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Abstract— This paper presents a multiclass, multilabel im-
plementation of Least Squares Suppor t Vector Machines (LS-
SVM) for DOA estimation in a CDMA system. For any
estimation or classification system the algorithm’s capabilities
and performance must be evaluated. This paper includes a vast
ensemble of data suppor ting the machine learning based DOA
estimation algorithm. Accurateper formancecharacter ization of
the algor ithm is required to justify the results and prove that
multiclassmachinelearning methodscan besuccessfully applied
to wireless communication problems. The learning algorithm
presented in this paper includes steps for generating statistics
on the multiclass evaluation path. The error statistics provide
a confidence level of the classification accuracy.

I . INTRODUCTION

Machine learning research has largely been devoted to
binary and multiclass problems relating to data mining, text
categorization, and pattern recognition. Recently, machine
learning techniques have been applied to various problems
relating to cellular communications, notably spread spectrum
receiver design, channel equalization, and adaptive beam-
forming with direction of arrival estimation (DOA). In our
research we present a machine learning based approach for
DOA estimation in a CDMA communication system [1].
The DOA estimates are used in adaptive beamforming for
interference suppression, a critical component in cellular
systems. Interferencesuppression reduces themultipleaccess
interference(MAI) which lowers therequired transmit power.
The interference suppression capability directly in�uences
the cellular system capacity, i.e., thenumber of active mobile
subscribers per cell.

Beamforming, tracking, and DOA estimation are current
research topics with various technical approaches. Least
mean square estimation, Kalman filtering, and neural net-
works [2],[3],[4], have been successfully applied to these
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problems. Many approaches have been developed for calcu-
lating the DOA� three techniques based on signal subspace
decomposition are ESPRIT, MUSIC, and Root-MUSIC [1].

Neural networks have been successfully applied to the
problem of DOA estimation and adaptive beamforming in
[4], [5], [6]. New machine learning techniques, such as
support vector machines (SVM) and boosting [7], perform
exceptionally well in multiclass problems and new op-
timization techniques are published regularly. These new
machine learning techniques have the potential to exceed
the performance of the neural network algorithms relating
to communication applications.

The machine learning methods presented in this paper
include subspace based estimation applied to the sample
covariance matrix of the received signal. The one-vs-one
multiclass LS-SVM algorithm uses both training data and
received data to generate the DOA estimates. The end result
is an efficient approach for estimating the DOAs in CDMA
cellular architecture [1].

This paper is organized as follows. Section II presents
the system models for an adaptive antenna array CDMA
systems. A review of binary and multiclass machine learning
methods is presented in Section III, along with background
information on the LS-SVM algorithm. Section IV includes
a brief review of classic DOA estimation algorithms and
the elements of a machine learning based DOA estimation
algorithm. Section V presents a one-vs-one multiclass LS-
SVM algorithm for DOA estimation and simulation results
are presented in Section VI. Section VII includes a compar-
ison between standard DOA estimation algorithms and our
machine learning based algorithm.

I I. SYSTEM MODEL S

This section includes an overview of system models for
the received signal and adaptive antenna arrays designs.
All notation is described below and is consistently used
throughout the paper.
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A. Received Signal at Antenna Array output

The baseband signal, �� ���, from the antenna array is
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where �� ��� is the received signal of mobile �
 � is a

 � � array steering vector for 
 antenna elements and
� transmission paths, � ��� is the � � � received base-
band signal at the output of the matched filter
 � ���� ��
� ����� � � � ����������

��
is the 
 � � steering

vector, �� �
���


��� ��
 � is the spacing between antenna

elements, �
 is the carrier frequency, � is the velocity of
propagation, ��is the direction of arrival of the � signal,
�	� ��� is the transmit signal power from mobile �
 ��
 is the
attenuation due to shadowing from path �
 	
 ��� is the data
stream of mobile �
 and �� ��� is the additive noise vector.

To ease the complexity of the notation the terms relative
to the multiple paths are combined as
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In [8] �
 is defined as the spatial signature of the antenna
array to the �	� mobile.

I I I . SUPPORT VECTOR MACHINES - BACKGROUND

A major machine learning application, pattern classifi-
cation, observes input data and applies classification rules
to generate a binary or multiclass labels. In the binary
case, a classification function is estimated using input/output
training pairs,��

�
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 with unknown probability
distribution, � ��
 ��,
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The estimated classification function maps the input to a
binary output, � 	 �� � ���
��� � The system is first
trained with the given input/output data pairs then the test
data, taken from the same probability distribution � ��
 ��
 is
applied to the classification function. For the multiclass case
� � �� where� is a finite set of real numbers and� is the
sizeof themulticlass label set. In multiclass classification the
objective is to estimate the function which maps the input
data to a finite set of output labels � 	 �� � �

�
��
�
� ��

Support Vector Machines (SVMs) were originally de-
signed for the binary classification problem. Much like
all machine learning algorithms SVMs find a classification
function that separates data classes, with the largest margin,

using a hyperplane . The data points near the optimal hyper-
plane are the “support vectors” . SVMs are a nonparametric
machine learning algorithm with thecapability of controlling
the capacity through the support vectors.

A. Kernel Functions

The kernel based SVM maps the input space into a higher
dimensional feature, �
 space via a nonlinear mapping
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Thedatadoesnot havethesamedimensionality as thefeature
space since the mapping process is to a non-unique general-
ized surface [9]. The dimension of the feature space is not as
important as the complexity of the classification functions.
For example, in the input space, separating the input/output
pairs may require a nonlinear separating function, but in a
higher dimension feature space the input/output pairs may be
separated with a linear hyperplane. The nonlinear mapping
function � ��
� is related to kernel, � ��
�
� by


 ��� �� ��
� � � ��
�
� � (11)

Four popular kernel functions are the linear kernel, poly-
nomial kernel, radial basis function (RBF), and multilayer
perceptrons (MLP).
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The performance of each kernel function varies with the
characteristics of the input data. Refer to [10] for more
information on feature spaces and kernel methods.

