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ABSTRACT: Neural models for calculating the
bandwidth of electrically thin and thick rectangular
microstrip antennas, based on the multilayered
perceptrons and the radial basis function networks,
are presented. Thirteen learning algorithms, the
conjugate gradient of Fletcher-Reeves, Levenberg-
Marquardt, scaled conjugate gradient, resilient
backpropagation, conjugate gradient of Powell-Beale,
conjugate gradient of Polak-Ribiére, bayesian
regularization, one-step secant, backpropagation with
adaptive learning rate, Broyden-Fletcher-Goldfarb-
Shanno, backpropagation with momentum, directed
random search and genetic algorithm, are used to
train the multilayered perceptrons. The radial basis
function network is trained by the extended delta-bar-
delta algorithm. The bandwidth results obtained by
using neural models are in very good agreement with
the experimental results available in the literature.
When the performances of neural models are
compared with each other, the best results for training
and test were obtained from the multilayered
perceptrons trained by the conjugate gradient of
Powell-Beale and Broyden-Fletcher-Goldfarb-Shanno
algorithms, respectively.

1. INTRODUCTION

Microstrip antennas (MSAs) have become the
favorite choice of antenna designers because they
offer the attractive features of low profile, light
weight, low cost, conformability to curved surfaces,
ease of manufacture, and compatibility with
integrated circuit technology [1-18]. A number of
methods [1-36] using different levels of
approximation have been proposed and used to
compute the bandwidth of rectangular MSA, as this is
one of the most popular and convenient shapes. These
methods can generally be divided into two groups:
simple analytical methods and rigorous numerical
methods. Simple analytical methods can give a good
intuitive explanation of antenna radiation properties.
However, these methods do not consider rigorously
the effects of surface waves. Exact mathematical
formulations in rigorous methods involve extensive
numerical procedures, resulting in round-off errors,
and may also need final experimental adjustments to
the theoretical  results.  These  methods   also  require

high performance large-scale computer resources and
a very large number of computations. Furthermore,
most of the previous theoretical and experimental
work has been carried out only with electrically thin
MSAs, normally of  the order of h/λd ≤ 0.02, where h
is the thickness of the dielectric substrate and λd is the
wavelength in the substrate. Recent interest has
developed in radiators etched on electrically thick
substrates. The need for theoretical and experimental
studies of MSAs with electrically-thick substrates is
motivated by several major factors. Among these is
the fact that MSAs are currently being considered for
use in millimetre-wave systems. The substrates
proposed for such applications often have high
relative dielectric constants and, hence, appear
electrically thick. The need for greater bandwidth is
another reason for studying thick substrate MSAs.
Consequently, this problem, particularly the
bandwidth aspect, has received considerable
attention.

In this paper, models based on artificial neural
networks (ANNs) are presented for the bandwidth of
both electrically thin and thick rectangular MSAs.
Ability and adaptability to learn, generalizability,
smaller information requirement, fast real-time
operation, and ease of implementation features have
made ANNs popular in the last few years [37-40].
Because of these fascinating features, artificial neural
networks in this article are used to model the
relationship between the parameters of MSA and the
measured bandwidth results.

In previous works [35,41-48], we also successfully
introduced ANNs to compute the various parameters
of the triangular, rectangular and circular MSAs.  In
reference [35], the bandwidth of rectangular MSAs
has been computed by using ANNs. In [35], only the
multilayered perceptrons (MLPs) were used as the
neural network architecture. However, in this paper,
both the MLPs and the radial basis function networks
(RBFNs) are used for calculating the bandwidth.
Furthermore, in [35], the four learning algorithms, the
backpropagation (BP) [49], the delta-bar-delta (DBD)
[50], the quick propagation (QP) [51], and the
extended delta-bar-delta (EDBD) [52], are used to
train the MLPs. However, in this paper, thirteen

