All notation is described below and is consistently used
throughout the paper.
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A. Received Signal at Antenna Array output

The baseband signal, �� ���, from the antenna array is

�� ��� � �� ��� � �� ��� � (1)

� �
�
� ���� � ���� � � � � ����

�
(2)

� ���� �
�
� ����� ������ � � � ����������

��
(3)

� ��� �
�
�� ��� �� ��� � � � �� ���

��
(4)

�� ��� �
�

�	� ����
�	
 ��� 
 for path �
 (5)

where �� ��� is the received signal of mobile �
 � is a
 � � array steering vector for  antenna elements and
� transmission paths, � ��� is the � � � received base-
band signal at the output of the matched filter
 � ���� ��
� ����� � � � ����������

��
is the  � � steering

vector, �� �
���

��� ��
 � is the spacing between antenna

elements, � is the carrier frequency, � is the velocity of
propagation, ��is the direction of arrival of the � signal,
�	� ��� is the transmit signal power from mobile �
 ��
 is the
attenuation due to shadowing from path �
 	
 ��� is the data
stream of mobile �
 and �� ��� is the additive noise vector.

To ease the complexity of the notation the terms relative
to the multiple paths are combined as

�
 �
��

���

� ���� �
�

� (6)

In [8] �
 is defined as the spatial signature of the antenna
array to the �	� mobile.

I I I . SUPPORT VECTOR MACHINES - BACKGROUND

A major machine learning application, pattern classifi-
cation, observes input data and applies classification rules
to generate a binary or multiclass labels. In the binary
case, a classification function is estimated using input/output
training pairs,��

�
� � � � � � � �
 with unknown probability
distribution, � ��
 ��,

���
���
 � � � 
 ���
��� � �
� � �
 (7)

�
 � ���
��� � (8)

The estimated classification function maps the input to a
binary output, � 	 �� � ���
��� � The system is first
trained with the given input/output data pairs then the test
data, taken from the same probability distribution � ��
 ��
 is
applied to the classification function. For the multiclass case
� � �� where� is a finite set of real numbers and� is the
sizeof themulticlass label set. In multiclass classification the
objective is to estimate the function which maps the input
data to a finite set of output labels � 	 �� � �

�
��
�
� ��

Support Vector Machines (SVMs) were originally de-
signed for the binary classification problem. Much like
all machine learning algorithms SVMs find a classification
function that separates data classes, with the largest margin,

using a hyperplane . The data points near the optimal hyper-
plane are the “support vectors” . SVMs are a nonparametric
machine learning algorithm with thecapability of controlling
the capacity through the support vectors.

A. Kernel Functions

The kernel based SVM maps the input space into a higher
dimensional feature, �
 space via a nonlinear mapping


 	 �
� � � (9)

� �� 
��� � (10)

Thedatadoesnot havethesamedimensionality as thefeature
space since the mapping process is to a non-unique general-
ized surface [9]. The dimension of the feature space is not as
important as the complexity of the classification functions.
For example, in the input space, separating the input/output
pairs may require a nonlinear separating function, but in a
higher dimension feature space the input/output pairs may be
separated with a linear hyperplane. The nonlinear mapping
function � ��
� is related to kernel, � ��
�
� by


 ��� �� ��
� � � ��
�
� � (11)

Four popular kernel functions are the linear kernel, poly-
nomial kernel, radial basis function (RBF), and multilayer
perceptrons (MLP).

linear, � ��
�
� � � � �
 (12)

polynomial, � ��
�
� � ��� � �
����
� (13)

RBF, � ��
�
� � ��

�
�	�� �
	

�

��

�
(14)

MLP, � ��
�
� � ���� �� �� � �
���� (15)

The performance of each kernel function varies with the
characteristics of the input data. Refer to [10] for more
information on feature spaces and kernel methods.

B. Binary Classification

In binary classification systems the machine learning algo-
rithm generate the output labels with a hyperplane separation
where �
 � ���
 �� represents the classification “ label” of the
input vector � . The input sequence and a set of training
labels are represented as ��

�
�

�

�� 
 �
 � ���
��� � If the

two classes are linearly separable in the input space then the
hyperplane is defined as	�

��	 � �
	 is a weight vector
perpendicular to the separating hyperplane, 	 is a bias that
shifts the hyperplane parallel to itself. If the input space is
projected into a higher dimensional feature space then the
hyperplane becomes	�� ����	 � ��

The SVM algorithm is based on the hyperplane definition
[11],

�

�
	
�
� ��
��	

�

 �
 � � �
 � � � 
�� (16)
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Given the training sets in ��� the binary support vector
machine classifier is defined as

� ��� � ����

	
��


��

�
�
� ��
�
� � 	



� (17)

Thenon-zero��
� are “support values” and thecorresponding
data points, �

 are the “support vectors” . Quadratic pro-
gramming is one method of solving for the ��
� and 	 in the
standard SVM algorithm.

C. Multiclass Classification

For themulticlass problem themachine learning algorithm
produces estimates with multiple hyperplane separations.
The set of input vectors and training labels is defined as
��

�



 �

�����

����� 
 �
 � �

�
 �
 � ��
 � � � 
�� 
 � is the index
of the training pattern and � is the number of classes. There
exist many SVM approachesto multiclassclassification prob-
lem. Two primary multiclass techniques are one-vs-one and
one-vs-rest. One-vs-one applies SVMs to selected pairs of
classes. For � distinct classes there are � �����

� hyperplanes
that separate the classes. The one-vs-rest SVM technique
generates � hyperplanes that separate each distinct class
from the ensemble of the rest. In this paper we only consider
the one-vs-one multiclass SVM.

Platt, et.al., [12] introduced the decision directed acyclic
graph (DDAG) and a Vapnik-Chervonenkis (VC) analysis
of the margins. The DDAG technique is based on ������

�
classifiers for a � class problem, one node for each pair of
classes. In [12] it is proved that maximizing the margins at
each node of the DDAG will minimize the generalization
error. The performance benefit of the DDAG architecture
is realized when the �	� classifier is selected at the �	� !	�

node and the !	� class is eliminated. Refer to Figure 1 for a
diagram of a four class DDAG.

Not 4Not 1

1 vs 4

1 vs 32 vs 4

Not 3 Not 4,
Not 1

Not 2

3 vs 4 2 vs 3 1 vs 2

4 123

Input

Fig. 1. Four class DDAG for one-vs-one multiclass LS-SVM based DOA
estimation.

D. Least Squares SVM

Suykens, et.al., [13] introduced the LS-SVM which is
based on the SVM classifier, refer to equation ���� � The LS-
SVM classifier is generated from the optimization problem:

���
�����

��� �	
"� �
�

�
			� �

�

�
#

��


��

"�
 
 (18)

# and "
 are the regularization and error variables, respec-
tively. The minimization in ����includes the constraints

�
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 � � �
 � � � 
 �
 (19)

The LS-SVM includes one universal parameter, #
 that
regulates thecomplexity of themachine learning model. This
parameter is applied to the data in the feature space, the
output of the kernel function. A small value of # minimizes
the model complexity, while a large value of # promotes
exact fitting to the training points. The error variable "

allows misclassifications for overlapping distributions [14].

The Lagrangian of equation ���� is defined as
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where �
 are Lagrangian multipliers that can either be
positive or negative. The conditions of optimality are
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A linear system can be constructed from equations ���� �
���� [13],
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By eliminating weight vector 	 and the error variable "
 the
linear system is reduced to:
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(29)
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In the linear systemsdefined in ��������� thesupport values
�
 are proportional to the errors at the data points. In the
standard SVM case many of these support values are zero,
but most of the least squares support values are non-zero. In
[13] a conjugate gradient method is proposed for finding 	
and �
 which are required for the SVM classifier in equation
���� �

IV. ALGORITHMS FOR DOA ESTIMATION

Two primary, classic methods for subspace based DOA
estimation exist in literature, Multiple Signal Classification
(MUSIC) [15] and Estimation of Signal Parameters Via Ro-
tational Invariance Techniques (ESPRIT) [16]. The MUSIC
algorithm is based on the noise subspace and ESPRIT is
based on the signal subspace.

Many computational techniques exist for working through
limitations of DOA estimation techniques, but currently no
techniques exist for a system level approach to accurately
estimating the DOAs at the base station. A number of lim-
itations relating to popular DOA estimation techniques are:
1) the signal subspace dimension is not known, many papers
assumethat it is. Thedifferencesbetween thecovariancema-
trix and the sample covariance matrix add to the uncertainty,
2) searching all possible angles to determine the maximum
response of the MUSIC algorithm, 3) evaluating the Root-
MUSIC polynomial on the unit circle, 4) multiple eigen
decompositions for ESPRIT, 5) computational complexity for
maximum likelihood method. The capabilities, in terms of
resolution and computational requirements, of these standard
DOA estimation algorithms serve as the benchmark for the
machine learning based DOA estimation. Refer to Section
VII for a comparison between standard DOA estimation
algorithms and the one-vs-one multiclass LS-SVM DOA
estimation algorithm.

A. Machine Learning for DOA Estimation

To estimate the antenna array response, �� ���

��� � ���� �
�
�, we must know � ���� and ��
. The contin-

uous pilot signal, included in cdma2000, can be used in
estimating ��
. This must be done for each resolvable path,
i.e., �
 �

�
��
 
 ��
 
 � � � 
 ��


�
. Estimating � ��� ��

� ���� 
 � ���� 
 � � � 
 � ����
�

requires information on
the DOA.

The process of DOA estimation is to monitor the outputs
of  antenna elements and predict the angle of arrival of �
signals, �'. The output matrix from the antenna elements
is

� �
�
� ���� � ���� � � � � ����

�
(30)

� ���� �
�
� ����� ������ � � � ����������

��



and the vector of incident signals is �� ��
��
 ��
 � � � 
 ��

�
. With a training process,

the learning algorithms generate DOA estimates,
��� �

�
���
 ���
 � � � 
���

�
, based on the responses from

the antenna elements, � ����.
For the proposed machine learning technique there is a

trade-off between the accuracy of the DOA estimation and
antenna array beamwidth. An increase in DOA estimation
accuracy translates into a smaller beamwidth and a reduction
in MAI. Therefore the accuracy in DOA estimation directly
in�uences the minimum required power transmitted by the
mobile. There should be a balance between computing effort
and reduction in MAI.

V. LS-SVM DDAG BASED DOA ESTIMATI ON

ALGORITHM

In this paper we propose a multiclass SVM algorithm
trained with projection vectors generated from the signal
subspaceeigenvectors and thesamplecovariancematrix. The
output labels from the SVM system are the DOA estimates.

The one-vs-one multiclass LS-SVM DDAG technique for
DOA estimation is trained for � DOA classes. The DDAG
tree is initialized with ������

� nodes. Therefore ������
�

one-vs-one LS-SVMs are trained to generated the hyper-
planes with maximum margin. For each class the training
vectors, ��
 are generated from the eigenvectors spanning
the signal subspace. The number of classes is dependent
upon on the antenna sectoring and required resolution. For a
CDMA system the desired interference suppression dictates
the fixed beamwidth. CDMA offers this �exibility since
the all mobiles use the same carrier frequency. For FDMA
systems a narrow beamwidth is desired, since frequency
reuse determines the capacity of a cellular system.