B. Binary Classification

In binary classification systems the machine learning algo-
rithm generate the output labels with a hyperplane separation
where �
 � ���
 �� represents the classification “ label” of the
input vector � . The input sequence and a set of training
labels are represented as ��

�
�

�

�� 
 �
 � ���
��� � If the

two classes are linearly separable in the input space then the
hyperplane is defined as	�

��	 � �
	 is a weight vector
perpendicular to the separating hyperplane, 	 is a bias that
shifts the hyperplane parallel to itself. If the input space is
projected into a higher dimensional feature space then the
hyperplane becomes	�� ����	 � ��

The SVM algorithm is based on the hyperplane definition
[11],
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Given the training sets in ��� the binary support vector
machine classifier is defined as

� ��� � ����
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Thenon-zero��
� are “support values” and thecorresponding
data points, �

 are the “support vectors” . Quadratic pro-
gramming is one method of solving for the ��
� and 	 in the
standard SVM algorithm.

C. Multiclass Classification

For themulticlass problem themachine learning algorithm
produces estimates with multiple hyperplane separations.
The set of input vectors and training labels is defined as
��

�
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 � is the index
of the training pattern and � is the number of classes. There
exist many SVM approachesto multiclassclassification prob-
lem. Two primary multiclass techniques are one-vs-one and
one-vs-rest. One-vs-one applies SVMs to selected pairs of
classes. For � distinct classes there are � �����

� hyperplanes
that separate the classes. The one-vs-rest SVM technique
generates � hyperplanes that separate each distinct class
from the ensemble of the rest. In this paper we only consider
the one-vs-one multiclass SVM.

Platt, et.al., [12] introduced the decision directed acyclic
graph (DDAG) and a Vapnik-Chervonenkis (VC) analysis
of the margins. The DDAG technique is based on ������

�
classifiers for a � class problem, one node for each pair of
classes. In [12] it is proved that maximizing the margins at
each node of the DDAG will minimize the generalization
error. The performance benefit of the DDAG architecture
is realized when the �	� classifier is selected at the �	� !	�

node and the !	� class is eliminated. Refer to Figure 1 for a
diagram of a four class DDAG.

Not 4Not 1

1 vs 4

1 vs 32 vs 4

Not 3 Not 4,
Not 1

Not 2

3 vs 4 2 vs 3 1 vs 2

4 123

Input

Fig. 1. Four class DDAG for one-vs-one multiclass LS-SVM based DOA
estimation.

D. Least Squares SVM

Suykens, et.al., [13] introduced the LS-SVM which is
based on the SVM classifier, refer to equation ���� � The LS-
SVM classifier is generated from the optimization problem:
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# and "
 are the regularization and error variables, respec-
tively. The minimization in ����includes the constraints
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The LS-SVM includes one universal parameter, #
 that
regulates thecomplexity of themachine learning model. This
parameter is applied to the data in the feature space, the
output of the kernel function. A small value of # minimizes
the model complexity, while a large value of # promotes
exact fitting to the training points. The error variable "

allows misclassifications for overlapping distributions [14].

The Lagrangian of equation ���� is defined as
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where �
 are Lagrangian multipliers that can either be
positive or negative. The conditions of optimality are
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A linear system can be constructed from equations ���� �
���� [13],
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By eliminating weight vector 	 and the error variable "
 the
linear system is reduced to:
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In the linear systemsdefined in ��������� thesupport values
�
 are proportional to the errors at the data points. In the
standard SVM case many of these support values are zero,
but most of the least squares support values are non-zero. In
[13] a conjugate gradient method is proposed for finding 	
and �
 which are required for the SVM classifier in equation
���� �

IV. ALGORITHMS FOR DOA ESTIMATION

Two primary, classic methods for subspace based DOA
estimation exist in literature, Multiple Signal Classification
(MUSIC) [15] and Estimation of Signal Parameters Via Ro-
tational Invariance Techniques (ESPRIT) [16]. The MUSIC
algorithm is based on the noise subspace and ESPRIT is
based on the signal subspace.

Many computational techniques exist for working through
limitations of DOA estimation techniques, but currently no
techniques exist for a system level approach to accurately
estimating the DOAs at the base station. A number of lim-
itations relating to popular DOA estimation techniques are:
1) the signal subspace dimension is not known, many papers
assumethat it is. Thedifferencesbetween thecovariancema-
trix and the sample covariance matrix add to the uncertainty,
2) searching all possible angles to determine the maximum
response of the MUSIC algorithm, 3) evaluating the Root-
MUSIC polynomial on the unit circle, 4) multiple eigen
decompositions for ESPRIT, 5) computational complexity for
maximum likelihood method. The capabilities, in terms of
resolution and computational requirements, of these standard
DOA estimation algorithms serve as the benchmark for the
machine learning based DOA estimation. Refer to Section
VII for a comparison between standard DOA estimation
algorithms and the one-vs-one multiclass LS-SVM DOA
estimation algorithm.

A. Machine Learning for DOA Estimation

To estimate the antenna array response, �� ���

��� � ���� �
�
�, we must know � ���� and ��
. The contin-

uous pilot signal, included in cdma2000, can be used in
estimating ��
. This must be done for each resolvable path,
i.e., �
 �

�
��
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 � � � 
 � ����
�

requires information on
the DOA.

