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Abstract— In this paper a method for the solu-
tion of scattering problems is proposed. In partic-
ular the EFIE is solved by a collocation point pro-
cedure, where the unknown current density is ex-
panded by Daubechies wavelets on the interval and
the integration is performed in the wavelet domain
by the integral operator, hence without the use of
any quadrature formula. Comparison with induced
currents calculated by a standard MoM and with
fields calculated by a FEM code are reported.

I. Introduction

Wavelet Expansion (WE) has become a widely
used tool in electromagnetic analysis. The main
reasons can be found in the strong interpolating
properties of the wavelet functions and to the fact
that WE and reconstruction can be performed by
the use of fast algorithms (see for example [1] - [3]).

The analysis of scattering problems can be car-
ried out expanding the unknown functions in terms
of a chosen wavelet basis and performing a Galerkin
procedure using the same wavelet functions as test
functions (see [4] - [6]). The integration is then
performed by the use of quadrature formulae.

In this paper the EFIE for the scattering on a
conductive body is solved in a different way. By uti-
lizing Daubechies wavelets on the interval the un-
known current is expanded, then a collocation point
method is used and the integration is performed
by the use of the integral operator for Daubechies
wavelets on the interval developed by the authors
(see [8]). In this way the need of quadrature formu-
lae is avoided; furthermore the well known capabil-
ity of the wavelet functions of representing irregular
signals with few coefficients, allows us to use bases
of low dimension (if compared with the number of
unknowns of a standard MoM); for these reasons
both accuracy and CPU time saving are achieved.

II. Wavelets on the Interval and
Operators

The concepts of scaling functions, wavelets, time-
scale analysis, multiresolution analysis are here
considered known [1]; there are many wavelet
bases available in the literature, and we chose the
Daubechies Wavelets on the interval [2] for their
numerical properties. In particular the choice of
wavelets that ”survive” only on intervals is adopted
because we are interested in the solution of a bound-
ary value problem.

From the wavelet theory we know that WE must
be performed starting from a signal known at a
dyadic number of samples. This number is equal to
the dimension of the basis on which we perform the
WE; hence a signal represented by n = 2m sam-
ples when expanded in the wavelet domain leads
to a number of 2m coefficients. For the com-
pact support wavelet there is an important rela-
tion that allows a straight computation of the co-
efficients at the higher resolution of a generic func-
tion: it is possible to obtain them from the sam-
ples of the functions itself according to the relation
〈φJ,k, f〉 = 2J/2f(2Jk), where φJ,k is the scaling
function of order J, k of the adopted wavelet basis.
Then, the vector of wavelet coefficients g represent-
ing the wavelet transform of a function g(x) can be
obtained by multiplying a matrix W related to the
adopted wavelet basis and the samples g(xj) corre-
sponding to 2m equally spaced points in the inter-
val [0, 1]. Further details about wavelet numerical
computation can be found in [3].

When performing WE of a function, the nota-
tion that will be used throughout the paper is the
following:

f(t) =
∑

i

fibi(x) = b(x)f (1)

where b(x) = [b1(x), · · · bn(x)] is the wavelet basis
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and f = [f1, · · · , fn]T is the vector of coefficients
constituting the wavelet expansion of the signal.

Also operators can be represented in the wavelet
domain, as described in [7]. The authors have ob-
tained the representation of the integral operator
for the Daubechies wavelets on the interval (see for
example [8]). The convenience in using operators in
the wavelet domain is that the integral of a function
f(x) can be calculated by the matrix-vector prod-
uct Tf where T is the constant sparse matrix rep-
resenting the operator in the wavelet domain and
f is the wavelet expansion of the function f(x). In
the previous operation the result is the primitive
function of f . In order to better understand the
previous statement let us define f(x) = x3; we can
write that

∫
[0,1]

f(x)dx =
∫

[0,1]

x3dx =
1
4
x4 = g(x) (2)

where the integral limit [0, 1] indicates that we are
considering the interval [0, 1]. Expanding (2) ac-
cording to (1) in the wavelet domain we can write
that ∫