The signal subspace eigenvectors of the received signal
covariance matrix are required for accurate DOA estimation.
For a CDMA system with adaptive antenna arrays the
covariance matrix of the received signal is


�� � �
�
���

�
�

�
� (31)

In our machine learning based DOA estimation algorithm
the principal eigenvectors must be calculated. Eigen decom-
position (ED) is the standard computational approach for
calculating the eigenvalues and eigenvectors of a the co-
variance matrix. ED is a computationally intense technique,
faster algorithms such as PASTd [17] have been developed
for real-time processing applications.

For the LS-SVM based approach to DOA estimation
the output of the receiver is used to calculate the sample
covariance matrix �
�� of the input data signal �� ��� 


�
�� �
�

�

��

�������

�� ��� �
�
� ��� � (32)

The dimension of the observation matrix is  �(, ( is
ideal sample size (window length), and the dimension of the
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TABLE I

PROJECTION COEFFICIENTS FOR MACHINE LEARNING BASED POWER

CONTROL

Projection Coefficients
��
�

��
�

��
�

1 0.17+i�0.86 -0.20-i�0.54 0.00+i�0.86
2 0.66+i�0.05 -0.82+i�0.14 0.73-i�0.55
3 0.04-i�0.73 0.28+i�0.96 -1.01-i�0.58
4 -1.08-i�0.50 1.04-i�0.37 0.06+i�1.05
5 -0.60+i�0.92 -0.56-i�1.01 0.72-i�0.61
6 0.60+i�0.74 -0.87+i�0.64 -0.92-i�0.51
7 0.72-i�0.56 0.63+i�0.62 -0.03+i�0.76
8 -0.52-i�0.78 0.51-i�0.44 0.45-i�0.42

sample covariance matrix is  � . The principal eigen-
vectors, ��
 � � � 
��
 are calculated via eigen decomposition
(ED) or subspace tracking techniques. Each eigenvector is
used to calculate a covariance matrix, �
��� 
 � � � 


�
��� �

The algorithm requires only the set of estimated eigenvec-
tors from the sample covariance matrix, which are used to
generate projection coefficients for the classification process.
The projection vectors are generated from the projection
of �
��� 
 �  $  
 onto the primary eigenvector of
the signal subspace. In the training phase the hyperplanes
at each DDAG node are constructed with these projection
vectors. In the testing phase �
��� is generated from the
received signal �� ��� and the principal eigenvectors. Then
the projection coefficients for the �	� !	� node of the DDAG
are computed with dot products of �
��� and the �	� !	�

training eigenvectors. This new set of projection vectors is
testing with the �	� !	� hyperplane generated during the
training phase. The DOA labels are then assigned based on
the DDAG evaluation path. A similar projection coefficient
technique has been successfully applied to a multiclass SVM
facial recognition problem presented in [18]. Table I includes
three sets of projection vectors, each set corresponds to a
different DOA. From areview of thedata it is evident that the
classes arenot linearly separable. Thedata must be projected
to a higher dimension feature space and tested against the
separating hyperplane.

The following algorithm for the one-vs-onemulticlass LS-
SVM implementation for DOA estimation includes prepro-
cessing, training, and testing steps. Specifically, thealgorithm
requires two sets of projection vectors for each DDAG node.
This allows for automatic MSE calculations at each step of
the DDAG evaluation path, thus providing a unique method
for error control and validation.

� Preprocessing for SVM Training

1) Generate the�� training signal vectors for the
� LS-SVM classes,  is the number of antenna
elements, � is the number of samples.

2) Generate the � sample covariance matrices,
�
with ( samples from the �� data vector.

3) Calculate the signal eigenvector, 
 from each of

the � sample covariance matrices.
4) Calculate the  � � projection vectors, ��
 for

each of the� classes. The ensemble of projection
vectors consists of �

�
samples.

5) Store the projection vectors for the training phase
and the eigenvectors for the testing phase.

� LS-SVM Training

1) With the � projection vectors train the ������
�

nodes with the one-vs-one LS-SVM algorithm.
2) Store the LS-SVM variables, �
 and 	 from equa-

tion ���� 
 which define the hyperplane separation
for each DDAG node.

� Preprocessing for SVM Testing

1) Acquire  � � input signal from antenna array,
this signal has unknown DOAs.

2) Generate the sample covariance matrix with (
samples from the  �� data vector.

3) Calculate the eigenvectors for the signal subspace
and the noise subspace.

4) Generate the covariance matrices for each eigen-
vector.

� LS-SVM Testing for the � ! DDAG Node
1) Calculate TWO �� projection vectors with the

desired eigenvector covariance matrix and the �	�

and !	� eigenvectors from the training phase.
2) Test both projection vectors against the LS-SVM

hyperplane for the � ! node. This requires two
separate LS-SVM testing cycles, one with the
projection vector from the �	� eigenvector and one
with the projection vector from the !	� eigenvec-
tor.

3) Calculate the mean value of the two LS-SVM
output vectors (labels). Select the mean value that
is closest to a decision boundary, � or �� Compare
this value to the label definition at the node, then
select the proper label.

4) Repeat process for the next DDAG node in the
evaluation path or declare the final DOA label.

� Error Control

1) Review the MSE calculations for the DDAG eval-
uation path.

2) Apply error control and validation measures to
classify the label as either an accurate DOA es-
timate or as NOISE.

VI . SIMUL ATION RESULTS

Two simulation plots are included below. Each simulation
consists of a four class LS-SVM DDAG system. Figure 2
showsresults for a ten degree rangeper class. Figure3 shows
results for a one degree range per class.

The antenna array includes eight elements, therefore the
training and test signals were � � � vectors. The training
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and test signals are the complex outputs from the antenna
array. The received complex signal is modeled with a zero
mean normal distribution with unit variance� the additive
noise includes a zero mean distribution with a 0.2 variance.
This combination of signal and noise power translates into a
�$) �%*�

The system training consists of six DDAG nodes for the
four DOA classes. Both the training and test signalsconsisted
of ���� samples and the window length of the sample
covariance matrix was set to five. Therefore the training
and test sets were composed of ��� samples of each � � �
projection vector.

To completely test the LS-SVM DDAG system’s capa-
bilities the simulation were automated to test a wide range
of DOAs. The DOA test set consisting of signals ranging
from three degrees before the first DOA class to three
degrees after the last DOA class. Thus there were forty-
six test signals for Figure 2 and fourteen test signals for
Figure 3. As can been seen from the two plots the LS-SVM
DDAG DOA estimation algorithm is extremely accurate. No
misclassifications were logged. Testing shows that the LS-
SVM DDAG system accurately classifies the DOAs for any
desired number of classes and DOA separations from one
degree to twenty degrees.

10 15 20 25 30 35 40 45 50 55 60
DOAs

ML DOA Estimates

DOA Test Signals

Fig. 2. LS-SVM for DOA estimation, four classes with ten degree
separation between each.

A. Decision Grids

The decision grid (DG) technique was developed to track
the DDAG evaluation path and generate statistics to char-
acterize the confidence level of the DOA classifications.
The theoretical DG (T-DG) is a technique we developed to
quantify errors and add insight into the robustness of the LS-
SVM DDAG architecture. The T-DG is a deterministic �
grid for DDAGswith a relatively small number of classesand
small DOA rangebetween classes. Theelements of theT-DG

10 15 20 25 30
DOAs

ML DOA Estimates

DOA Test Signals

Fig. 3. LS-SVM for DOA estimation, four classes with one degree
separation between each.

represent the deterministic values of the two LS-SVM labels
at each DDAG level, the deterministic values are referred
to as “ theoretical decision statistics” . Designing T-DGs for
DDAGs with three to five classes and DOA ranges up to
five degrees between classes is straight forward. The T-DGs
are not deterministic for large DOA ranges, i.e. for a DOA
range of ten degrees between classes empirical results show
that the DDAG evaluation path is unpredictable. The large
DOA ranges lead to uncertainty in the evaluation path, even
though the test DOA is classified correctly.

Empirical decision grids (E-DG) are automatically gener-
ated in the LS-SVM DDAG DOA estimation algorithm. The
E-DGstabulatethemean of theLS-SVM output label vectors
at each DDAG nodeand level, themean valuesare referred to
as “decision statistics” . The unique design of this algorithm
includes testing the input data against two hyperplanes at
the �	� !	� node. With this approach the two output vectors
at each node are compared to one another. In a noise-free
environment, with perfect classification, the two label vectors
would be binary opposites, i.e. one label vector would be all
��� and theother label vector would beall ���� This technique
enables computation of theoretical mean square errors and
empirical mean square errors, refer to Section VI-B.

Table II includes a standard T-DG and Tables III and IV
include E-DGs for a three class DDAG with a two degree
DOA range per class. The two levels of a three class DDAG
are equivalent to the first two levels of a four class DDAG,
refer to Figure 1. Table II includes the possible evaluation
paths of this three class DDAG. The nodes for each DOA
evaluation path are included for the first and second DDAG
level. For example, DOA 1 has an evaluation path of Node
1 vs 3 at Level 1 and Node 1 vs 2 at Level 2. In Table III
E-DG presents the decision statistics for a signal subspace
eigenvector� in Table IV the second E-DG presents the
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TABLE II

THEORETIC DECISION GRID FOR A DDAG SYSTEM WITH 3 CLASSES

AND A 2 DEGREE DOA RANGE.

DOAs
Class 1 Class 2 Class 3

T-DG, Level 1 1 2 3 4 5
Node 1vs3 1vs3 1vs3 1vs3 1vs3

Label 0 0 0 0.5 1 1
Label 1 1 1 0.5 0 0

T-DG, Level 2
Node 1vs2 1vs2 1vs2�2vs3 2vs3 2vs3

Label 0 0 0.5 0�1 0.5 1
Label 1 1 0.5 1�0 0.5 0

TABLE III

EMPIRICAL DECISION GRID FOR A SIGNAL EIGENVECTOR

DOAs
Signal Data Class 1 Class 2 Class 3

E-DG, Level 1 1 2 3 4 5
Node 1vs3 1vs3 1vs3 1vs3 1vs3

Label 0 0 0 0.032 0.952 1
Label 1 1 1 0.576 0 0

E-DG, Level 2
Node 1vs2 1vs2 1vs2�2vs3 2vs3 2vs3

Label 0 0 0.176 1 0.808 1
Label 1 1 0.816 0 0.496 0

TABLE IV

EMPIRICAL DECISION GRID FOR A NOISE EIGENVECTOR

DOAs
Noise Data Class 1 Class 2 Class 3

E-DG, Level 1 1 2 3 4 5
Node 1vs3 1vs3 1vs3 1vs3 1vs3

Label 0 0.328 0.376 0.304 0.352 0.384
Label 1 0.752 0.744 0.712 0.768 0.776

E-DG, Level 2
Node 1vs2 1vs2 1vs2�2vs3 2vs3 2vs3

Label 0 0.232 0.256 0.144 0.136 0.184
Label 1 0.896 0.904 0.952 0.944 0.944

decision statistics for a noise subspace eigenvector.