The process of DOA estimation is to monitor the outputs
of 
 antenna elements and predict the angle of arrival of �
signals, �'
. The output matrix from the antenna elements
is
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and the vector of incident signals is �� ��
��
 ��
 � � � 
 ��

�
. With a training process,

the learning algorithms generate DOA estimates,
��� �

�
���
 ���
 � � � 
���

�
, based on the responses from

the antenna elements, � ����.
For the proposed machine learning technique there is a

trade-off between the accuracy of the DOA estimation and
antenna array beamwidth. An increase in DOA estimation
accuracy translates into a smaller beamwidth and a reduction
in MAI. Therefore the accuracy in DOA estimation directly
in�uences the minimum required power transmitted by the
mobile. There should be a balance between computing effort
and reduction in MAI.

V. LS-SVM DDAG BASED DOA ESTIMATI ON

ALGORITHM

In this paper we propose a multiclass SVM algorithm
trained with projection vectors generated from the signal
subspaceeigenvectors and thesamplecovariancematrix. The
output labels from the SVM system are the DOA estimates.

The one-vs-one multiclass LS-SVM DDAG technique for
DOA estimation is trained for � DOA classes. The DDAG
tree is initialized with ������

� nodes. Therefore ������
�

one-vs-one LS-SVMs are trained to generated the hyper-
planes with maximum margin. For each class the training
vectors, ��
 are generated from the eigenvectors spanning
the signal subspace. The number of classes is dependent
upon on the antenna sectoring and required resolution. For a
CDMA system the desired interference suppression dictates
the fixed beamwidth. CDMA offers this �exibility since
the all mobiles use the same carrier frequency. For FDMA
systems a narrow beamwidth is desired, since frequency
reuse determines the capacity of a cellular system.

The signal subspace eigenvectors of the received signal
covariance matrix are required for accurate DOA estimation.
For a CDMA system with adaptive antenna arrays the
covariance matrix of the received signal is


�� � �
�
���

�
�

�
� (31)

In our machine learning based DOA estimation algorithm
the principal eigenvectors must be calculated. Eigen decom-
position (ED) is the standard computational approach for
calculating the eigenvalues and eigenvectors of a the co-
variance matrix. ED is a computationally intense technique,
faster algorithms such as PASTd [17] have been developed
for real-time processing applications.

For the LS-SVM based approach to DOA estimation
the output of the receiver is used to calculate the sample
covariance matrix �
�� of the input data signal �� ��� 


�
�� �
�
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The dimension of the observation matrix is 
 �(, ( is
ideal sample size (window length), and the dimension of the
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TABLE I

PROJECTION COEFFICIENTS FOR MACHINE LEARNING BASED POWER

CONTROL

Projection Coefficients
��
�

��
�

��
�

1 0.17+i�0.86 -0.20-i�0.54 0.00+i�0.86
2 0.66+i�0.05 -0.82+i�0.14 0.73-i�0.55
3 0.04-i�0.73 0.28+i�0.96 -1.01-i�0.58
4 -1.08-i�0.50 1.04-i�0.37 0.06+i�1.05
5 -0.60+i�0.92 -0.56-i�1.01 0.72-i�0.61
6 0.60+i�0.74 -0.87+i�0.64 -0.92-i�0.51
7 0.72-i�0.56 0.63+i�0.62 -0.03+i�0.76
8 -0.52-i�0.78 0.51-i�0.44 0.45-i�0.42

sample covariance matrix is 
 � 
. The principal eigen-
vectors, ��
 � � � 
��
 are calculated via eigen decomposition
(ED) or subspace tracking techniques. Each eigenvector is
used to calculate a covariance matrix, �
��� 
 � � � 


�
��� �

The algorithm requires only the set of estimated eigenvec-
tors from the sample covariance matrix, which are used to
generate projection coefficients for the classification process.
The projection vectors are generated from the projection
of �
��� 
 � 
 $ 
 

 onto the primary eigenvector of
the signal subspace. In the training phase the hyperplanes
at each DDAG node are constructed with these projection
vectors. In the testing phase �
��� is generated from the
received signal �� ��� and the principal eigenvectors. Then
the projection coefficients for the �	� !	� node of the DDAG
are computed with dot products of �
��� and the �	� !	�

training eigenvectors. This new set of projection vectors is
testing with the �	� !	� hyperplane generated during the
training phase. The DOA labels are then assigned based on
the DDAG evaluation path. A similar projection coefficient
technique has been successfully applied to a multiclass SVM
facial recognition problem presented in [18]. Table I includes
three sets of projection vectors, each set corresponds to a
different DOA. From areview of thedata it is evident that the
classes arenot linearly separable. Thedata must be projected
to a higher dimension feature space and tested against the
separating hyperplane.

The following algorithm for the one-vs-onemulticlass LS-
SVM implementation for DOA estimation includes prepro-
cessing, training, and testing steps. Specifically, thealgorithm
requires two sets of projection vectors for each DDAG node.
This allows for automatic MSE calculations at each step of
the DDAG evaluation path, thus providing a unique method
for error control and validation.

� Preprocessing for SVM Training

1) Generate the
�� training signal vectors for the
� LS-SVM classes, 
 is the number of antenna
elements, � is the number of samples.

2) Generate the � sample covariance matrices,
�
with ( samples from the 
�� data vector.

3) Calculate the signal eigenvector, 

 from each of

the � sample covariance matrices.
4) Calculate the 
 � � projection vectors, ��

 for

each of the� classes. The ensemble of projection
vectors consists of �

�
samples.