1054-4887 © 2003 ACES

46 ACES JOURNAL, VOL. 18, NO. 2, JULY 2003, SI: NEURAL NETWORK APPLICATIONS IN ELECTROMAGNETICS



learning algorithms, conjugate gradient of Fletcher-
Reeves (CGFR) [53], Levenberg-Marquardt (LM)
[54,55], scaled conjugate gradient (SCG) [56],
resilient backpropagation (RP) [57], Broyden-
Fletcher-Goldfarb-Shanno (BFGS) [58], conjugate
gradient of Powell-Beale (CGPB) [59,60], conjugate
gradient of Polak-Ribiére (CGPR) [61], bayesian
regularization (BR) [62], one-step secant (OSS) [63],
backpropagation with adaptive learning rate
(BPALR) [61], backpropagation with momentum
(BPM) [61], directed random search (DRS) [64] and
genetic algorithm (GA) [65,66] are used to train the
MLPs. The radial basis function network is trained by
extended delta-bar-delta (EDBD) algorithm. The
main aims of this paper are

• to calculate the bandwidth of electrically thin
and thick rectangular MSAs by using the
MLPs and RBFNs architectures;

• to train the MLPs by the CGFR, LM, SCG,
RP, BFGS, CGPB, CGPR, BR, OSS,
BPALR, BPM, DRS, and GA, and to train the
RBFNs by the EDBD algorithm;

• to compare the bandwidth results of neural
models presented in this paper with the
results of the conventional methods available
in the literature;

• to compare also the bandwidth results of
neural models presented in this paper with the
results of fuzzy inference systems [36]
trained by the improved tabu search
algorithm (ITSA) [67], the modified tabu
search algorithm (MTSA) [68] and the
classical tabu search algorithm (CTSA)
[69,70], and with the results of the neural
models [35] trained by the BP, DBD, QP, and
EDBD algorithms;

• to determine the most appropriate neural
model in calculating the bandwidth of
rectangular MSAs; and

• to show the superiority of artificial
intelligence techniques such as neural
networks and fuzzy inference systems over
the conventional methods.

In the following sections, the bandwidth of the
MSAs, the ANNs, the MLPs and the RBFNs are
described briefly, and the application of neural
networks to the calculation of the bandwidth of a
MSA is then explained.

2. BANDWIDTH OF A RECTANGULAR
MICROSTRIP ANTENNA

Figure 1 illustrates a rectangular patch of width W
and length L over a ground plane with a substrate of
thickness h and a relative dielectric constant εr. The
bandwidth of this antenna can be written as [1]
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Figure 1. Geometry of rectangular microstrip
antenna.

where s is voltage standing wave ratio (VSWR), and
QT is the total quality factor. The total quality factor,
QT, can be written as
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where the four terms represent the radiation quality
factor, the  quality factors due to conductor loss,
dielectric loss, and surface wave.

Bandwidth was defined by Pozar [23] as the half-
power width of the equivalent circuit impedance
response. For a series-type resonance, this bandwidth
is

rwr dw
dXW

R2BW = (3)

where Z=R+jX is the input impedance at the radian
resonant frequency wr. For a parallel-type resonance,
(3) is used with R replaced by G and X replaced by B,
where Y=G+jB is the input admittance at resonance.
The derivative in (3) can be evaluated by calculating
the input impedance at two frequencies near
resonance and using a finite difference
approximation. The resonant resistance, R, is given
by

scdr RRRRR +++= (4)

where the four terms represent the radiation
resistance, the equivalent resistance of the dielectric
loss, the equivalent resistance of the conductor loss,
and surface wave radiation resistance. The certain
way of calculating the total quality factor and the
resonant resistance of both electrically thin and thick
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rectangular microstrip patch antennas involves the
complicated Green function methods and integral
transformation techniques. These methods and
techniques suffer from a lack of computational
efficiency, which in practice can restrict their
usefulness because of high computational time and
costs.

In this work, a new technique based on the ANNs for
solving this problem efficiently is presented. First, the
antenna parameters related to the bandwidth are
determined, then the bandwidth depending on these
parameters is calculated by using the ANNs.

The feeding method or position is not considered in
calculating the bandwidth because the feeding
method or position does not effect the intrinsic patch
bandwidth. The bandwidth of a patch is significantly
greater than that of a printed dipole, at least over the
range for which the patch actually resonates
(h<0.12λ0, where λ0 is the free space wavelength at
the resonant frequency fr). This fact is consistent with
the antenna gain/bandwidth relation to antenna size.
Therefore, the effect of the patch width W on the
bandwidth of rectangular microstrip antennas must be
taken into consideration in the bandwidth calculation
of these antennas. From the results of the methods
available in the literature   [1-36] we see that for a
given frequency, larger bandwidth is possible by
choosing a thicker substrate and a wider patch. The
results also indicate that a lower value of εr results in
a larger bandwidth.