B. Theoretical and Empirical MSEs

The difficulty in tracking the performance of the LS-SVM
DDAG DOA estimation algorithm is due to the numerous
DDAG evaluation paths. For many DDAGs the evaluation
paths can be determined based on the input data and the
class definitions. How can decision statistics be applied to
performance characterization?

The two primary performance measures for the LS-SVM
DDAG are the theoretical MSE (T-MSE) and the empirical
MSE (E-MSE). Both MSE performance measures are based
on MSE calculations with T-DGs and E-DGs. The T-MSE
is a MSE calculation between the corresponding elements of
the T-DG and theE-DG. This is ameasure of the algorithm’s

empirical decision statistics in relation to the “ theoretical”
decision statistics. For example, the T-MSE for a 3 class
DDAG is calculated with the T-DG and E-DG presented in
Tables II and III. The T-MSE for Class 2 is calculated as

Level 1 Level 2
Label 0 Label 1 Label 0 Label 1

����� ������� ����� ������� ��� ��� ��� ���
�

Unlike the T-MSE, the E-MSE is a technique that allows
for real-time error tracking with only the empirical deci-
sion statistics. The E-MSE uses only the E-DGs and the
differences between the two LS-SVM decision statistics at
each node in the evaluation path. This is a measure of the
empirical classification accuracy achieved at each DDAG
node. The E-MSE for a 3 class DDAG is calculated with
only the E-DG presented in Table III. The MSE for Class 2,
Level 1 is �������� ������ � ��� � ����� and the MSE for
Class 2, Level 2 is ���� �� � ��� � �.

C. Misclassifications vs. Gross Errors

Two secondary performance measures for the LS-SVM
DDAG are misclassifications and gross errors. These mea-
sures are used for performance characterization of the multi-
class LS-SVM DDAG DOA estimation algorithm and for
tracking variations in performance for various algorithm
parameters. Misclassifications and gross errors can not be
used in real time implementation because knowledge of the
test DOAs is required.

Misclassifications measure “small shifts” in DOA clas-
sifications. If a DOA is located near a border between
labels the machine learning process could classify the data
to an adjacent label, not the closest label. Therefore, a
misclassification is a shift related error where a signal is
detected, but classified to a spatially adjacent label. This type
of error still gives an indication of the received DOA. The
region of misclassifications is defined as �

� of theDOA range
applied to both sides of a DOA class.

Gross errors measure significant errors in DOA classifica-
tions. If a DOA is classified into a specific class, but spatially
located at least one entire class away, then the error is due
to a breakdown in the machine learning process. This type
of error assigns false/misleading information to a received
DOA. The region of gross errors is defined as the magnitude
of the DOA range applied to both sides of the DOA class.

Figure 4 displays the DOA regions for correct classi-
fications, misclassifications and gross errors. This specific
example is for a DDAG class centered at �� with a ��

DOA range, i.e., any DOA in the range ���
 �� is correctly
classified to the �� class. The region enclosed by the dashed
brackets includes all DOAs that are correctly classified at
the �� class. If any DOAs outside the dashed brackets but
inside the solid brackets are assigned the �� class, then that
DOA would be a misclassification. If any DOAs outside the
solid brackets are assigned to the �� class, then that DOA
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would be a gross error. The misclassification region, for a
DOA classified at ��, is +, � ���
��� 
 ��
 �� � The gross
error region, for a DOA classified at ��, is +,  � ���
 �� �

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
0

Misclassifications

Correct
Classifications

Gross
Errors

Fig. 4. Diagram of regions defining DOA misclassifications and gross
errors.

D. Kernel Parameters

Simulation results show that kernel selection has the
greatest effect, out of all tunable variables, in the classifi-
cation process. The four kernels discussed in Section III-
A are tested with the LS-SVM DDAG DOA estimation
algorithm. The performances of each kernel function and
the associated parameters are characterized with in terms of
MSE, misclassifications, and gross errors. In addition, the
LS-SVM regularization parameter, #
 is varied to show the
in�uence of the LS-SVM complexity.

1) Polynomial Kernel: The polynomial kernel provides
the best results, in relation to the RBF, MLP, and linear
kernels. Figure 5 displays the T-MSE in terms of the poly-
nomial degree, �
 and constant, �� The simulation is based
on a four class DDAG with a �� DOA range and a fixed
LS-SVM variable, # � �� The results show that the degree
of the polynomial kernel affects the DOA estimation� the
best values are � � � and � � �� For � � � the polynomial
kernel is equivalent to the linear kernel. TheMSE is constant
for �  #  �, and the polynomial constant, �
 does not
in�uence the performance. The rate of misclassifications is
���� with zero gross errors� The degree of the polynomial is
the only factor affecting the computational time for system
training.

2) Radial Basis Function Kernel: The performance of
the RBF kernel is characterized in terms of the LS-
SVM regularization variable, #
 and the smoothing parame-
ter, ��� The simulation is based on a four class DDAG with a
�� DOA range. The resultsshow that theMSE is constant for
# 
 ���, and �� 
 ���. The rateof misclassifications is����
with zero gross errors� The training time increases with the
value of # and for small values of ��. The performance of
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Fig. 5. Theoretical MSE for a the polynomial kernel, the DOA range
is �� and spans the DDAG classes at ���� ���� ���� ���, the LS-SVM
parameter, �� is set at 2.

the RBF kernel matches the performance of the polynomial
kernel for DOAs in the rangeof ��� to ���� Theperformance
of the polynomial kernel exceeds that of the RBF kernel for
DOAs ' ��� and - ����

3) Multilayer Perceptron Kernel: Results show that the
MLP kernel is ineffective in maintaining a low MSE for the
range of parameters tested. The rate of misclassifications is
����� and the rate of gross errors is ������ Overall the
performance of the MLP kernel is inferior to the polynomial
and RBF kernels.

4) Linear Kernel: The linear kernel is equivalent to the
polynomial kernel with � � �. Large MSE values show
that the linear kernel is not effective in the LS-SVM DOA
estimation algorithm. The average T-MSE is ����� and the
average E-MSE is ������

E. Training and Test Vectors

The design of training sequences is an important factor in
machine learning applications. For adaptive antenna arrays
the training sequences represent the array outputs for the
� DOA classes. Three specific elements of the training
sequences are noise variance, training vector length, and
length of the sample covariance window. The requirement
is to design training sequences that minimize both the
training error and generalization error. Empirical analysis
of the multiclass LS-SVM based DOA estimation algorithm
shows that training error is effectively zero� the hyperplane
separation of the data in the featurespace is well defined and
separable. In this paper the generalization error is expressed
in terms of MSEs, misclassifications and gross errors.

The primary method for training LS-SVM DDAG systems
for DOA estimation is based on synthetic training vectors
generated with known noise power and preselected vector
lengths. In practice, the training vectors would be stored in
the memory of the receiver that employs the DOA estimation
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algorithm. This approach allows for of�ine training of the
binary LS-SVM algorithms.

Simulation results show that theLS-SVM DOA estimation
algorithm is robust, in terms of MSE, when analyzed for a
range of SIRs in the training vectors and the test signals. In
general, thenoisepower of thetraining vectorsdoesn’t havea
dramatic effect on the generalization error. Simulations were
conducted with training vectors that included SIRs in the
range of �� $) to � $)� Review of the misclassification
and grosserror statistics show that training vectors with noise
variances of ���� and ����, which correspond to SIRs of ��
$) and �� $), provide the best performance.

1) Length of Training and Testing Vectors: Figure 6
includes two plotsof average theoretical MSE versus training
vector length. The data is specific to a four class LS-SVM
DDAG system with a four degreepolynomial kernel. Thetwo
plots show that the window length of the sample covariance
matrix does not impact theperformance. Likewise there is no
correlation between the length of the training vector and the
MSE. The results in Figure 6 are based on test vectors with
size equivalent to the training vectors. Figure 7 is a 3D plot
of the theoretical MSE as a function of vector dimensions�
the dimensions of the training vectors and input data vectors.
The length of the input datavector ranges from 0.5 to 2 times
the length of the training vectors. The data shows that range
of input data vectors has no effect on the MSE statistics.

25 37 49 61 73 85 97 109 121 133 145 157 169 181 193
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Training Vector Length

A
ve

ra
ge

 T
he

o
re

tic
a

l M
S

E

Window Length = 5
Window Length = 10

Fig. 6. Average theoretical MSE as a function of training vector length.
Two data plots are included� one plot is for a sample covariance matrix with
a five sample window, one plot is for a sample covariance matrix with a ten
sample window.

Table V shows the processing times, in seconds, required
for training a four class LS-SVM DDAG system with a
four degree polynomial kernel. and testing the input data.
The results Data is included for training and test vectors
that range from 25 samples to 200 samples. The simulations
were conducted with a Pentium 4 running at 2.5 GHz. The
processing times are relative to the computer system and the
level of optimization applied to the programming, but serve
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Fig. 7. Theoretical MSE as a function of training vector length and input
vector length. The LS SVM DDAG system includes four class and a four
degree polynomial kernel. The test window multiplier defines the input
vector length, i.e. the input vector length ranges between 0.5 to 2 times
the training vector length.

TABLE V

PROCESSING TIMES, IN SECONDS, FOR ONE-VS-ONE MULTICLASS

LS-SVM FOR DOA ESTIMATION.

Vector Size
25 50 75 100 125 150 175 200

Train 0.30 0.94 2.25 4.49 7.39 11.27 15.23 20.38
Test 0.20 0.23 0.31 0.47 0.56 0.66 0.72 0.91

as a basic indicator for possible hardware implementation
and real-time applications.

The data in this section shows that the design of the
training vectors is important, but there is a tolerance in the
selection of noise power and training vector length. The
available tolerance in choosing parameters of the training
vectors validates the design of the LS-SVM DOA estimation
algorithm. This characteristic allows�exibility in the system
design and provides a high confidence level in the DOA
estimates. In addition, when considering real-timeimplemen-
tation of the algorithm, the dimensions of the training vector
must be carefully reviewed. Shorter training vectors offer
high performance, in terms of MSE, and fast training times.

F. Range of DDAG Parameters for DOA Estimation

Theexceptional performanceof theLS-SVM DDAG DOA
estimation algorithm has been proved in the previous sec-
tions. Most the previous simulation results were based on
three and four class DDAGs. To cover the desired span of
the antenna array sector the algorithm must be �exible in the
number of DDAG classes and DOA ranges. Different appli-
cations require different DDAG architectures. Many times
the application will require fast training and high accuracy.
Training aLS-SVM DDAG system can beperformed of�ine.
But covering a large antenna sector with high resolution
would require either:
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TABLE VI

PERCENTAGE OF MISCLASSIFICATIONS VERSUS DDAG CLASSES (3-6)

AND DOA RANGES (1-10).