5) Store the projection vectors for the training phase
and the eigenvectors for the testing phase.

� LS-SVM Training

1) With the � projection vectors train the ������
�

nodes with the one-vs-one LS-SVM algorithm.
2) Store the LS-SVM variables, �
 and 	 from equa-

tion ���� 
 which define the hyperplane separation
for each DDAG node.

� Preprocessing for SVM Testing

1) Acquire 
 � � input signal from antenna array,
this signal has unknown DOAs.

2) Generate the sample covariance matrix with (
samples from the 
 �� data vector.

3) Calculate the eigenvectors for the signal subspace
and the noise subspace.

4) Generate the covariance matrices for each eigen-
vector.

� LS-SVM Testing for the � ! DDAG Node
1) Calculate TWO 
�� projection vectors with the

desired eigenvector covariance matrix and the �	�

and !	� eigenvectors from the training phase.
2) Test both projection vectors against the LS-SVM

hyperplane for the � ! node. This requires two
separate LS-SVM testing cycles, one with the
projection vector from the �	� eigenvector and one
with the projection vector from the !	� eigenvec-
tor.

3) Calculate the mean value of the two LS-SVM
output vectors (labels). Select the mean value that
is closest to a decision boundary, � or �� Compare
this value to the label definition at the node, then
select the proper label.

4) Repeat process for the next DDAG node in the
evaluation path or declare the final DOA label.

� Error Control

1) Review the MSE calculations for the DDAG eval-
uation path.

2) Apply error control and validation measures to
classify the label as either an accurate DOA es-
timate or as NOISE.

VI . SIMUL ATION RESULTS

Two simulation plots are included below. Each simulation
consists of a four class LS-SVM DDAG system. Figure 2
showsresults for a ten degree rangeper class. Figure3 shows
results for a one degree range per class.

The antenna array includes eight elements, therefore the
training and test signals were � � � vectors. The training
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and test signals are the complex outputs from the antenna
array. The received complex signal is modeled with a zero
mean normal distribution with unit variance� the additive
noise includes a zero mean distribution with a 0.2 variance.
This combination of signal and noise power translates into a
�$) �%*�

The system training consists of six DDAG nodes for the
four DOA classes. Both the training and test signalsconsisted
of ���� samples and the window length of the sample
covariance matrix was set to five. Therefore the training
and test sets were composed of ��� samples of each � � �
projection vector.

To completely test the LS-SVM DDAG system’s capa-
bilities the simulation were automated to test a wide range
of DOAs. The DOA test set consisting of signals ranging
from three degrees before the first DOA class to three
degrees after the last DOA class. Thus there were forty-
six test signals for Figure 2 and fourteen test signals for
Figure 3. As can been seen from the two plots the LS-SVM
DDAG DOA estimation algorithm is extremely accurate. No
misclassifications were logged. Testing shows that the LS-
SVM DDAG system accurately classifies the DOAs for any
desired number of classes and DOA separations from one
degree to twenty degrees.

10 15 20 25 30 35 40 45 50 55 60
DOAs

ML DOA Estimates

DOA Test Signals

Fig. 2. LS-SVM for DOA estimation, four classes with ten degree
separation between each.

A. Decision Grids

The decision grid (DG) technique was developed to track
the DDAG evaluation path and generate statistics to char-
acterize the confidence level of the DOA classifications.
The theoretical DG (T-DG) is a technique we developed to
quantify errors and add insight into the robustness of the LS-
SVM DDAG architecture. The T-DG is a deterministic �

grid for DDAGswith a relatively small number of classesand
small DOA rangebetween classes. Theelements of theT-DG

10 15 20 25 30
DOAs

ML DOA Estimates

DOA Test Signals

Fig. 3. LS-SVM for DOA estimation, four classes with one degree
separation between each.

represent the deterministic values of the two LS-SVM labels
at each DDAG level, the deterministic values are referred
to as “ theoretical decision statistics” . Designing T-DGs for
DDAGs with three to five classes and DOA ranges up to
five degrees between classes is straight forward. The T-DGs
are not deterministic for large DOA ranges, i.e. for a DOA
range of ten degrees between classes empirical results show
that the DDAG evaluation path is unpredictable. The large
DOA ranges lead to uncertainty in the evaluation path, even
though the test DOA is classified correctly.

Empirical decision grids (E-DG) are automatically gener-
ated in the LS-SVM DDAG DOA estimation algorithm. The
E-DGstabulatethemean of theLS-SVM output label vectors
at each DDAG nodeand level, themean valuesare referred to
as “decision statistics” . The unique design of this algorithm
includes testing the input data against two hyperplanes at
the �	� !	� node. With this approach the two output vectors
at each node are compared to one another. In a noise-free
environment, with perfect classification, the two label vectors
would be binary opposites, i.e. one label vector would be all
��� and theother label vector would beall ���� This technique
enables computation of theoretical mean square errors and
empirical mean square errors, refer to Section VI-B.

Table II includes a standard T-DG and Tables III and IV
include E-DGs for a three class DDAG with a two degree
DOA range per class. The two levels of a three class DDAG
are equivalent to the first two levels of a four class DDAG,
refer to Figure 1. Table II includes the possible evaluation
paths of this three class DDAG. The nodes for each DOA
evaluation path are included for the first and second DDAG
level. For example, DOA 1 has an evaluation path of Node
1 vs 3 at Level 1 and Node 1 vs 2 at Level 2. In Table III
E-DG presents the decision statistics for a signal subspace
eigenvector� in Table IV the second E-DG presents the
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TABLE II

THEORETIC DECISION GRID FOR A DDAG SYSTEM WITH 3 CLASSES

AND A 2 DEGREE DOA RANGE.