It is clear from the methods and formulas presented
by [1-36] that only three parameters, h/λd, W, and the
dielectric loss tangent tanδ, are needed to describe the
bandwidth. The wavelength in the dielectric substrate,
λd, is given as

rrr

0
d

f
c
ε

=
ε

λ
=λ (5)

where c is the velocity of electromagnetic waves in
free space.

3. ARTIFICIAL NEURAL NETWORKS (ANNs)

ANNs are biologically inspired computer programs
designed to simulate the way in which the human
brain processes information. ANNs gather their
knowledge by detecting the patterns and relationships
in data and learn (or are trained) through experience,
not from programming. An ANN is formed from
hundreds of single units, artificial neurons or
processing elements connected with weights, which
constitute the neural structure and are organised in
layers. The power of neural computations comes from
weight connection in a network. Each neuron has
weighted inputs, summation function, transfer

function and one output. The behaviour of a neural
network is determined by the transfer functions of its
neurons, by the learning rule, and by the architecture
itself. The weights are the adjustable parameters and,
in that sense, a neural network is a parameterised
system. The weighted sum of the inputs constitutes
the activation of the neuron. The activation signal is
passed through a transfer function to produce the
output of a neuron. Transfer function introduces non-
linearity to the network. During training, the inter-
unit connections are optimised until the error in
predictions is minimised and the network reaches the
specified level of accuracy. Once the network is
trained, new unseen input information is entered to
the network to calculate the output for test. ANN
represents a promising modelling technique,
especially for data sets having non-linear
relationships that are frequently encountered in
engineering. In terms of model specification, artificial
neural networks require no knowledge of the data
source but, since they often contain many weights
that must be estimated, they require large training
sets. In addition, ANNs can combine and incorporate
both literature-based and experimental data to solve
problems.

There are many types of neural networks for various
applications available in the literature [37-40,71].
RBFNs and MLPs are examples of feed-forward
networks and both universal approximators. In spite
of being different networks in several important
respects, these two neural network architectures are
capable of accurately mimicking each other [40].

3.1. Multilayered Perceptrons (MLPs)

Multilayered perceptrons (MLPs) [40,49] are the
simplest and therefore most commonly used neural
network architectures. They have been adapted for
the calculation of the bandwidth of the MSA. MLPs
can be trained using many different learning
algorithms [37-40,71]. In this paper, MLPs are
trained with the CGFR, LM, SCG, RP, BFGS,
CGPB, CGPR, BR, OSS, BPALR, BPM, DRS, and
GA. As shown in Figure 2, an MLP consists of three
layers: an input layer, an output layer and an
intermediate or hidden layer. Neurons (indicated in
Figure 2 with the circle) in the input layer only act as
buffers for distributing the input signals xi to neurons
in the hidden layer. Each neuron j in the hidden layer
sums up its input signals xi after weighting them with
the strengths of the respective connections wji from
the input layer and computes its output yj as a
function f of the sum, viz.,

∑= )xw(fy ijij                                            (6)

f can be a simple threshold  function, a   sigmoidal  or
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Figure 2. General form of multilayered perceptrons.

hyperbolic tangent function. The output of neurons in
the output layer is computed similarly.

Training a network consists of adjusting weights of
the network using the different learning algorithms. A
learning algorithm gives the change ∆wji(k) in the
weight of a connection between neurons i and j at
time k. The weights are then updated according to the
following formula

)1k(w)k(w)1k(w jijiji +∆+=+ (7)

3.2. Radial Basis Function Networks (RBFNs)

An alternative network architecture to the MLP is the
RBFN [72-74]. A network with an internal
representation of hidden neurons, radially symmetric,
is named as a RBFN. The topology of the RBFN is
obviously similar to that of the three-layered MLP,
and the differences lie in the characteristics of the
hidden neurons. The structure of a RBFN is shown in
Figure 3.

