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Abstract 

Electromagnetic research often requires studies 

within wider frequency ranges. For achieving a 

fine resolution in the frequency domain, the 

required computation time is usually high. Here 

the MoM-based field computation program 

FEKO working in frequency domain is used for 

this purpose. In order to reduce the computa-

tional costs by minimizing the number of sam-

pling points used, the interpolation algorithm 

MPBE (Model Based Parameter Estimation) is 

applied to achieve a mathematically based ap-

proximation of the problem. This paper pre-

sents the acceleration of computations with 

FEKO using the interpolation algorithm 

MBPE. A short introduction to FEKO is given 

at the beginning. Subsequently the implementa-

tion of MBPE as well as three possible adap-

tive strategies for further shortening the compu-

tation time is presented. Finally examples are 

given that show the advantages of this imple-

mented method. 

Introduction 

Research in the field of electromagnetic com-

patibility often requires studies over large fre-

quency ranges. Since the scenarios to be mod-

eled are very complex (e.g. in medical areas) 

and also the computation time needed for these 

kinds of investigations is usually very high a 

new approach has to be developed to fulfill all 

these requirements. In this paper the MoM-

based field computation program FEKO is ac-

celerated using the MBPE algorithm, which is 

presented in the following. 

The Field Computation Program FEKO 

FEKO [1], [2] is a field computation program 

considering objects of arbitrary shape. It is 

based on a full wave solution of Maxwell’s 

equations in the frequency domain. The accu-

rate Method of Moments (MoM) formulation is 

used to solve for the unknown surface currents. 

Asymptotic techniques, Physical Optics (PO) 

and Uniform Theory of Diffraction (UTD) have 

been hybridized with the MoM in order to 

solve electrically large problems. The MoM 

has also been extended to solve problems in-

volving multiple homogeneous dielectric bod-

ies, thin dielectric sheets and dielectric coated 

wires. An approach is necessary to speed up 

computations over large frequency ranges. 

Therefore, the acceleration of FEKO with the 

interpolation algorithm MBPE is described in 

the following. 

Model Based Parameter Estimation (MBPE) 

In order to reduce the computational costs by 

minimizing the number of sampling points 

used, the interpolation algorithm MPBE [3], 

[4], [5], [6] is applied to achieve a mathemati-

cally based approximation of the problems. A 

function sampled in the frequency domain is 

approximated with MBPE to represent the 

original function by a reduced-order physically 

based approximation called a fitting model. 
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The application of such a fitting model means 

interpolating between samples to reduce the 

amount of data needed. First frequency f  is 

normalized with respect to the center frequency 

cf  and the width of the frequency interval wf .
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Now the fitting models are described by a pole 

series based on the Padé approximation with 

rational polynomials 
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with n  is order of the numerator and d  is or-

der of the denominator. Basically there are 

three possibilities for determining parameters 

for fitting models, either from samples of the 

process to be modeled, alternatively from sam-

ples of the derivatives of the process, or from a 

combination of both. Since the field computa-

tion program FEKO is used here and the com-

putational cost of derivative sampling of a 

process would be much higher, only function 

sampling is used in this paper. With sampling 

in frequency domain, there is no need for the 

samples ( if ) to be uniformly spaced as is usu-

ally the case in most time domain solutions. 

That means that the samples can be chosen in 

such a way that the yield of information for 

each sample is a maximum. Equation (2) leads 

to

( ) ( ) ( )i i iD f F f = N f , i = 0,...,D -⋅  (3a) 

where ( ) 2 d

i 0 i 2 i d iD f = D + D f + D f + ...+ D f  (3b) 

and ( ) 2 n

i 0 i 2 i n iN f = N + N f + N f + ...+ N f  (3c) 

There are 2D = d + n +  unknown coefficients in 

the two polynomials ( )iD f  and ( )iN f . An ad-

ditional condition or constraint is needed and 

so 1dD =  is chosen (linear predictor constraint). 