DOAs
Class 1 Class 2 Class 3

T-DG, Level 1 1 2 3 4 5
Node 1vs3 1vs3 1vs3 1vs3 1vs3

Label 0 0 0 0.5 1 1
Label 1 1 1 0.5 0 0

T-DG, Level 2
Node 1vs2 1vs2 1vs2�2vs3 2vs3 2vs3

Label 0 0 0.5 0�1 0.5 1
Label 1 1 0.5 1�0 0.5 0

TABLE III

EMPIRICAL DECISION GRID FOR A SIGNAL EIGENVECTOR

DOAs
Signal Data Class 1 Class 2 Class 3

E-DG, Level 1 1 2 3 4 5
Node 1vs3 1vs3 1vs3 1vs3 1vs3

Label 0 0 0 0.032 0.952 1
Label 1 1 1 0.576 0 0

E-DG, Level 2
Node 1vs2 1vs2 1vs2�2vs3 2vs3 2vs3

Label 0 0 0.176 1 0.808 1
Label 1 1 0.816 0 0.496 0

TABLE IV

EMPIRICAL DECISION GRID FOR A NOISE EIGENVECTOR

DOAs
Noise Data Class 1 Class 2 Class 3

E-DG, Level 1 1 2 3 4 5
Node 1vs3 1vs3 1vs3 1vs3 1vs3

Label 0 0.328 0.376 0.304 0.352 0.384
Label 1 0.752 0.744 0.712 0.768 0.776

E-DG, Level 2
Node 1vs2 1vs2 1vs2�2vs3 2vs3 2vs3

Label 0 0.232 0.256 0.144 0.136 0.184
Label 1 0.896 0.904 0.952 0.944 0.944

decision statistics for a noise subspace eigenvector.

B. Theoretical and Empirical MSEs

The difficulty in tracking the performance of the LS-SVM
DDAG DOA estimation algorithm is due to the numerous
DDAG evaluation paths. For many DDAGs the evaluation
paths can be determined based on the input data and the
class definitions. How can decision statistics be applied to
performance characterization?

The two primary performance measures for the LS-SVM
DDAG are the theoretical MSE (T-MSE) and the empirical
MSE (E-MSE). Both MSE performance measures are based
on MSE calculations with T-DGs and E-DGs. The T-MSE
is a MSE calculation between the corresponding elements of
the T-DG and theE-DG. This is ameasure of the algorithm’s

empirical decision statistics in relation to the “ theoretical”
decision statistics. For example, the T-MSE for a 3 class
DDAG is calculated with the T-DG and E-DG presented in
Tables II and III. The T-MSE for Class 2 is calculated as

Level 1 Level 2
Label 0 Label 1 Label 0 Label 1

����� ������� ����� ������� ��� ��� ��� ���
�

Unlike the T-MSE, the E-MSE is a technique that allows
for real-time error tracking with only the empirical deci-
sion statistics. The E-MSE uses only the E-DGs and the
differences between the two LS-SVM decision statistics at
each node in the evaluation path. This is a measure of the
empirical classification accuracy achieved at each DDAG
node. The E-MSE for a 3 class DDAG is calculated with
only the E-DG presented in Table III. The MSE for Class 2,
Level 1 is �������� ������ � ��� � ����� and the MSE for
Class 2, Level 2 is ���� �� � ��� � �.

C. Misclassifications vs. Gross Errors

Two secondary performance measures for the LS-SVM
DDAG are misclassifications and gross errors. These mea-
sures are used for performance characterization of the multi-
class LS-SVM DDAG DOA estimation algorithm and for
tracking variations in performance for various algorithm
parameters. Misclassifications and gross errors can not be
used in real time implementation because knowledge of the
test DOAs is required.

Misclassifications measure “small shifts” in DOA clas-
sifications. If a DOA is located near a border between
labels the machine learning process could classify the data
to an adjacent label, not the closest label. Therefore, a
misclassification is a shift related error where a signal is
detected, but classified to a spatially adjacent label. This type
of error still gives an indication of the received DOA. The
region of misclassifications is defined as �

� of theDOA range
applied to both sides of a DOA class.

Gross errors measure significant errors in DOA classifica-
tions. If a DOA is classified into a specific class, but spatially
located at least one entire class away, then the error is due
to a breakdown in the machine learning process. This type
of error assigns false/misleading information to a received
DOA. The region of gross errors is defined as the magnitude
of the DOA range applied to both sides of the DOA class.

Figure 4 displays the DOA regions for correct classi-
fications, misclassifications and gross errors. This specific
example is for a DDAG class centered at �� with a ��

DOA range, i.e., any DOA in the range ���
 �� is correctly
classified to the �� class. The region enclosed by the dashed
brackets includes all DOAs that are correctly classified at
the �� class. If any DOAs outside the dashed brackets but
inside the solid brackets are assigned the �� class, then that
DOA would be a misclassification. If any DOAs outside the
solid brackets are assigned to the �� class, then that DOA
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would be a gross error. The misclassification region, for a
DOA classified at ��, is 
+, � ���
��� 
 ��
 �� � The gross
error region, for a DOA classified at ��, is 
+,  � ���
 �� �

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
0

Misclassifications

Correct
Classifications

Gross
Errors

Fig. 4. Diagram of regions defining DOA misclassifications and gross
errors.