DOA Range between Classes, Degrees
Classes 1 2 3 4 5 6 7 8 9 10

3 0 0 0 0 6.7 0 4.8 4.2 0 0
4 0 0 0 0 0 0 3.6 3.1 0 0
5 0 0 0 0 4.0 0 2.9 0 6.7 0
6 0 0 0 0 0 0 4.8 0 5.6 0

1) A DDAG with a large number of classes and a small
DOA range,

2) A two stage system where the antenna sector is parti-
tioned into a set number of classes with a wide DOA
range. First, thesignal isdetected in aspecific partition,
then a DDAG structure for high resolution can classify
the DOA with high accuracy

Whatever the desired approach is, the LS-SVM DDAG algo-
rithm must be �exible in design and robust in performance.

The data in this section proves the performance for a wide
range of DDAG structures. Simulations were conducted for
three to ten classes with DOA ranges between �� and ����
With these classes and DOA ranges the LS-SVM DDAG
algorithms is able to span antenna sectors of �� to ����
Table VI lists the number of misclassifications. Seventy-five
percent of the DDAG structures with DOA ranges between
�� and ��� have zero misclassifications� the average rate of
misclassifications for the set of DDAG structures is �����
The largest percentage of misclassifications is ���� and
occurs with a five class DDAG with a nine degree DOA
range.

G. Multilabel Capability for Multiple DOAs

In DOA estimation for cellular systems, there can be
multipleDOAsfor agiven signal. This results from multipath
effects induced by the communication channel. The machine
learning system must beable to discriminatebetween asmall
number of independent DOAsthat includesignal components
with similar time delays. With this constraint the machine
learning algorithm then must be a multiclass system and able
to process multiple labels.

The machine learning algorithm must generate multiclass
labels, �
 � � , where� � ����
 ��� is a set of real numbers
that represent an appropriate range of expected DOA values,
and multiple labels �

 � � � � � � � for � dominant signal
paths. If antenna sectoring is used in the cellular system the
multiclass labels are from the set � � ��
�
 where �
 is field
of view for the �	� sector.

Multilabel classification is possible with the LS-SVM
DDAG algorithm presented in Section V. The machine
learning algorithm for DOA estimation assigns DOA labels
to each eigenvector in the signal subspace. By repeating the

DDAG cycle for each eigenvector the multiclass algorithm
has the capability of assigning multiple labels to the input
signal.

VI I . COMPARISON TO STANDARD DOA ESTIMATION

AL GORITHMS

The performance of the one-vs-one multiclass LS-SVM
algorithm for DOE estimation is described, in detail, in
the previous section. The results show that the multiclass
classification approach to DOA estimation provides unique
benefits, in termsof computational complexity and �exibility.
Each algorithm is trained for � DOA classes. The number
of classes is dependent upon on the antenna sectoring and
required resolution. The ideal application of this technique
is CDMA cellular systems. For a CDMA system the desired
interference suppression dictates the fixed beamwidth. A
reduction in beamwidth corresponds to a reduction in MAI,
thus reducing the required transmit power at the mobile
subscriber. CDMA offers this�exibility since the all mobiles
use the same carrier frequency. For Frequency Division
Multiple Access (FDMA) systems a narrow beamwidth is
desired, since frequency reuse factors into the capacity of a
cellular system, thus requiring accurate DOA estimates with
high resolution.

A. Computational Complexity

Conventional subspace based DOA estimation algorithms,
such as MUSIC and ESPRIT, are computationally complex.
The algorithms require accurate knowledge of the signal
subspace dimension and accurate estimates of the signal
and noise subspace eigenvectors. Additionally, the MUSIC
algorithm requires a precise characterization of the antenna
array and the ESPRIT algorithm requires multiple eigen
decompositions.

The one-vs-one multiclass LS-SVM algorithm for DOA
estimation is �exible, with respect to computationally re-
quirements. The training cycle for theLS-SVM based DDAG
is straight forward and can be completed of�ine with sim-
ulated data. The only information required is the size of
the antenna array and the number of DDAG nodes, which
corresponds to DOA classes. For accurateDOA estimates the
only information required, for the LS-SVM DDAG testing
cycle, is the dimension of the antenna array and accurate
eigenvector estimates of the sample covariance matrix. The
dimension of the signal subspace is not required, nor is
accurate characterization of the antenna array.

B. Simulation Results

Figure 8 compares the one-vs-one multiclass LS-SVM
DOA estimation algorithm and the MUSIC algorithm. The
top window shows perfect DOA estimation for the machine
learning method presented in this paper. The multiclass
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algorithm includes an eight class DDAG and a one de-
gree DOA range per class. Note that multiclass LS-SVM
algorithm classifies signals outside the DOA classes to the
nearest class, as shown with the DOAs at ��� � ��� and
�������. The bottom window displays the DOA estimation
with the MUSIC algorithm, 100 DOA estimates are averaged
for each received signal and the amplitudes are normalized
to the largest estimate. The plots show that the resolution
capabilities one-vs-one multiclass LS-SVM DOA estimation
algorithm equal that of the MUSIC algorithm�One drawback
of the MUSIC algorithm is the broad width of the DOA
estimate� a level detection step is required to accurately select
the maximum response.

Figure 9 compares the errors and DOA estimates of each
algorithm. For this simulation the one-vs-one multiclass LS-
SVM algorithm includes a seventeen class DDAG and a
five degree DOA range per class. The top window plots
the errors in the DOA estimates for ninety degree antenna
sector and one DOA sample per degree. The definitions of
an error are specific to the two algorithms. For the machine
learning based algorithm, an error is defined as aDOA that is
classified into awrong DOA class. For theMUSIC algorithm
an error is the difference between the estimated DOA and
the actual DOA. As shown in the top window, the only
errors associated with the LS-SVM based algorithm occur
for DOAs greater than ���. The DOAs in error are classified
into the spatially adjacent DOA class at ���. Likewise, the
errors associated with the MUSIC algorithm, that are greater
than ��, occur for DOAsgreater than ���. Theplots in Figure
9 prove the robust performance of the one-vs-one multiclass
LS-SVM algorithm for DOA estimation.

5 10 15 20 25 30
DOAs

DOAs Calculated with LS-SVM

ML DOA Estimates

DOA Test Signals

5 10 15 20 25 30

0.2

0.4

0.6

0.8

1
DOAs calculated with MUSIC and ED

M
ag

ni
tu

de

DOAs

DOA=15o

DOA=16o

DOA=17o

DOA=18o

DOA=19o

DOA=20o

DOA=21o

DOA=22o

Fig. 8. Comparision between the LS-SVM based DOA estimation algorithm
and the MUSIC algorithm. The one-vs-one multiclass LS-SVM DOA
estimation algortihm includes eight classes and a one degree DOA range.
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based DOA estimation algorithm and the MUSIC algorithm. The one-vs-one
multiclass LS-SVM DOA estimation algortihm includes seventeen classes
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C. Benefits over Standard Techniques

Evaluation of the performance statistics, Section VI,
proves that the one-vs-one multiclass LS-SVM algorithm for
DOA estimation is reliablewith a high degreeof accuracy. In
terms of performance our new algorithm provides the same
capabilities as thestandard DOA estimation methods. Specif-
ically, accurate DOA estimates, to a one degree resolution,
can be achieved with the standard subspace based algorithms
and our machine learning based algorithm. The primary
benefitsof our LS-SVM based DOA estimation algorithm are
the reduced computational complexity, described above, and
the �exibility, in terms of DOA classes versus requirements.
The specific application dictates the desired resolution and
therefore the number of DOA classes. For example, one
application may include a sixty degree antenna sector and a
desired resolution of ten degrees. These requirements would
translate into a seven class system. Another application may
includeatwenty degreesector and adesired resolution of two
degrees� this would translate into a eleven class system. An
additional option is to place two DDAG systems in series, as
described in Section VI-F, that allows for a high resolution
with a small number of classes. In general, the one-vs-one
multiclass LS-SVM algorithm for DOA estimation can be
adapted to specific requirements, as in�uenced by system
capacity, channel conditions, and available computational
resources. The MUSIC and ESPRIT algorithms offer no
�exibility, in terms of DOA resolution and computational
resources.

VI I I . CONCLUSION

In this paper we presented a machine learning architecture
for DOA estimation as applied to a CDMA cellular system.
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The broad range of our research in machine learning based
DOA estimation includes multiclass and multilabel classifi-
cation, classification accuracy, error control and validation,
kernel selection, estimation of signal subspace dimension,
and overall performance characterization. We presented an
overview of a multiclass SVM learning method and suc-
cessful implementation of a one-vs-one multiclass LS-SVM
DDAG system for DOA estimation.

The LS-SVM DOA estimation algorithm is superior to
standard techniques due to the robust design that is insen-
sitive to received SIR, Doppler shift, size of the antenna
array, and the computational requirements are adaptable to
the desired applications. The algorithm was designed with
a multiclass, multilabel capability and includes an error
control and validation process. In addition, there are many
limitations of standard DOA estimation algorithms, ESPRIT
and MUSIC, that do not exist with the LS-SVM DOA
estimation algorithm.

The LS-SVM algorithm for DOA estimation assigns DOA
labels to each eigenvector in the signal subspace. By re-
peating the DDAG cycle for each eigenvector the multiclass
algorithm has the capability of assigning multiple labels to
the input signal. Simulation results show a high degree of
accuracy and prove that the LS-SVM DDAG system has a
wide range of performance capabilities. The results show
that the algorithm is accurate for a large range of DDAG
performance independent of DDAG class or DOA range per
class. The LS-SVM DDAG system accurately classifies the
DOAs for three to ten classes and DOA ranges from one
degree to twenty degrees.
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ABSTRACT: Neural models for calculating the
bandwidth of electrically thin and thick rectangular
microstrip antennas, based on the multilayered
perceptrons and the radial basis function networks,
are presented. Thirteen learning algorithms, the
conjugate gradient of Fletcher-Reeves, Levenberg-
Marquardt, scaled conjugate gradient, resilient
backpropagation, conjugate gradient of Powell-Beale,
conjugate gradient of Polak-Ribiére, bayesian
regularization, one-step secant, backpropagation with
adaptive learning rate, Broyden-Fletcher-Goldfarb-
Shanno, backpropagation with momentum, directed
random search and genetic algorithm, are used to
train the multilayered perceptrons. The radial basis
function network is trained by the extended delta-bar-
delta algorithm. The bandwidth results obtained by
using neural models are in very good agreement with
the experimental results available in the literature.
When the performances of neural models are
compared with each other, the best results for training
and test were obtained from the multilayered
perceptrons trained by the conjugate gradient of
Powell-Beale and Broyden-Fletcher-Goldfarb-Shanno
algorithms, respectively.