With now determining the 1D = d + n +  un-

known coefficients 0 2 n 0N ,N ,N + ...+ N ,D ,D ,

2 d -D + ...+ D  of this equation system a function 

to represent the original values can be found. 

Now the complete frequency range is divided 

into different windows and for every window 

an equation system according to (3) is solved. 

In the end all fitting models are combined to 

give the overall solution function for the entire 

frequency range. 
A first example (IEEE German EMC chapter: 

benchmark problem no. 3) for the functionality 

of the algorithms is given with a monopole 

antenna on an infinite ground plane and a 

nearby wire loop (see figure 1). The exciting 

frequency of the antenna is varied in the range 

from f = 1 MHz to 30 MHz. The resulting 

complex current induced in the wire loop is 

shown in figure 2. 

Fig. . Geometry in principle for the bench-

mark problem no. 3 defined by the 

German IEEE/EMC chapter. 

If 30 equidistant sample points (i.e. sampling 

every 1 MHz) are linearly interpolated the 

curve shown in figure 2a results. In this case 

resonant peaks are cut off. An exact result can 

be achieved using uniformly and closely sam-

pled points (in this case 581 samples, i.e. sam-

pling every 50 kHz) as shown in figure 2b. The 

same curve results with using the 30 sample 

points and interpolating with MBPE (see figure 

2c).

Overlapping fitting models always containing 

1 7N DN + N + =  sample points were used to ap-

proximate this problem. The orders of the 

polynomials for every fitting model were cho-

sen 3N DN = N = . The first seven sample points 
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were used for determining the coefficients of 

the first model representing the first part of the 

solution. For the second fitting model samples 

2 to 8 are used to compute its model coeffi-

cients and so on. In the end all fitting models 

were set together to achieve the overall solution 

with only 30 sample points. The computation 

time rises linearly with the number of sample 

points used in total, so in this case the overall 

computation was accelerated with using the 

MBPE algorithm by an acceleration factor of 

Fig. 2. Complex current induced in a wire 

loop.

Adaptive Sampling 

With “adaptive sampling” a more flexible algo-

rithm is applied to further minimize the number 

of required sample points by exploiting the fact 

that in the frequency domain no uniformly 

spaced samples are required. The computation 

is started with a small set of sampling points 

and with these a set of overlapping windows is 

determined. The whole frequency range is cov-

ered by overlapping windows so that a maxi-

mum error between two fitting models 

( )
( ) ( )
( ) ( )

i k j k

i, j k

i k j k

W f -W f
E f =

W f +W f
   (4) 

can be determined for every frequency. Where 

the error is a maximum, a new sample point 

will be added. If a window is containing too 

much sample points, it will be split up into two. 

The algorithm is terminated when the error 

falls under a certain threshold. 

The second adaptive sampling approach im-

plemented is using a strategy based on Rom-

berg’s method. The procedure starts with an 

interval containing five uniformly spaced sam-

ples. With these samples three trapezoidal val-

ues are computed (with samples 1,3,5; 1,2,3 

and 3,4,5) and an error estimation between 

these values indicates whether a new sample is 

required in this interval. If that is the case, two 

new subintervals are formed from each half of 

the original interval and Romberg’s method is 

applied to both of them. If new samples are 

required in either of these subintervals, new 

sample points are added where indicated. This 

process is repeated until the error falls under a 

chosen threshold. 

The third approach to reduce the number of 

sampling points needed is a Genetic Algorithm 

(GA) to find the orders of the numerator and 

the denominator for a fitting model represent-

ing the whole frequency range. It is started with 

a very simple model with low order (e.g. 

1 4N DN + N + = ). There are now various possi-

bilities for the orders of the numerator and the 

denominator ( 0 3N DN = ; N =  / 1 2N DN = ; N =

/…). If the three best models of this generation 

are not sufficient in representing the final re-

sult, a new sample point is added and a new set 

581
= 19 . 4 .