D. Kernel Parameters

Simulation results show that kernel selection has the
greatest effect, out of all tunable variables, in the classifi-
cation process. The four kernels discussed in Section III-
A are tested with the LS-SVM DDAG DOA estimation
algorithm. The performances of each kernel function and
the associated parameters are characterized with in terms of
MSE, misclassifications, and gross errors. In addition, the
LS-SVM regularization parameter, #
 is varied to show the
in�uence of the LS-SVM complexity.

1) Polynomial Kernel: The polynomial kernel provides
the best results, in relation to the RBF, MLP, and linear
kernels. Figure 5 displays the T-MSE in terms of the poly-
nomial degree, �
 and constant, �� The simulation is based
on a four class DDAG with a �� DOA range and a fixed
LS-SVM variable, # � �� The results show that the degree
of the polynomial kernel affects the DOA estimation� the
best values are � � � and � � �� For � � � the polynomial
kernel is equivalent to the linear kernel. TheMSE is constant
for � 
 # 
 �, and the polynomial constant, �
 does not
in�uence the performance. The rate of misclassifications is
���� with zero gross errors� The degree of the polynomial is
the only factor affecting the computational time for system
training.

2) Radial Basis Function Kernel: The performance of
the RBF kernel is characterized in terms of the LS-
SVM regularization variable, #
 and the smoothing parame-
ter, ��� The simulation is based on a four class DDAG with a
�� DOA range. The resultsshow that theMSE is constant for
# 
 ���, and �� 
 ���. The rateof misclassifications is����
with zero gross errors� The training time increases with the
value of # and for small values of ��. The performance of
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Fig. 5. Theoretical MSE for a the polynomial kernel, the DOA range
is �� and spans the DDAG classes at ���� ���� ���� ���, the LS-SVM
parameter, �� is set at 2.

the RBF kernel matches the performance of the polynomial
kernel for DOAs in the rangeof ��� to ���� Theperformance
of the polynomial kernel exceeds that of the RBF kernel for
DOAs ' ��� and - ����

3) Multilayer Perceptron Kernel: Results show that the
MLP kernel is ineffective in maintaining a low MSE for the
range of parameters tested. The rate of misclassifications is
����� and the rate of gross errors is ������ Overall the
performance of the MLP kernel is inferior to the polynomial
and RBF kernels.

4) Linear Kernel: The linear kernel is equivalent to the
polynomial kernel with � � �. Large MSE values show
that the linear kernel is not effective in the LS-SVM DOA
estimation algorithm. The average T-MSE is ����� and the
average E-MSE is ������

E. Training and Test Vectors

The design of training sequences is an important factor in
machine learning applications. For adaptive antenna arrays
the training sequences represent the array outputs for the
� DOA classes. Three specific elements of the training
sequences are noise variance, training vector length, and
length of the sample covariance window. The requirement
is to design training sequences that minimize both the
training error and generalization error. Empirical analysis
of the multiclass LS-SVM based DOA estimation algorithm
shows that training error is effectively zero� the hyperplane
separation of the data in the featurespace is well defined and
separable. In this paper the generalization error is expressed
in terms of MSEs, misclassifications and gross errors.

The primary method for training LS-SVM DDAG systems
for DOA estimation is based on synthetic training vectors
generated with known noise power and preselected vector
lengths. In practice, the training vectors would be stored in
the memory of the receiver that employs the DOA estimation
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algorithm. This approach allows for of�ine training of the
binary LS-SVM algorithms.

Simulation results show that theLS-SVM DOA estimation
algorithm is robust, in terms of MSE, when analyzed for a
range of SIRs in the training vectors and the test signals. In
general, thenoisepower of thetraining vectorsdoesn’t havea
dramatic effect on the generalization error. Simulations were
conducted with training vectors that included SIRs in the
range of �� $) to � $)� Review of the misclassification
and grosserror statistics show that training vectors with noise
variances of ���� and ����, which correspond to SIRs of ��
$) and �� $), provide the best performance.

1) Length of Training and Testing Vectors: Figure 6
includes two plotsof average theoretical MSE versus training
vector length. The data is specific to a four class LS-SVM
DDAG system with a four degreepolynomial kernel. Thetwo
plots show that the window length of the sample covariance
matrix does not impact theperformance. Likewise there is no
correlation between the length of the training vector and the
MSE. The results in Figure 6 are based on test vectors with
size equivalent to the training vectors. Figure 7 is a 3D plot
of the theoretical MSE as a function of vector dimensions�
the dimensions of the training vectors and input data vectors.
The length of the input datavector ranges from 0.5 to 2 times
the length of the training vectors. The data shows that range
of input data vectors has no effect on the MSE statistics.

25 37 49 61 73 85 97 109 121 133 145 157 169 181 193
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Training Vector Length

A
ve

ra
ge

 T
he

o
re

tic
a

l M
S

E

Window Length = 5
Window Length = 10

Fig. 6. Average theoretical MSE as a function of training vector length.
Two data plots are included� one plot is for a sample covariance matrix with
a five sample window, one plot is for a sample covariance matrix with a ten
sample window.

Table V shows the processing times, in seconds, required
for training a four class LS-SVM DDAG system with a
four degree polynomial kernel. and testing the input data.
The results Data is included for training and test vectors
that range from 25 samples to 200 samples. The simulations
were conducted with a Pentium 4 running at 2.5 GHz. The
processing times are relative to the computer system and the
level of optimization applied to the programming, but serve
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Fig. 7. Theoretical MSE as a function of training vector length and input
vector length. The LS SVM DDAG system includes four class and a four
degree polynomial kernel. The test window multiplier defines the input
vector length, i.e. the input vector length ranges between 0.5 to 2 times
the training vector length.