The construction of a RBFN in its most basic form
involves three entirely different layers. The input
layer is made up of source neurons. The second layer
is a hidden layer of high dimension serving a
different purpose from that in a MLP. This layer
consists of an array of neurons. Each neuron contains
a parameter vector called a centre. The neuron
calculates the Euclidean distance between the centre
and the network input vector, and passes the result
through a non-linear function. The output layer is
essentially a set of linear combiners and supplies the
response of the network. The transformation from
input layer to the hidden layer is non-linear, whereas
the transformation from the hidden layer to the output
layer is linear.

Output Layer

Input Layer

Hidden Layer

x1 x2 xm

Σ Σ Σ

y1 y2 yn

Figure 3. Radial basis function network.

The output of an hidden layer is a function of the
distance between the input vector and the stored
centre and calculated as

( )∑
=

−=−=
N

1i

2
kiikk CXCXO (8)

The learning consists of using a clustering algorithm
for determining the cluster centres (Ck) and a nearest
neighbour heuristic for determining the cluster
centres. Linear regression, or a gradient descent
algorithm is used to determine the weights from the
hidden layer to the output layer. In this work, EDBD
algorithm is used to train the weights of the layer.

4. NEURAL NETWORKS FOR BANDWIDTH
COMPUTATION

ANNs have been adapted for the calculation of the
bandwidth (BW) of electrically thin and thick
rectangular microstrip antennas. MLPs are trained
with the use of CGFR, LM, SCG, RP, BFGS, CGPB,
CGPR, BR, OSS, BPALR, BPM, DRS, and GA
algorithms. RBFN is trained by using EDBD
algorithm. For the neural models, the inputs are h/λd,
W, and tanδ, and the output is the measured
bandwidth BWME. A neural model used in calculating
the BW is shown in Figure 4.

For the MLPs trained by DRS and GA, input layer
has the linear transfer function, the hidden and output
layers have the sigmoid function. For the MLPs
trained by the other learning algorithms, the input and
output layers have the linear transfer function and the
hidden layers have the tangent hyperbolic function. In
the RBFNs, the sigmoid function was used for the
output layer. Training an ANN with the use of a
learning   algorithm    to    compute    the    bandwidth
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involves presenting it sequentially with different sets
(h/λd, W, tanδ) and corresponding measured values
BWME. Differences between the target output BWME
and the actual output of the ANNs  are evaluated by a
learning algorithm. The adaptation is carried out  after
the presentation of each set (h/λd, W, tanδ) until the
calculation accuracy of the network is deemed
satisfactory according to some criterion (for example,
when the error between BWME and the actual output
for all the training set falls below a given threshold)
or the maximum allowable number of epochs or
generations is reached.

The training and test data sets used in this paper have
been obtained from the previous experimental works
[33,34], and are given in Table 1. The 27 data sets in
Table 1 were used to train the networks. 6 test data
sets which are marked with an asterisk in Table 1
were used for test. The number of neurons in the
hidden layers and train epochs for neural models
presented here are given in Table 2. 10x7x8 in
Table 2 means that the number of neurons was 10, 7,
and 8 for the first, second, and third hidden layers,
respectively. Initial weights of the neural models
were set up randomly.

5. RESULTS AND CONCLUSIONS

The bandwidths calculated by using neural models
presented in this paper for electrically thin and thick
rectangular microstrip patch antennas are listed in
Table 3. For comparison, the results obtained by
using the conventional methods [1,21,31-33], and the
neural models presented by [35] and the fuzzy
inference systems [36] are given in Table 4.  EDBD,
DBD, BP, QP, ITSA, CTSA, and MTSA in Table 4
represent, respectively, the bandwidths calculated by
the neural models [35] trained by EDBD, DBD, BP,
QP, and calculated by the fuzzy inference systems
[36] trained by ITSA, CTSA, and MTSA. The total
absolute errors between the computed and
experimental results for neural models, fuzzy
inference systems, and conventional methods are
listed in Table 5 and Table 6.