1. INTRODUCTION

Microstrip antennas (MSAs) have become the
favorite choice of antenna designers because they
offer the attractive features of low profile, light
weight, low cost, conformability to curved surfaces,
ease of manufacture, and compatibility with
integrated circuit technology [1-18]. A number of
methods [1-36] using different levels of
approximation have been proposed and used to
compute the bandwidth of rectangular MSA, as this is
one of the most popular and convenient shapes. These
methods can generally be divided into two groups:
simple analytical methods and rigorous numerical
methods. Simple analytical methods can give a good
intuitive explanation of antenna radiation properties.
However, these methods do not consider rigorously
the effects of surface waves. Exact mathematical
formulations in rigorous methods involve extensive
numerical procedures, resulting in round-off errors,
and may also need final experimental adjustments to
the theoretical  results.  These  methods   also  require

high performance large-scale computer resources and
a very large number of computations. Furthermore,
most of the previous theoretical and experimental
work has been carried out only with electrically thin
MSAs, normally of  the order of h/λd ≤ 0.02, where h
is the thickness of the dielectric substrate and λd is the
wavelength in the substrate. Recent interest has
developed in radiators etched on electrically thick
substrates. The need for theoretical and experimental
studies of MSAs with electrically-thick substrates is
motivated by several major factors. Among these is
the fact that MSAs are currently being considered for
use in millimetre-wave systems. The substrates
proposed for such applications often have high
relative dielectric constants and, hence, appear
electrically thick. The need for greater bandwidth is
another reason for studying thick substrate MSAs.
Consequently, this problem, particularly the
bandwidth aspect, has received considerable
attention.

In this paper, models based on artificial neural
networks (ANNs) are presented for the bandwidth of
both electrically thin and thick rectangular MSAs.
Ability and adaptability to learn, generalizability,
smaller information requirement, fast real-time
operation, and ease of implementation features have
made ANNs popular in the last few years [37-40].
Because of these fascinating features, artificial neural
networks in this article are used to model the
relationship between the parameters of MSA and the
measured bandwidth results.

In previous works [35,41-48], we also successfully
introduced ANNs to compute the various parameters
of the triangular, rectangular and circular MSAs.  In
reference [35], the bandwidth of rectangular MSAs
has been computed by using ANNs. In [35], only the
multilayered perceptrons (MLPs) were used as the
neural network architecture. However, in this paper,
both the MLPs and the radial basis function networks
(RBFNs) are used for calculating the bandwidth.
Furthermore, in [35], the four learning algorithms, the
backpropagation (BP) [49], the delta-bar-delta (DBD)
[50], the quick propagation (QP) [51], and the
extended delta-bar-delta (EDBD) [52], are used to
train the MLPs. However, in this paper, thirteen
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learning algorithms, conjugate gradient of Fletcher-
Reeves (CGFR) [53], Levenberg-Marquardt (LM)
[54,55], scaled conjugate gradient (SCG) [56],
resilient backpropagation (RP) [57], Broyden-
Fletcher-Goldfarb-Shanno (BFGS) [58], conjugate
gradient of Powell-Beale (CGPB) [59,60], conjugate
gradient of Polak-Ribiére (CGPR) [61], bayesian
regularization (BR) [62], one-step secant (OSS) [63],
backpropagation with adaptive learning rate
(BPALR) [61], backpropagation with momentum
(BPM) [61], directed random search (DRS) [64] and
genetic algorithm (GA) [65,66] are used to train the
MLPs. The radial basis function network is trained by
extended delta-bar-delta (EDBD) algorithm. The
main aims of this paper are

• to calculate the bandwidth of electrically thin
and thick rectangular MSAs by using the
MLPs and RBFNs architectures;

• to train the MLPs by the CGFR, LM, SCG,
RP, BFGS, CGPB, CGPR, BR, OSS,
BPALR, BPM, DRS, and GA, and to train the
RBFNs by the EDBD algorithm;

• to compare the bandwidth results of neural
models presented in this paper with the
results of the conventional methods available
in the literature;

• to compare also the bandwidth results of
neural models presented in this paper with the
results of fuzzy inference systems [36]
trained by the improved tabu search
algorithm (ITSA) [67], the modified tabu
search algorithm (MTSA) [68] and the
classical tabu search algorithm (CTSA)
[69,70], and with the results of the neural
models [35] trained by the BP, DBD, QP, and
EDBD algorithms;

• to determine the most appropriate neural
model in calculating the bandwidth of
rectangular MSAs; and

• to show the superiority of artificial
intelligence techniques such as neural
networks and fuzzy inference systems over
the conventional methods.

In the following sections, the bandwidth of the
MSAs, the ANNs, the MLPs and the RBFNs are
described briefly, and the application of neural
networks to the calculation of the bandwidth of a
MSA is then explained.

2. BANDWIDTH OF A RECTANGULAR
MICROSTRIP ANTENNA

Figure 1 illustrates a rectangular patch of width W
and length L over a ground plane with a substrate of
thickness h and a relative dielectric constant εr. The
bandwidth of this antenna can be written as [1]

sQ
1sBW

T

−= (1)

ground
plane

conducting
patch

substrate h

coaxial
feed

feed
point

W

L

Figure 1. Geometry of rectangular microstrip
antenna.

where s is voltage standing wave ratio (VSWR), and
QT is the total quality factor. The total quality factor,
QT, can be written as
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where the four terms represent the radiation quality
factor, the  quality factors due to conductor loss,
dielectric loss, and surface wave.

Bandwidth was defined by Pozar [23] as the half-
power width of the equivalent circuit impedance
response. For a series-type resonance, this bandwidth
is

rwr dw
dXW

R2BW = (3)

where Z=R+jX is the input impedance at the radian
resonant frequency wr. For a parallel-type resonance,
(3) is used with R replaced by G and X replaced by B,
where Y=G+jB is the input admittance at resonance.
The derivative in (3) can be evaluated by calculating
the input impedance at two frequencies near
resonance and using a finite difference
approximation. The resonant resistance, R, is given
by

scdr RRRRR +++= (4)

where the four terms represent the radiation
resistance, the equivalent resistance of the dielectric
loss, the equivalent resistance of the conductor loss,
and surface wave radiation resistance. The certain
way of calculating the total quality factor and the
resonant resistance of both electrically thin and thick
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rectangular microstrip patch antennas involves the
complicated Green function methods and integral
transformation techniques. These methods and
techniques suffer from a lack of computational
efficiency, which in practice can restrict their
usefulness because of high computational time and
costs.

In this work, a new technique based on the ANNs for
solving this problem efficiently is presented. First, the
antenna parameters related to the bandwidth are
determined, then the bandwidth depending on these
parameters is calculated by using the ANNs.

The feeding method or position is not considered in
calculating the bandwidth because the feeding
method or position does not effect the intrinsic patch
bandwidth. The bandwidth of a patch is significantly
greater than that of a printed dipole, at least over the
range for which the patch actually resonates
(h<0.12λ0, where λ0 is the free space wavelength at
the resonant frequency fr). This fact is consistent with
the antenna gain/bandwidth relation to antenna size.
Therefore, the effect of the patch width W on the
bandwidth of rectangular microstrip antennas must be
taken into consideration in the bandwidth calculation
of these antennas. From the results of the methods
available in the literature   [1-36] we see that for a
given frequency, larger bandwidth is possible by
choosing a thicker substrate and a wider patch. The
results also indicate that a lower value of εr results in
a larger bandwidth.

It is clear from the methods and formulas presented
by [1-36] that only three parameters, h/λd, W, and the
dielectric loss tangent tanδ, are needed to describe the
bandwidth. The wavelength in the dielectric substrate,
λd, is given as

rrr

0
d

f
c
ε

=
ε

λ
=λ (5)

where c is the velocity of electromagnetic waves in
free space.

3. ARTIFICIAL NEURAL NETWORKS (ANNs)

ANNs are biologically inspired computer programs
designed to simulate the way in which the human
brain processes information. ANNs gather their
knowledge by detecting the patterns and relationships
in data and learn (or are trained) through experience,
not from programming. An ANN is formed from
hundreds of single units, artificial neurons or
processing elements connected with weights, which
constitute the neural structure and are organised in
layers. The power of neural computations comes from
weight connection in a network. Each neuron has
weighted inputs, summation function, transfer

function and one output. The behaviour of a neural
network is determined by the transfer functions of its
neurons, by the learning rule, and by the architecture
itself. The weights are the adjustable parameters and,
in that sense, a neural network is a parameterised
system. The weighted sum of the inputs constitutes
the activation of the neuron. The activation signal is
passed through a transfer function to produce the
output of a neuron. Transfer function introduces non-
linearity to the network. During training, the inter-
unit connections are optimised until the error in
predictions is minimised and the network reaches the
specified level of accuracy. Once the network is
trained, new unseen input information is entered to
the network to calculate the output for test. ANN
represents a promising modelling technique,
especially for data sets having non-linear
relationships that are frequently encountered in
engineering. In terms of model specification, artificial
neural networks require no knowledge of the data
source but, since they often contain many weights
that must be estimated, they require large training
sets. In addition, ANNs can combine and incorporate
both literature-based and experimental data to solve
problems.

There are many types of neural networks for various
applications available in the literature [37-40,71].
RBFNs and MLPs are examples of feed-forward
networks and both universal approximators. In spite
of being different networks in several important
respects, these two neural network architectures are
capable of accurately mimicking each other [40].

3.1. Multilayered Perceptrons (MLPs)

Multilayered perceptrons (MLPs) [40,49] are the
simplest and therefore most commonly used neural
network architectures. They have been adapted for
the calculation of the bandwidth of the MSA. MLPs
can be trained using many different learning
algorithms [37-40,71]. In this paper, MLPs are
trained with the CGFR, LM, SCG, RP, BFGS,
CGPB, CGPR, BR, OSS, BPALR, BPM, DRS, and
GA. As shown in Figure 2, an MLP consists of three
layers: an input layer, an output layer and an
intermediate or hidden layer. Neurons (indicated in
Figure 2 with the circle) in the input layer only act as
buffers for distributing the input signals xi to neurons
in the hidden layer. Each neuron j in the hidden layer
sums up its input signals xi after weighting them with
the strengths of the respective connections wji from
the input layer and computes its output yj as a
function f of the sum, viz.,

∑= )xw(fy ijij                                            (6)

f can be a simple threshold  function, a   sigmoidal  or
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Figure 2. General form of multilayered perceptrons.

hyperbolic tangent function. The output of neurons in
the output layer is computed similarly.

Training a network consists of adjusting weights of
the network using the different learning algorithms. A
learning algorithm gives the change ∆wji(k) in the
weight of a connection between neurons i and j at
time k. The weights are then updated according to the
following formula

)1k(w)k(w)1k(w jijiji +∆+=+ (7)

3.2. Radial Basis Function Networks (RBFNs)

An alternative network architecture to the MLP is the
RBFN [72-74]. A network with an internal
representation of hidden neurons, radially symmetric,
is named as a RBFN. The topology of the RBFN is
obviously similar to that of the three-layered MLP,
and the differences lie in the characteristics of the
hidden neurons. The structure of a RBFN is shown in
Figure 3.