TABLE V

PROCESSING TIMES, IN SECONDS, FOR ONE-VS-ONE MULTICLASS

LS-SVM FOR DOA ESTIMATION.

Vector Size
25 50 75 100 125 150 175 200

Train 0.30 0.94 2.25 4.49 7.39 11.27 15.23 20.38
Test 0.20 0.23 0.31 0.47 0.56 0.66 0.72 0.91

as a basic indicator for possible hardware implementation
and real-time applications.

The data in this section shows that the design of the
training vectors is important, but there is a tolerance in the
selection of noise power and training vector length. The
available tolerance in choosing parameters of the training
vectors validates the design of the LS-SVM DOA estimation
algorithm. This characteristic allows�exibility in the system
design and provides a high confidence level in the DOA
estimates. In addition, when considering real-timeimplemen-
tation of the algorithm, the dimensions of the training vector
must be carefully reviewed. Shorter training vectors offer
high performance, in terms of MSE, and fast training times.

F. Range of DDAG Parameters for DOA Estimation

Theexceptional performanceof theLS-SVM DDAG DOA
estimation algorithm has been proved in the previous sec-
tions. Most the previous simulation results were based on
three and four class DDAGs. To cover the desired span of
the antenna array sector the algorithm must be �exible in the
number of DDAG classes and DOA ranges. Different appli-
cations require different DDAG architectures. Many times
the application will require fast training and high accuracy.
Training aLS-SVM DDAG system can beperformed of�ine.
But covering a large antenna sector with high resolution
would require either:
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TABLE VI

PERCENTAGE OF MISCLASSIFICATIONS VERSUS DDAG CLASSES (3-6)

AND DOA RANGES (1-10).

DOA Range between Classes, Degrees
Classes 1 2 3 4 5 6 7 8 9 10

3 0 0 0 0 6.7 0 4.8 4.2 0 0
4 0 0 0 0 0 0 3.6 3.1 0 0
5 0 0 0 0 4.0 0 2.9 0 6.7 0
6 0 0 0 0 0 0 4.8 0 5.6 0

1) A DDAG with a large number of classes and a small
DOA range,

2) A two stage system where the antenna sector is parti-
tioned into a set number of classes with a wide DOA
range. First, thesignal isdetected in aspecific partition,
then a DDAG structure for high resolution can classify
the DOA with high accuracy

Whatever the desired approach is, the LS-SVM DDAG algo-
rithm must be �exible in design and robust in performance.

The data in this section proves the performance for a wide
range of DDAG structures. Simulations were conducted for
three to ten classes with DOA ranges between �� and ����
With these classes and DOA ranges the LS-SVM DDAG
algorithms is able to span antenna sectors of �� to ����
Table VI lists the number of misclassifications. Seventy-five
percent of the DDAG structures with DOA ranges between
�� and ��� have zero misclassifications� the average rate of
misclassifications for the set of DDAG structures is �����
The largest percentage of misclassifications is ���� and
occurs with a five class DDAG with a nine degree DOA
range.

G. Multilabel Capability for Multiple DOAs

In DOA estimation for cellular systems, there can be
multipleDOAsfor agiven signal. This results from multipath
effects induced by the communication channel. The machine
learning system must beable to discriminatebetween asmall
number of independent DOAsthat includesignal components
with similar time delays. With this constraint the machine
learning algorithm then must be a multiclass system and able
to process multiple labels.

The machine learning algorithm must generate multiclass
labels, �
 � � , where� � ����
 ��� is a set of real numbers
that represent an appropriate range of expected DOA values,
and multiple labels �

 � � � � � � � for � dominant signal
paths. If antenna sectoring is used in the cellular system the
multiclass labels are from the set � � ��
�
 where �
 is field
of view for the �	� sector.

Multilabel classification is possible with the LS-SVM
DDAG algorithm presented in Section V. The machine
learning algorithm for DOA estimation assigns DOA labels
to each eigenvector in the signal subspace. By repeating the

DDAG cycle for each eigenvector the multiclass algorithm
has the capability of assigning multiple labels to the input
signal.

VI I . COMPARISON TO STANDARD DOA ESTIMATION

AL GORITHMS

The performance of the one-vs-one multiclass LS-SVM
algorithm for DOE estimation is described, in detail, in
the previous section. The results show that the multiclass
classification approach to DOA estimation provides unique
benefits, in termsof computational complexity and �exibility.
Each algorithm is trained for � DOA classes. The number
of classes is dependent upon on the antenna sectoring and
required resolution. The ideal application of this technique
is CDMA cellular systems. For a CDMA system the desired
interference suppression dictates the fixed beamwidth. A
reduction in beamwidth corresponds to a reduction in MAI,
thus reducing the required transmit power at the mobile
subscriber. CDMA offers this�exibility since the all mobiles
use the same carrier frequency. For Frequency Division
Multiple Access (FDMA) systems a narrow beamwidth is
desired, since frequency reuse factors into the capacity of a
cellular system, thus requiring accurate DOA estimates with
high resolution.

A. Computational Complexity

Conventional subspace based DOA estimation algorithms,
such as MUSIC and ESPRIT, are computationally complex.
The algorithms require accurate knowledge of the signal
subspace dimension and accurate estimates of the signal
and noise subspace eigenvectors. Additionally, the MUSIC
algorithm requires a precise characterization of the antenna
array and the ESPRIT algorithm requires multiple eigen
decompositions.