Table 1. Measured bandwidth results and
dimensions for electrically thin and thick
rectangular microstrip antennas.
Patch
No

h
(mm) fr (GHz) h/ d

W
(mm) tan

Measured
[33,34]

BWME (%)
1   0.17 7.740 0.0065   8.50 0.001   1.07
2   0.79 3.970 0.0155 20.00 0.001   2.20
3   0.79 7.730 0.0326 10.63 0.001   3.85
4   0.79 3.545 0.0149 20.74 0.002   1.95
5   1.27 4.600 0.0622   9.10 0.001   2.05
6   1.57 5.060 0.0404 17.20 0.001   5.10
7   1.57 4.805 0.0384 18.10 0.001     4.90*
8   1.63 6.560 0.0569 12.70 0.002   6.80
9   1.63 5.600 0.0486 15.00 0.002   5.70

10   2.00 6.200 0.0660 13.37 0.002     7.70*
11   2.42 7.050 0.0908 11.20 0.002 10.90
12   2.52 5.800 0.0778 14.03 0.002   9.30
13   3.00 5.270 0.0833 15.30 0.002 10.00
14   3.00 7.990 0.1263   9.05 0.002   16.00*
15   3.00 6.570 0.1039 11.70 0.002 13.60
16   4.76 5.100 0.1292 13.75 0.002 15.90
17   3.30 8.000 0.1405   7.76 0.002 17.50
18   4.00 7.134 0.1519   7.90 0.002   18.20*
19   4.50 6.070 0.1454   9.87 0.002 17.90
20   4.76 5.820 0.1475 10.00 0.002 18.00
21   4.76 6.380 0.1617   8.14 0.002 19.00
22   5.50 5.990 0.1754   7.90 0.002 20.00
23   6.26 4.660 0.1553 12.00 0.002 18.70
24   8.45 4.600 0.2091   7.83 0.002 20.90
25   9.52 3.580 0.1814 12.56 0.002 20.00
26   9.52 3.980 0.2017   9.74 0.002 20.60
27   9.52 3.900 0.1976 10.20 0.002   20.30*
28 10.00 3.980 0.2119   8.83 0.002 20.90
29 11.00 3.900 0.2284   7.77 0.002 21.96
30 12.00 3.470 0.2216   9.20 0.002 21.50
31 12.81 3.200 0.2182 10.30 0.002 21.60
32 12.81 2.980 0.2032 12.65 0.002 20.40
33 12.81 3.150 0.2148 10.80 0.002   21.20*

*Test data sets

When the performances of neural models presented in
this paper and in [35] are compared with each other,
the best results for training and test were obtained
from the MLP network trained by the CGPB and
BFGS, respectively, as shown in Table 5. However,
among the neural models, the highest accuracy in the
total absolute errors was achieved with the CGFR
algorithm. When the two heuristic approaches were
compared with each other, the results of DRS were
found better than those of the GA. It is also clear
from Table 5 that in most cases the results of neural
models presented in this paper are better than those of
the neural models presented by [35] and that the best
result in the total absolute errors is obtained from the
fuzzy inference systems trained by ITSA. However,
the train absolute error of the fuzzy inference systems
trained by ITSA is larger than that of the MLPs
trained by CGFR, LM, SCG, CGPB, and CGPR
algorithms.
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Table 2. The ANN configurations and the number of
train epochs for neural models presented in this paper.

ANN Architectures/
Algorithms

The number of
neurons in the
hidden layers

The number
of train
epochs

        CGFR 10 x 7 x 8     2 500
        LM 6 x 3        201
        SCG 11 x 8 x 7     1 200
        RP 12 x 10     6 500
        BFGS 10 x 5        700
        CGPB 7 x 7 x 4     1 500
        CGPR 7 x 7 x 4     1 500
        BR 3 x 4 x 3        290
        OSS 10 x 8 x 8     2 500
        BPALR 45 x 35 x 35     2 500
        BPM 45 x 35 x 35     5 000
        DRS 12 x 6        740

MLPs

        GA 20 x 25     1 850
RBFN         EDBD 20 x 6 185 200

It can be clearly seen from Tables 4 and 6 that the
conventional methods give comparable results-some
cases are in very good agreement with measurements,
and others are far off. When the results of neural
models and fuzzy inference systems are compared
with the results of the conventional methods, the
results of all neural models and fuzzy inference
systems are better than those predicted by the
conventional methods. The very good agreement
between the measured bandwidth values and the
computed bandwidth values of neural models and
fuzzy inference systems supports the validity of the
artificial intelligence techniques and also illustrates
the superiority of artificial intelligence techniques
over the conventional methods.