The construction of a RBFN in its most basic form
involves three entirely different layers. The input
layer is made up of source neurons. The second layer
is a hidden layer of high dimension serving a
different purpose from that in a MLP. This layer
consists of an array of neurons. Each neuron contains
a parameter vector called a centre. The neuron
calculates the Euclidean distance between the centre
and the network input vector, and passes the result
through a non-linear function. The output layer is
essentially a set of linear combiners and supplies the
response of the network. The transformation from
input layer to the hidden layer is non-linear, whereas
the transformation from the hidden layer to the output
layer is linear.

Output Layer

Input Layer

Hidden Layer

x1 x2 xm

Σ Σ Σ

y1 y2 yn

Figure 3. Radial basis function network.

The output of an hidden layer is a function of the
distance between the input vector and the stored
centre and calculated as

( )∑
=

−=−=
N

1i

2
kiikk CXCXO (8)

The learning consists of using a clustering algorithm
for determining the cluster centres (Ck) and a nearest
neighbour heuristic for determining the cluster
centres. Linear regression, or a gradient descent
algorithm is used to determine the weights from the
hidden layer to the output layer. In this work, EDBD
algorithm is used to train the weights of the layer.

4. NEURAL NETWORKS FOR BANDWIDTH
COMPUTATION

ANNs have been adapted for the calculation of the
bandwidth (BW) of electrically thin and thick
rectangular microstrip antennas. MLPs are trained
with the use of CGFR, LM, SCG, RP, BFGS, CGPB,
CGPR, BR, OSS, BPALR, BPM, DRS, and GA
algorithms. RBFN is trained by using EDBD
algorithm. For the neural models, the inputs are h/λd,
W, and tanδ, and the output is the measured
bandwidth BWME. A neural model used in calculating
the BW is shown in Figure 4.

For the MLPs trained by DRS and GA, input layer
has the linear transfer function, the hidden and output
layers have the sigmoid function. For the MLPs
trained by the other learning algorithms, the input and
output layers have the linear transfer function and the
hidden layers have the tangent hyperbolic function. In
the RBFNs, the sigmoid function was used for the
output layer. Training an ANN with the use of a
learning   algorithm    to    compute    the    bandwidth
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Figure 4. Neural model for bandwidth computation.

involves presenting it sequentially with different sets
(h/λd, W, tanδ) and corresponding measured values
BWME. Differences between the target output BWME
and the actual output of the ANNs  are evaluated by a
learning algorithm. The adaptation is carried out  after
the presentation of each set (h/λd, W, tanδ) until the
calculation accuracy of the network is deemed
satisfactory according to some criterion (for example,
when the error between BWME and the actual output
for all the training set falls below a given threshold)
or the maximum allowable number of epochs or
generations is reached.

The training and test data sets used in this paper have
been obtained from the previous experimental works
[33,34], and are given in Table 1. The 27 data sets in
Table 1 were used to train the networks. 6 test data
sets which are marked with an asterisk in Table 1
were used for test. The number of neurons in the
hidden layers and train epochs for neural models
presented here are given in Table 2. 10x7x8 in
Table 2 means that the number of neurons was 10, 7,
and 8 for the first, second, and third hidden layers,
respectively. Initial weights of the neural models
were set up randomly.

5. RESULTS AND CONCLUSIONS

The bandwidths calculated by using neural models
presented in this paper for electrically thin and thick
rectangular microstrip patch antennas are listed in
Table 3. For comparison, the results obtained by
using the conventional methods [1,21,31-33], and the
neural models presented by [35] and the fuzzy
inference systems [36] are given in Table 4.  EDBD,
DBD, BP, QP, ITSA, CTSA, and MTSA in Table 4
represent, respectively, the bandwidths calculated by
the neural models [35] trained by EDBD, DBD, BP,
QP, and calculated by the fuzzy inference systems
[36] trained by ITSA, CTSA, and MTSA. The total
absolute errors between the computed and
experimental results for neural models, fuzzy
inference systems, and conventional methods are
listed in Table 5 and Table 6.

Table 1. Measured bandwidth results and
dimensions for electrically thin and thick
rectangular microstrip antennas.
Patch
No

h
(mm) fr (GHz) h/ d

W
(mm) tan

Measured
[33,34]

BWME (%)
1   0.17 7.740 0.0065   8.50 0.001   1.07
2   0.79 3.970 0.0155 20.00 0.001   2.20
3   0.79 7.730 0.0326 10.63 0.001   3.85
4   0.79 3.545 0.0149 20.74 0.002   1.95
5   1.27 4.600 0.0622   9.10 0.001   2.05
6   1.57 5.060 0.0404 17.20 0.001   5.10
7   1.57 4.805 0.0384 18.10 0.001     4.90*
8   1.63 6.560 0.0569 12.70 0.002   6.80
9   1.63 5.600 0.0486 15.00 0.002   5.70

10   2.00 6.200 0.0660 13.37 0.002     7.70*
11   2.42 7.050 0.0908 11.20 0.002 10.90
12   2.52 5.800 0.0778 14.03 0.002   9.30
13   3.00 5.270 0.0833 15.30 0.002 10.00
14   3.00 7.990 0.1263   9.05 0.002   16.00*
15   3.00 6.570 0.1039 11.70 0.002 13.60
16   4.76 5.100 0.1292 13.75 0.002 15.90
17   3.30 8.000 0.1405   7.76 0.002 17.50
18   4.00 7.134 0.1519   7.90 0.002   18.20*
19   4.50 6.070 0.1454   9.87 0.002 17.90
20   4.76 5.820 0.1475 10.00 0.002 18.00
21   4.76 6.380 0.1617   8.14 0.002 19.00
22   5.50 5.990 0.1754   7.90 0.002 20.00
23   6.26 4.660 0.1553 12.00 0.002 18.70
24   8.45 4.600 0.2091   7.83 0.002 20.90
25   9.52 3.580 0.1814 12.56 0.002 20.00
26   9.52 3.980 0.2017   9.74 0.002 20.60
27   9.52 3.900 0.1976 10.20 0.002   20.30*
28 10.00 3.980 0.2119   8.83 0.002 20.90
29 11.00 3.900 0.2284   7.77 0.002 21.96
30 12.00 3.470 0.2216   9.20 0.002 21.50
31 12.81 3.200 0.2182 10.30 0.002 21.60
32 12.81 2.980 0.2032 12.65 0.002 20.40
33 12.81 3.150 0.2148 10.80 0.002   21.20*

*Test data sets

When the performances of neural models presented in
this paper and in [35] are compared with each other,
the best results for training and test were obtained
from the MLP network trained by the CGPB and
BFGS, respectively, as shown in Table 5. However,
among the neural models, the highest accuracy in the
total absolute errors was achieved with the CGFR
algorithm. When the two heuristic approaches were
compared with each other, the results of DRS were
found better than those of the GA. It is also clear
from Table 5 that in most cases the results of neural
models presented in this paper are better than those of
the neural models presented by [35] and that the best
result in the total absolute errors is obtained from the
fuzzy inference systems trained by ITSA. However,
the train absolute error of the fuzzy inference systems
trained by ITSA is larger than that of the MLPs
trained by CGFR, LM, SCG, CGPB, and CGPR
algorithms.
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Table 2. The ANN configurations and the number of
train epochs for neural models presented in this paper.

ANN Architectures/
Algorithms

The number of
neurons in the
hidden layers

The number
of train
epochs

        CGFR 10 x 7 x 8     2 500
        LM 6 x 3        201
        SCG 11 x 8 x 7     1 200
        RP 12 x 10     6 500
        BFGS 10 x 5        700
        CGPB 7 x 7 x 4     1 500
        CGPR 7 x 7 x 4     1 500
        BR 3 x 4 x 3        290
        OSS 10 x 8 x 8     2 500
        BPALR 45 x 35 x 35     2 500
        BPM 45 x 35 x 35     5 000
        DRS 12 x 6        740

MLPs

        GA 20 x 25     1 850
RBFN         EDBD 20 x 6 185 200

It can be clearly seen from Tables 4 and 6 that the
conventional methods give comparable results-some
cases are in very good agreement with measurements,
and others are far off. When the results of neural
models and fuzzy inference systems are compared
with the results of the conventional methods, the
results of all neural models and fuzzy inference
systems are better than those predicted by the
conventional methods. The very good agreement
between the measured bandwidth values and the
computed bandwidth values of neural models and
fuzzy inference systems supports the validity of the
artificial intelligence techniques and also illustrates
the superiority of artificial intelligence techniques
over the conventional methods.

A distinct advantage of neural computation is that,
after proper training, a neural network completely
bypasses the repeated use of complex iterative
processes for new cases presented to it. For
engineering applications, the simple models are very
usable. Thus the neural models given in this work can
also be used for many engineering applications and
purposes.
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Table 3. Comparison of measured and calculated bandwidths obtained by using neural models presented in this
paper for electrically thin and thick rectangular microstrip antennas.

Present Neural Models
MLP RBFNPatch

No

Measured
BWME (%)

[33,34] CGFR LM SCG RP BFGS CGPB CGPR BR OSS BPALR BPM DRS GA EDBD
1   1.070 1.069   1.071   1.071   1.070   1.070   1.070   1.070 1.070 1.067 1.071 1.068 1.400 1.573 1.048
2   2.200   2.199   2.200   2.200   2.201   2.202   2.200   2.200 2.200 2.203 2.200 2.201 2.182 2.620 2.292
3   3.850   3.850   3.850   3.850   3.850   3.850   3.851   3.850 3.850 3.853 3.837 3.840 3.336 3.288 3.849
4   1.950   1.949   1.950   1.949   1.950   1.952   1.950   1.950 1.950 1.948 1.945 1.949 1.951 1.943 1.899
5   2.050   2.050   2.050   2.050   2.051   2.048   2.050   2.050 2.050 2.049 2.061 2.062 2.210 2.120 2.077
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Table 4. Bandwidths obtained from the conventional methods and artificial intelligence techniques available in
the literature for electrically thin and thick rectangular microstrip antennas.