30
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Shielding effectiveness in dB 

of models (with 1 5N DN + N + = ) will be deter-

mined. In this way the number of sampling 

points is consequently increased during the 

steps of the approximation process until the 

error between the three best models falls under 

a given threshold. 

Results

All three adaptive strategies are now used to 

achieve an accurate result with less sample 

points. For the benchmark problem described 

above the three strategies lead to the following 

results. The first adaptive approach needed 24 

samples and achieved an accuracy of 0.01 

while using four overlapping windows (win-

dow orders: 4 3N0 D0N = ; N =  / 5 5N DN = ; N =  / 

8 8N2 D2N = ; N =  and 7 6N3 D3N = ; N =  arranged in 

such a way, that always two windows are over-

lapping). With the second approach at first 33 

samples were computed according to Rom-

berg’s method and then windows with 13 sam-

ples per window ( 6 6N DN = ; N = ) always over-

lapping from sample 10 to 13 are used to get 

the overall function. Finally an accuracy of 
-56.5 10⋅  is achieved. With using the Genetic 

Algorithm 30 samples were computed and the 

achieved accuracy is -35 10⋅ . The resulting three 

best approximation functions have the orders 

14 15N0 D0N = ; N =  / 15 14N DN = ; N =  and 

13 16N3 D3N = ; N = .

In the next example [7] there is a small wire 

loop in a cube shaped metallic housing radiat-

ing an electromagnetic field (see figure 3). The 

shielding effectiveness (the electrical field ra-

diated through the housing’s front plate with 

four small slots in it compared to the electrical 

field without front plate) is shown in figure 4. 

Here only 84 samples were used and interpo-

lated with MBPE (GA approach) compared to 

901 for a closely and uniformly sampled func-

tion. Therefor five windows were computed 

(100 MHz - 309 MHz: 7 6N0 D0N = ; N = ,

309 MHz - 418 MHz: 3 3N DN = ; N = ,

418 MHz - 550 MHz: 10 13N2 D2N = ; N = ,

550 MHz - 760 MHz: 12 9N3 D3N = ; N =

760 MHz -1000 MHz, 12 8N4 D4N = ; N = ) to 

achieve the overall solution function. There is 

almost no difference between the two functions 

(the maximum error over the whole frequency 

range in this case is -410 ) and the factor in time 

saving (acceleration factor) is 901/84 = 10.7. 

Fig. 3. Housing (without (left) and with (right) 

front plate) containing a small wire 

loop radiating an electromagnetic field. 

Fig. 4 Shielding effectiveness of the housing in 

dB.

One other examples containing also very sharp 

peaks is a simple dipole forked at both ends 

excited by an incoming plane wave. The result-

ing magnitude of the input impedance at its 

ports is depicted over frequency in figure 5. 

Here only 11 sample points (also shown in the 

figure) were necessary to interpolate this curve 

with an accuracy of -55.5 10⋅  compared to 1500 

uniformly and closely sampled points. This 

means an acceleration factor of 1000/11=90.9. 

One window is used to approximate the curve 

Frequency f in Hz 
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with the orders 6DN =  and 4NN = . With a little 

lower accuracy this curve could be interpolated 

with only 10 points, which results in an accel-

eration factor of 100. 

Fig. 5 Input impedance of a forked dipole an-

tenna excited by an incoming plane 

wave. 

Finally it can be said, that with this new ap-

proach the computation time has been much 

reduced and therewith parameter studies and 

optimizations for larger problems needing a lot 

of single computations can be done now with 

the help of this method in an acceptable time. 

Conclusions

The successful implementation of Model Based 

Parameter Estimation and coupling with the 

field computation program FEKO is presented 

here. Adaptive sampling for speeding up 

computations is also described. The 

implemented algorithm converges and shows 

good accuracy in first examples, which 

underline the advantages of the algorithm. 
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