A distinct advantage of neural computation is that,
after proper training, a neural network completely
bypasses the repeated use of complex iterative
processes for new cases presented to it. For
engineering applications, the simple models are very
usable. Thus the neural models given in this work can
also be used for many engineering applications and
purposes.
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Table 3. Comparison of measured and calculated bandwidths obtained by using neural models presented in this
paper for electrically thin and thick rectangular microstrip antennas.

Present Neural Models
MLP RBFNPatch

No

Measured
BWME (%)

[33,34] CGFR LM SCG RP BFGS CGPB CGPR BR OSS BPALR BPM DRS GA EDBD
1   1.070 1.069   1.071   1.071   1.070   1.070   1.070   1.070 1.070 1.067 1.071 1.068 1.400 1.573 1.048
2   2.200   2.199   2.200   2.200   2.201   2.202   2.200   2.200 2.200 2.203 2.200 2.201 2.182 2.620 2.292
3   3.850   3.850   3.850   3.850   3.850   3.850   3.851   3.850 3.850 3.853 3.837 3.840 3.336 3.288 3.849
4   1.950   1.949   1.950   1.949   1.950   1.952   1.950   1.950 1.950 1.948 1.945 1.949 1.951 1.943 1.899
5   2.050   2.050   2.050   2.050   2.051   2.048   2.050   2.050 2.050 2.049 2.061 2.062 2.210 2.120 2.077
6   5.100   5.101   5.100   5.100   5.099   5.100   5.099   5.100 5.100 5.100 5.097 5.100 5.223 4.816 5.024
7    4.900*   4.560   4.900   4.766   4.922   4.764   4.016   4.011 5.175 4.137 4.233 4.300 4.571 4.506 4.437
8   6.800   6.800   6.800   6.800   6.800   6.798   6.801   6.800 6.799 6.811 6.790 6.801 6.754 7.076 6.744
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Table 4. Bandwidths obtained from the conventional methods and artificial intelligence techniques available in
the literature for electrically thin and thick rectangular microstrip antennas.

Artificial Intelligence Techniques in the LiteratureConventional Methods in the
Literature Neural Models [35] Fuzzy Inference Systems [36]Patch

No

Measured
BWME (%)

[33,34] [21] [1] [31] [33] [32] EDBD DBD BP QP ITSA CTSA MTSA
1   1.070   0.82   0.84 0.30   1.20   0.26   1.081   1.068   1.178   1.271   1.070   1.070   1.070
2   2.200   1.45   2.03 0.87   2.78   0.75   2.193   2.197   2.304   2.117   2.200   2.200   2.200
3   3.850   2.99   3.76 1.88   5.03   1.64   3.840   3.854   3.670   3.753   3.848   3.850   3.850
4   1.950   1.29   1.69 0.72   2.46   0.61   1.948   1.948   1.905   2.034   1.950   1.959   1.950
5   2.050   1.54   1.90 0.72   4.09   0.84   2.046   2.047   2.117   2.612   2.051   2.050   2.050
6   5.100   4.21   5.14 2.67   6.46   2.35   4.945   5.340   5.211   4.837   5.101   5.100   5.100
7    4.900   3.96   4.87 2.51   6.17   2.20   4.916   4.898   4.831   4.854   4.899   4.900   4.895
8   6.800   5.98   6.70 3.69   8.12   3.43   6.824   6.788   6.887   6.757   6.775   6.595   6.798
9   5.700   4.76   5.69 3.02   7.12   2.78   5.679   5.718   5.822   5.783   5.699   5.676   5.711