Artificial Intelligence Techniques in the LiteratureConventional Methods in the
Literature Neural Models [35] Fuzzy Inference Systems [36]Patch

No

Measured
BWME (%)

[33,34] [21] [1] [31] [33] [32] EDBD DBD BP QP ITSA CTSA MTSA
1   1.070   0.82   0.84 0.30   1.20   0.26   1.081   1.068   1.178   1.271   1.070   1.070   1.070
2   2.200   1.45   2.03 0.87   2.78   0.75   2.193   2.197   2.304   2.117   2.200   2.200   2.200
3   3.850   2.99   3.76 1.88   5.03   1.64   3.840   3.854   3.670   3.753   3.848   3.850   3.850
4   1.950   1.29   1.69 0.72   2.46   0.61   1.948   1.948   1.905   2.034   1.950   1.959   1.950
5   2.050   1.54   1.90 0.72   4.09   0.84   2.046   2.047   2.117   2.612   2.051   2.050   2.050
6   5.100   4.21   5.14 2.67   6.46   2.35   4.945   5.340   5.211   4.837   5.101   5.100   5.100
7    4.900   3.96   4.87 2.51   6.17   2.20   4.916   4.898   4.831   4.854   4.899   4.900   4.895
8   6.800   5.98   6.70 3.69   8.12   3.43   6.824   6.788   6.887   6.757   6.775   6.595   6.798
9   5.700   4.76   5.69 3.02   7.12   2.78   5.679   5.718   5.822   5.783   5.699   5.676   5.711

10    7.700   7.29   7.81 4.41   9.16   4.20   8.006   7.865   7.727   7.730   7.759   7.877   7.769
11 10.900 11.31 10.88 6.39 11.72   6.50 10.858 10.901 11.040 10.998 10.906 11.217 10.896
12   9.300   9.14   9.26 5.36 10.42   5.26   9.336   9.287   9.155   9.085   9.255   9.476   9.287
13 10.000 10.30 10.14 5.88 11.15   5.83   9.990 10.000 10.092 10.131 10.003   9.860   9.994
14 16.000 18.42 15.64 9.41 15.16 10.36 15.975 15.862 15.940 15.851 16.005 15.998 16.139
15 13.600 13.84 12.75 7.53 13.14   7.90 13.607 13.601 13.528 13.388 13.598 13.174 13.600
16 15.900 18.06 15.73 9.35 15.11 10.50 15.881 15.917 15.994 16.100 15.914 16.050 15.905
17 17.500 15.29 18.48 8.39 17.00 11.28 17.523 17.480 17.349 17.264 17.450 17.442 17.324
18 18.200 13.62 20.09 8.15 17.77 12.18 18.254 18.433 18.372 18.339 18.288 18.357 18.284
19 17.900 14.54 19.17 8.31 17.34 11.70 17.844 17.917 17.949 17.947 17.845 17.884 17.797
20 18.000 14.08 19.46 8.19 17.47 11.80 18.016 18.091 18.101 18.129 18.060 18.050 17.977
21 19.000 12.45 21.47 7.95 18.42 12.93 19.113 19.054 19.113 19.094 18.955 18.988 19.110
22 20.000 10.73 23.41 7.63 19.29 14.10 19.818 19.766 19.878 19.883 19.999 19.714 19.955
23 18.700 13.01 20.55 8.10 18.01 12.57 18.804 18.620 18.433 18.599 18.690 18.603 18.688
24 20.900   7.85 28.24 6.76 21.26 16.49 21.009 21.101 21.170 21.163 20.896 21.080 20.917
25 20.000 10.10 24.27 7.46 19.66 14.54 19.851 19.842 19.857 19.836 19.997 19.790 20.035
26 20.600   8.45 27.17 7.02 20.85 16.10 20.608 20.760 20.916 20.900 20.602 20.759 20.478
27 20.300   8.76 26.59 7.10 20.61 15.76 20.524 20.608 20.724 20.734 20.296 20.599 20.274
28 20.900   7.63 28.64 6.67 21.40 16.65 20.977 21.147 21.241 21.231 20.909 21.145 21.056
29 21.960   6.50 31.03 6.14 22.26 17.56 21.885 21.777 21.557 21.609 21.960 21.741 21.973
30 21.500   6.92 30.06 6.32 21.91 17.13 21.495 21.469 21.412 21.433 21.510 21.461 21.580
31 21.600   7.11 29.56 6.41 21.73 16.95 21.535 21.317 21.342 21.249 21.566 21.309 21.377
32 20.400   8.26 27.39 6.90 20.92 16.07 20.500 20.592 20.569 20.498 20.401 20.526 20.514
33 21.200   7.39 29.07 6.54 21.55 16.77 21.460 21.184 21.148 21.103 21.221 21.178 21.173

Table 5. Train, test and total absolute errors between the measured and calculated bandwidhs  for
various neural networks and fuzzy inference systems.

Artificial Intelligence
Techniques

Learning
Algorithms

Train Absolute
Errors (%)

Test Absolute
Errors (%)

Total Absolute
Errors (%)

CGFR 0.199 0.770 0.969
LM 0.194 0.815 1.009
SCG 0.174 1.017 1.191
RP 0.421 0.779 1.200

BFGS 0.824 0.726 1.550
CGPB 0.136 1.499 1.635
CGPR 0.141 1.546 1.687

BR 0.410 1.275 1.685
OSS 0.499 1.833 2.332

BPALR 1.345 1.048 2.393
BPM 1.229 1.383 2.612
DRS 5.044 1.288 6.332

MLP

GA 6.069 1.721 7.790

Present Neural
Models

RBFN EDBD 3.633 1.330 4.963
ITSA 0.384 0.178 0.562

MTSA 1.270 0.350 1.620
Fuzzy Interference

Systems
[36] CTSA 3.435 0.657 4.092

EDBD 1.430 0.885 2.315
DBD 2.267 0.862 3.129
BP 4.158 0.804 4.962

Neural Models
in the Literature

[35]
MLP

QP 4.921 0.895 5.816
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Table 6. The total absolute errors between the
measured and calculated bandwidths for the
conventional methods in the literature.
Conventional
Methods in

the Literature
[21] [1] [31] [33] [32]

Total absolute
deviations
from the
measured
data (%)

178.69 88.76 266.93 23.92 140.02
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Abstract 
 
A new method for the robust estimation of target 
orientation using measured radar cross section is 
proposed. The method is based on a Generalized 
Regression Neural Network (GRNN) scheme. The 
network is trained by the FFT modulus of bistatic 
radar cross section data sampled at the receiver 
positions. The target value to be trained is the angle 
between a defined target orientation and the incident 
wave. Results based on actual measurements are 
presented. 
 

 
INTRODUCTION 

 
Accurate estimation of target orientation is essential 
in range profiling schemes [1-4]. In such cases, the 
knowledge of target orientation can yield information 
about the target-structure. The range profile itself, 
however, is quite sensitive to variations in target 
orientation and cannot be the basis for such 
estimation. A detailed tracking of object orientation is 
therefore necessary.  

 
Attempts have been made to use artificial neural 
networks (ANNs) for solving the inverse problem. 
However, the proposed methods have not been able 
to exploit the fundamental advantages of neural 
systems, which are their speed and robustness. In 
many instances, the problem formulation was fitted 
into previously developed algorithms for network 
training [5, 6]. Nevertheless, successful methods 
were developed for cases where a priori knowledge 
of the target geometry is available [7]. Neural 
networks have proven to do well in target 
classification area. A spectral approach to radar target 
classification using ANNs was proposed in [8].  

 
The Generalized Regression Neural Network 
(GRNN) [9] is among radial basis networks and has 
found applications in regression and function 

estimation processes. It has been shown that given a 
sufficient number of neurons in the hidden layer, a 
GRNN can approximate a continuous function to an 
arbitrary precision [10].  

 
In this paper, the orientation of a cylindrical 
conducting target is estimated with a GRNN network 
using radar cross section data. The definition of the 
problem is shown in Figure 1, where a target is 
illuminated by a number of transmitters/receivers at 
different angles of incidence. The orientation angle is 
defined as the angle between a preferred  
direction specified on the target geometry and the 
incident wave. The task is to find the orientation 
angle by using a number of bistatic radar 
measurements.  
 

THE FORWARD PROBLEM 
 

Consider a perfectly conducting cylinder of arbitrary 
cross section shape, as shown in Figure 2, illuminated 
by a plane wave in free space. The cylindrical 
contour is denoted by C. For the TM  polarization, 
the electric field integral equation (EFIE) is given by 
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where  and ρρ ′  are the field and source points, 

respectively, and  is the zeroth order Hankel 
function of the second kind.  

)2(
0H

 
The above integral equations are solved numerically 
by the method of moments. Once the induced current 
is calculated, the scattering echo width is given by  
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THE GRNN 
 
The Generalized Regression Neural Network belongs 
to the family of radial basis neural networks. Radial 
basis networks require more neurons than standard 
feed-forward backpropagation networks, but they can 
often be designed in a fraction of the time it takes to 
train standard feed-forward networks. They work best 
when many training vectors are available.  

 
Radial basis networks were previously used in field 
estimation processes. It is shown that given a 
sufficient number of neurons in the hidden layer, a 
GRNN can approximate a continuous function to an 
arbitrary precision. The GRNN is a memory based 
network, which provides estimates of continuous 
variables and converges to the underlying optimal 
linear or nonlinear regression surface. The network 
requires no prior knowledge of a specific functional 
from between input and output. The appropriate form 
is expressed as a probability density function that is 
empirically determined from observed data using 
Parzen window estimation [11]. For this reason, it 
works very well with sparse data. The network is a 
one-pass learning algorithm and can generalize from 
examples as soon as they are stored. The structure of 
the Network is depicted in Figure 3. 
 
Let x be a vector random variable of dimension  p, 
and  y  be a scalar random variable. Then f(x,y) is the 
joint continuous probability density function of x and 
y. Let X be a particular value of the random variable 
x. The conditional mean of y given X (regression of y 
on X) is given by 
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But the probability density function f(x,y) is not known a 
priori. It may be estimated from a sample of observations of 
x and y as proposed by Parzen as [9] 
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is the city block distance.  Note that in (4), σ  is the 
spread parameter of the density estimator, and should 

not be confused with the echo-width defined in (2). 
The estimate (4) can be considered as a weighted 
average of all the observed values, each being 
weighted exponentially according to its distance from 
X. It can be shown that this density estimator used in 
estimating (3) asymptotically converges to the 
underlying probability density function f(x,y) at all 
points (x,y) at which the density function is 
continuous, provided that the spread parameter 

)(nσσ =  is chosen as a decreasing function of n. 
When σ  is large, the estimated density function 
approaches a multivariate Gaussian function. For 
intermediate values of σ , all values of iY  are taken 
into account, but those corresponding to points closer 
to  are weighted heavier. The estimate cannot 
converge to poor solutions corresponding to local 
minima of the error criterion. 

X

σ

 
 

TRAINING 
 

The sensors are assumed to be fixed with respect to 
the wave direction. The target is impinged upon by 
transverse magnetic plane waves from different 
directions. To prepare the training data, a total of 10 
equally spaced receivers are used.  

It was found that the FFT modulus of the echo-width 
patterns sampled at the receiver positions for angles 
of incidence provided better generalization 
capabilities for the network, compared with the case 
when the network was trained with the echo-width 
vector (amplitude and phase). Simulated bistatic 
echo-width was used for the training of the network. 
The forward problem was solved using the method of 
moments. These calculations formed a 10 element 
input vector at every receiver for the network.  

Some noisy data created by displacing the receivers, 
were added to the training data set to let the system 
face small sensor position drifts. These vectors were 
used in training the network. The spread parameter 

 was manipulated so that the network angular 
estimation was sufficiently robust. The target value to 
be trained was the angle between the target 
orientation and the incident wave. 

 

RESULTS 

In this section, the performance of the network will 
be examined.  
 
The network was trained using the data described in 
the previous section for the triangular shaped target 
shown in Figure 1. To check the generalization power 
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of the network, a set of 40 new input data was 
produced, this time by angles not previously 
encountered by the network with all other parameters 
held unchanged. Figure 4 shows the cumulative error 
for estimating the target orientation for trained and 
untrained data. The network clearly displays a very 
good level of generalization of its estimates based on 
the training data set and more than 99% of the cases 
have less than one-degree error. 
 