The one-vs-one multiclass LS-SVM algorithm for DOA
estimation is �exible, with respect to computationally re-
quirements. The training cycle for theLS-SVM based DDAG
is straight forward and can be completed of�ine with sim-
ulated data. The only information required is the size of
the antenna array and the number of DDAG nodes, which
corresponds to DOA classes. For accurateDOA estimates the
only information required, for the LS-SVM DDAG testing
cycle, is the dimension of the antenna array and accurate
eigenvector estimates of the sample covariance matrix. The
dimension of the signal subspace is not required, nor is
accurate characterization of the antenna array.

B. Simulation Results

Figure 8 compares the one-vs-one multiclass LS-SVM
DOA estimation algorithm and the MUSIC algorithm. The
top window shows perfect DOA estimation for the machine
learning method presented in this paper. The multiclass
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algorithm includes an eight class DDAG and a one de-
gree DOA range per class. Note that multiclass LS-SVM
algorithm classifies signals outside the DOA classes to the
nearest class, as shown with the DOAs at ��� � ��� and
�������. The bottom window displays the DOA estimation
with the MUSIC algorithm, 100 DOA estimates are averaged
for each received signal and the amplitudes are normalized
to the largest estimate. The plots show that the resolution
capabilities one-vs-one multiclass LS-SVM DOA estimation
algorithm equal that of the MUSIC algorithm�One drawback
of the MUSIC algorithm is the broad width of the DOA
estimate� a level detection step is required to accurately select
the maximum response.

Figure 9 compares the errors and DOA estimates of each
algorithm. For this simulation the one-vs-one multiclass LS-
SVM algorithm includes a seventeen class DDAG and a
five degree DOA range per class. The top window plots
the errors in the DOA estimates for ninety degree antenna
sector and one DOA sample per degree. The definitions of
an error are specific to the two algorithms. For the machine
learning based algorithm, an error is defined as aDOA that is
classified into awrong DOA class. For theMUSIC algorithm
an error is the difference between the estimated DOA and
the actual DOA. As shown in the top window, the only
errors associated with the LS-SVM based algorithm occur
for DOAs greater than ���. The DOAs in error are classified
into the spatially adjacent DOA class at ���. Likewise, the
errors associated with the MUSIC algorithm, that are greater
than ��, occur for DOAsgreater than ���. Theplots in Figure
9 prove the robust performance of the one-vs-one multiclass
LS-SVM algorithm for DOA estimation.
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Fig. 8. Comparision between the LS-SVM based DOA estimation algorithm
and the MUSIC algorithm. The one-vs-one multiclass LS-SVM DOA
estimation algortihm includes eight classes and a one degree DOA range.
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Fig. 9. Comparision of errors and estimated DOAs for the LS-SVM
based DOA estimation algorithm and the MUSIC algorithm. The one-vs-one
multiclass LS-SVM DOA estimation algortihm includes seventeen classes
and a five degree DOA range.

C. Benefits over Standard Techniques

Evaluation of the performance statistics, Section VI,
proves that the one-vs-one multiclass LS-SVM algorithm for
DOA estimation is reliablewith a high degreeof accuracy. In
terms of performance our new algorithm provides the same
capabilities as thestandard DOA estimation methods. Specif-
ically, accurate DOA estimates, to a one degree resolution,
can be achieved with the standard subspace based algorithms
and our machine learning based algorithm. The primary
benefitsof our LS-SVM based DOA estimation algorithm are
the reduced computational complexity, described above, and
the �exibility, in terms of DOA classes versus requirements.
The specific application dictates the desired resolution and
therefore the number of DOA classes. For example, one
application may include a sixty degree antenna sector and a
desired resolution of ten degrees. These requirements would
translate into a seven class system. Another application may
includeatwenty degreesector and adesired resolution of two
degrees� this would translate into a eleven class system. An
additional option is to place two DDAG systems in series, as
described in Section VI-F, that allows for a high resolution
with a small number of classes. In general, the one-vs-one
multiclass LS-SVM algorithm for DOA estimation can be
adapted to specific requirements, as in�uenced by system
capacity, channel conditions, and available computational
resources. The MUSIC and ESPRIT algorithms offer no
�exibility, in terms of DOA resolution and computational
resources.

VI I I . CONCLUSION

In this paper we presented a machine learning architecture
for DOA estimation as applied to a CDMA cellular system.
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The broad range of our research in machine learning based
DOA estimation includes multiclass and multilabel classifi-
cation, classification accuracy, error control and validation,
kernel selection, estimation of signal subspace dimension,
and overall performance characterization. We presented an
overview of a multiclass SVM learning method and suc-
cessful implementation of a one-vs-one multiclass LS-SVM
DDAG system for DOA estimation.

The LS-SVM DOA estimation algorithm is superior to
standard techniques due to the robust design that is insen-
sitive to received SIR, Doppler shift, size of the antenna
array, and the computational requirements are adaptable to
the desired applications. The algorithm was designed with
a multiclass, multilabel capability and includes an error
control and validation process. In addition, there are many
limitations of standard DOA estimation algorithms, ESPRIT
and MUSIC, that do not exist with the LS-SVM DOA
estimation algorithm.

The LS-SVM algorithm for DOA estimation assigns DOA
labels to each eigenvector in the signal subspace. By re-
peating the DDAG cycle for each eigenvector the multiclass
algorithm has the capability of assigning multiple labels to
the input signal. Simulation results show a high degree of
accuracy and prove that the LS-SVM DDAG system has a
wide range of performance capabilities. The results show
that the algorithm is accurate for a large range of DDAG
performance independent of DDAG class or DOA range per
class. The LS-SVM DDAG system accurately classifies the
DOAs for three to ten classes and DOA ranges from one
degree to twenty degrees.
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