10    7.700   7.29   7.81 4.41   9.16   4.20   8.006   7.865   7.727   7.730   7.759   7.877   7.769
11 10.900 11.31 10.88 6.39 11.72   6.50 10.858 10.901 11.040 10.998 10.906 11.217 10.896
12   9.300   9.14   9.26 5.36 10.42   5.26   9.336   9.287   9.155   9.085   9.255   9.476   9.287
13 10.000 10.30 10.14 5.88 11.15   5.83   9.990 10.000 10.092 10.131 10.003   9.860   9.994
14 16.000 18.42 15.64 9.41 15.16 10.36 15.975 15.862 15.940 15.851 16.005 15.998 16.139
15 13.600 13.84 12.75 7.53 13.14   7.90 13.607 13.601 13.528 13.388 13.598 13.174 13.600
16 15.900 18.06 15.73 9.35 15.11 10.50 15.881 15.917 15.994 16.100 15.914 16.050 15.905
17 17.500 15.29 18.48 8.39 17.00 11.28 17.523 17.480 17.349 17.264 17.450 17.442 17.324
18 18.200 13.62 20.09 8.15 17.77 12.18 18.254 18.433 18.372 18.339 18.288 18.357 18.284
19 17.900 14.54 19.17 8.31 17.34 11.70 17.844 17.917 17.949 17.947 17.845 17.884 17.797
20 18.000 14.08 19.46 8.19 17.47 11.80 18.016 18.091 18.101 18.129 18.060 18.050 17.977
21 19.000 12.45 21.47 7.95 18.42 12.93 19.113 19.054 19.113 19.094 18.955 18.988 19.110
22 20.000 10.73 23.41 7.63 19.29 14.10 19.818 19.766 19.878 19.883 19.999 19.714 19.955
23 18.700 13.01 20.55 8.10 18.01 12.57 18.804 18.620 18.433 18.599 18.690 18.603 18.688
24 20.900   7.85 28.24 6.76 21.26 16.49 21.009 21.101 21.170 21.163 20.896 21.080 20.917
25 20.000 10.10 24.27 7.46 19.66 14.54 19.851 19.842 19.857 19.836 19.997 19.790 20.035
26 20.600   8.45 27.17 7.02 20.85 16.10 20.608 20.760 20.916 20.900 20.602 20.759 20.478
27 20.300   8.76 26.59 7.10 20.61 15.76 20.524 20.608 20.724 20.734 20.296 20.599 20.274
28 20.900   7.63 28.64 6.67 21.40 16.65 20.977 21.147 21.241 21.231 20.909 21.145 21.056
29 21.960   6.50 31.03 6.14 22.26 17.56 21.885 21.777 21.557 21.609 21.960 21.741 21.973
30 21.500   6.92 30.06 6.32 21.91 17.13 21.495 21.469 21.412 21.433 21.510 21.461 21.580
31 21.600   7.11 29.56 6.41 21.73 16.95 21.535 21.317 21.342 21.249 21.566 21.309 21.377
32 20.400   8.26 27.39 6.90 20.92 16.07 20.500 20.592 20.569 20.498 20.401 20.526 20.514
33 21.200   7.39 29.07 6.54 21.55 16.77 21.460 21.184 21.148 21.103 21.221 21.178 21.173

Table 5. Train, test and total absolute errors between the measured and calculated bandwidhs  for
various neural networks and fuzzy inference systems.

Artificial Intelligence
Techniques

Learning
Algorithms

Train Absolute
Errors (%)

Test Absolute
Errors (%)

Total Absolute
Errors (%)

CGFR 0.199 0.770 0.969
LM 0.194 0.815 1.009
SCG 0.174 1.017 1.191
RP 0.421 0.779 1.200

BFGS 0.824 0.726 1.550
CGPB 0.136 1.499 1.635
CGPR 0.141 1.546 1.687

BR 0.410 1.275 1.685
OSS 0.499 1.833 2.332

BPALR 1.345 1.048 2.393
BPM 1.229 1.383 2.612
DRS 5.044 1.288 6.332

MLP

GA 6.069 1.721 7.790

Present Neural
Models

RBFN EDBD 3.633 1.330 4.963
ITSA 0.384 0.178 0.562

MTSA 1.270 0.350 1.620
Fuzzy Interference

Systems
[36] CTSA 3.435 0.657 4.092

EDBD 1.430 0.885 2.315
DBD 2.267 0.862 3.129
BP 4.158 0.804 4.962

Neural Models
in the Literature

[35]
MLP

QP 4.921 0.895 5.816
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Table 6. The total absolute errors between the
measured and calculated bandwidths for the
conventional methods in the literature.
Conventional
Methods in

the Literature
[21] [1] [31] [33] [32]

Total absolute
deviations
from the
measured
data (%)

178.69 88.76 266.93 23.92 140.02
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