The triangular cylindrical target shown in Figure 5 
was considered next. This is the Ipswich target IPS-
009. The network was trained using the simulated 
echo-width data. Then the network was presented 
with the RCS data collected at Ipswich bistatic RCS 
range. Only the bistatic echo-width data on 180 
degree range was used (that is, one side of the 
cylinder was examined). The performance of the 
network in estimating the orientation of the target is 
shown in Figure 6. It is observed that the error is less 
than one degree in more than 98% of the cases. 
 
Next, the performance of the network was examined 
for the case when the target size is not exactly known 
a priori, but rather the geometry of its shape is 
known. The system was tested in facing an elliptical 
cylinder when the electrical size of the cross-section 
was rescaled from –7% to +5%. The cumulative error 
is shown in Figure 7 for three different frequency 
scaling factors in the above range.  
 
 

CONCLUDING REMARKS 
 

The problem of estimation of two-dimensional 
conducting target orientation was efficiently handled 
by a Generalized Regression Neural Network. The 
training data set consisted of the calculated bistatic 
echo-width data when the target was exposed by an 
incident single frequency TM plane wave. The 
performance of the network does not change if the 
frequency of the plane wave is altered. Currently, The 
network performance against sensor misplacements, 
sensor noise (correlated and uncorrelated), are under 
study.  
 
It is believed that time domain schemes such as range 
profiling techniques can utilize this method to 
overcome difficulties in estimating the orientation of 
the target.  
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Figure 1- Problem set-up. 
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Figure 2- A uniform plane wave impinging upon a perfectly conducting cylinder. 
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Figure 3- The structure of GRNN. 
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Figure 4- The GRNN estimates the orientation of the target shown  

in Figure 1 by the concept of generalization. 
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Figure 5- A triangular cylinder of sides 10 cmcmcm 5.1092.45. ××  illuminated  
         by a 10 GHz TMz plane wave. The height of the cylinder is 40.8 cm. 
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Figure 6- Error diagram for the network response for the target shown in Figure 5. 
 
 

 
 

Figure 7- Cumulative error at various levels of frequency scaling. 
 

63KABIRI, et al.: NEURAL NETWORKS FOR ESTIMATION OF  TARGET ORIENTATION



Application of Two-Dimensional AWE Algorithm 
in Training Multi-Dimensional Neural Network Model 

Y. Xiong, D. G. Fang, and R. S. Chen
School of Electronic and Photoelectric Technology 

Nanjing University of Science and technology,  
Nanjing Jiangsu 210094, P. R. China 

ABSTRACT
Artificial neural network (ANN) plays very 
important role in microwave engineering. 
Training a neural network model is the key of 
neural network technique. The conventional 
methods for training, such as method of moment 
(MoM), are time-consuming when the training 
parameters are a bit more. In order to aid the 
training process by reducing the amount of costly 
and time-consuming sampling cycles, a lot of 
algorithms have been developed, such as 
asymptotic waveform evaluation (AWE). In this 
paper, MoM in conjunction with the 
two-dimensional AWE is applied to accelerate the 
process of training the neural network model 
based on the input impedance response on 
frequency and that on other parameters of a 
microstrip antenna. In AWE method, the 
derivatives of Green’s function are required. A 
closed form of microstrip Green’s function is used 
for this requirement. Then, the derivative matrices 
respect to both frequency and permittivity can be 
obtained from the original matrix. With these 
matrices in hand, coefficients of the 
two-dimensional Pade polynomial can be 
obtained. So the sampling data for training 
neural network model can be obtained and the 
process of training neural net model can be 
completed quickly and accurately. Numerical 
results demonstrate the efficiency of this 
technique.

KEY TERMS 
AWE, neural network, microstrip antennas 

1 INTRODUCTION 

Artificial neural networks (ANNs) have emerged 
as a powerful technique for modeling general 
input/output relationships. ANNs provide 
electromagnetically trained ANN (EM-ANN) 
models for use in CAD of RR/microwave circuits, 
antennas, and systems [1]. The training is the 
most important step in the development of ANNs. 
The actual training process involves algorithms 
for finding values of weights associated with 
various neurons. This process can be viewed as an 
optimization one. Various well-known 
optimization techniques, such as genetic 
algorithms and so on, can be used for this purpose. 
This process is quite time-consuming. For 
example, to train an ANN which is available in a 
wide frequency band, the computation should be 
carried out repeatedly at different frequencies. To 
overcome this difficulty, the space-mapping (SM) 
technique has been introduced [2]. This technique 
establishes a mathematical link between the 
coarse and the fine models and directs the bulk of 
the CPU-intensive computation to the coarse 
model, while preserving the accuracy offered by 
the fine model. Alternatively, the asymptotic 
waveform evaluation (AWE) has also been 
applied in finite difference solution [3-6]. This 
technique extrapolates the data from one point to 
a certain range based on the value and the high 
order derivatives at this point. From this concept, 
it is seen that this technique is computationally 
efficient due to involving the analytical 
relationships and is available to the cases where 
the derivatives may be obtained. AWE requires 
the derivatives of Green’s functions, so it is often 
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used for free-space problems [7-8]. In this paper,
the 2-D AWE has been developed to extrapolate
the responses over frequency and permittivity
simultaneously to characterize microstrip
antennas, so the response over certain frequency
and permittivity ranges can be extrapolated from
single point accurately and quickly. To check the
validity of this method, the analysis of microstrip
patch antenna is chosen as an example by using
method of moments (MoM). The variables in the
model are frequency, relative permittivity,
position of feed line and the dimension of the
patch. In the training process, two-dimensional
AWE is responsible for providing the response of
both frequency and relative permittivity
simultaneously within certain range.
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Where k0 is the wave number on the expansion
point, anm denote the unknown coefficients, and

QP denotes the total number of such
coefficients.
In order to get the coefficients anm, the derivatives
of matrix I have to be generated. A closed form
Green’s function G that is easy to get
derivatives is used [10].
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2.1 Two dimensional AWE method [9] 

MoM with the substrate Green’s function usually
results in a matrix equation in the following form:
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Where Z is a square matrix and only can be
determined by the object analyzed, I is an 
unknown vector of the induced currents on the
patch, V is a known vector associated with the
source or excitation, and k is the wave number
and is permittivity. In accordance with the
AWE method, ),( rkI is expanded into a
two-dimensional Taylor series to obtain the
solutions of (2.1) over certain frequency and 
permittivity ranges.
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the denominator of the Padé  expansion, and
matching the coefficients of the equal powers of
k-k0 and 0rr . This leads to the matrix
equation (2.7). Where n is from 1 to X. If we solve
equation (2.7) in turn, bi,j and ci,j can be obtained,
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and the current vector ),( rkI can be obtained
by the calculated Padé model.

2.2 Neural networks [11]

Multilayer perceptrons (MLP) are the most
popular type of neural networks in use today.
Typically, an MLP neural network consists of an
input layer, one or more hidden layer, and an
output layer, as shown in Fig. 2.1. The top layer is
the output layer and the input impedance and
other scattering parameters can be outputted. The
bottom layer is the input layer, and four
parameters, frequency, relative permittivity,
position of feed line and the dimension of patch,
are inputted. The other two layers are hidden
layers, and it can be automatic treated in the
software [12].

2.3 Hybrid of AWE and ANN
AWE method is an accurate and efficient
technique that is based on the electromagnetic
mechanism. In the practical application, the
response varied with frequency and permittivity

can be simultaneously obtained by the
two-dimensional AWE method. In AWE, the
differentiation operates on the Green’s function
which does not involve the dimensions of the
object to be analyzed. Therefore it is not available
to obtain the response with respect to the
dimensions through AWE. In this case, the
sampling data for training variables respect to the
dimension of the microstrip and position of feed 
line can only be calculated point by point. Even in
this case, the speed of training is about one or two
orders faster than that of direct training. With the
two-dimensional AWE method and neural
network technique in hand, we can accurately and 
efficiently construct the neural network model.
The flowchart is shown in Fig. 2.2. 
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As the neural network model is constructed, the
response of object varied with each parameter can
be immediately obtained. This trained model may
be used in the optimization of microstrip
structures other than microstrip antennas.
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3   NUMERICAL RESULTS AND
DISCUSSION
The example is a microstrip antenna consisting of
a conducting patch residing on a dielectric
substrate having thickness h=0.787mm (Fig. 3.1).
The increments of frequency, relative permittivity,
position of feed line H and dimension of patch L
are 0.01GHz, 0.01, 0.1mm and 0.01mm
respectively. In order to get the response under
the following specification: the frequency varies
from 7.5GHz to 8.4GHz; the permittivity varies
from 1.8 to 2.8; the dimension L varies from
12.0mm to 13.0mm; the feed line position H 
varies from 8.79 to 0.79, the direct method
requires 7.5 seconds to obtain the solution
on a Personal Computer (1.2GHz AMD K7
processor). With general neural network
algorithm, including the training time, to obtain
the same accuracy, 1.4 seconds are need.
But with hybrid method, only 1.2 seconds
are needed, which is  times faster than
the direct method and  times faster than
the general neural network method (Table 3.1).
The training process of the software-
“Neuralmodeler” is shown in Fig. 3.2 and the
final error is less than 0.01. Figure 3.3 and Figure
3.4 show the real and imaginary parts of the input
impedance as a function of frequency, relative
permittivity, dimension L and position H by using
the hybrid method of the two dimensional AWE
method and neural network algorithm,
respectively (Due to difficulty in presenting four
dimensional figure, the variables, dimension L
and position H, are fixed). When this four
variables neural network model for this antenna
patch is obtained, consequently the optimizing

and designing will be an easy job. This neural
network model gives the complete
characterization of the microstrip patch antenna.
Because of its computational efficiency, it is
realizable in the optimization and the observation
of the sensitivity of the parameters, such as the
relative permittivity (Fig. 3.5). In this example,
only four variables are involved. It is observed
that the more the variables to be optimized, the
more the reduction of the computer time.

910

610

4106.3
1101.2

510

4  CONCLUSION 

The AWE algorithm has been extended from one 
dimensional to two dimensional cases. This
extension results in the extrapolation for two 
variables simultaneously. Compared to the
one-dimensional AWE, the computer time is
further reduced significantly. The hybrid of AWE
and ANN makes full use of the advantages of
both algorithms. Numerical results demonstrate
the efficiency of this hybrid scheme.
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Table 3.1 The compare of neural network methods and direct method
Neural network method

Time
Hybrid method General method

Direct method

Sampling 1.2x105 s 1.4x106 s
Training

Modeling 7.0x101 s 7.0x101 s 
No training

Generating response Almost zero Almost zero 7.5x109 s 
Total time 1.2x105 s 1.4x106 s 7.5x109 s 
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Figure 3.2 Effect of hybrid method on the training errors. 

Figure 3.3 The real part of the input impedance
(L =12.5 mm, H=8.79mm).
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Figure 3.4 The imaginary part of the input impedance
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