[0,1]

b(x)fdx = b(x)g (3)

where f and g are the wavelet expansion of the two
functions. Left multiplying by b(x)T and taking
into account the definition of the integral operator

( T = 〈b(x),
∫

b(x)〉) and the orthogonality prop-

erties of the wavelet basis (Id = 〈b(x),b(x)〉, whith
Id being the identity matrix) we can write that

Tf = g (4)

Hence as clearly stated in equation (4) the cal-
culation of function g(x) can be performed in the
wavelet domain by multiplying matrix T by vector
f , the wavelet expansion of the function f(x); then
the result, vector g, is inverse transformed, obtain-
ing the function g(x).

In order to compute a definite integration directly
in the wavelet domain, two new (row) vectors must
be introduced: vectors b0 = b(0) and b1 = b(1)
that are the values of the basis functions on the left
and right border, respectively, of the interval [0, 1].
The meaning of these two vectors is the following:
given a function f(x), its left border value f(0) can
be obtained by the coefficients of its WE simply by
the use of the vector b0 as f(0) = b0f .

Suppose that we want to compute

1∫
0

f(x)dx =

1∫
0

x3dx =
1
4
x4|10 = g(x)|10 =

1
4

(5)

Then starting from equation (4) it must be con-
sidered that the primitive function (g) is already
calculated, and we only need to evaluate it on the
borders of the interval. Hence it yields

1∫
0

f(x)dx = b1g − b0g (6)

which can be rewritten as
1∫

0

f(x)dx = b1Tf − b0Tf (7)

As evidenced in equation (7) the calculation of
the definite integral of a function f(x) can be per-
formed knowing its WE f , the integral operator ma-
trix T and the border vectors. The quantities T,
b0 and b1 are known once a wavelet basis has been
chosen, so they need to be computed only once, and
not at any analysis.

III. Method of Moments and Wavelet
Expansion

A. General Considerations

In the study of scattering from conducting cylin-
ders, an integral equation can be formulated, which
in general has the form of

j
η

β

[
β2

∫ ∫
S

Js(r′)G(rs, r′)ds′+

+∇
∫ ∫

S

∇′ · Js(r′)G(rs, r′)ds′
]

= Ei
t(r = rs)

(8)
where η =

√
(µ/ε) and β2 = ω2µε; Js is the cur-

rent density induced on the scatterer, G is the green
function for the three dimensional scatterer, r′ and
rs are respectively the integration variable and the
observation point, both on the surface scatterer;
and Ei

t is the incident field.
In a simpler way and in one dimension equation

(8) can be in general rewritten as
∫

g(x′)K(x, x′)dx′ + c(x)g(x) = h(x) (9)

where g(x) is our unknown function. In the lit-
erature [5], function g is expanded in the wavelet
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domain, and the expansion is substituted in (9). In
order to obtain a linear system for the unknown
coefficients, the resultant equation is tested with
the same expansion functions (Galerkin’s method).
Quadrature formulae available in the literature for
wavelets and scaling functions are used, and a
square system is obtained, which solved gives the
unknown coefficients.

Due to the high interpolating properties of the
Daubechies wavelets on the interval, we have
adopted this family of wavelets, for which the au-
thors have developed the representation of the inte-
gral operator. Wavelets on the interval (and so op-
erators in the wavelet domain) are defined on [0, 1],
hence the contour of the scatterer must be mapped
into the interval [0, 1]. As it is suggested in [6] for
an arbitrary contour of the scatterer two steps must
be performed:
• The contour of the scatterer is discretized in
boundary elements and then each boundary ele-
ment (simply a first order element) is mapped into
one dimensional standard element through shape
functions or interpolation functions.
• The standard elements are mapped into corre-
sponding portions of the interval [0, 1].

In this way the basis functions are defined in a
standard way on the interval [0, 1], since the contour
has been mapped on this interval.

B. Scattering from a Conductive Body

In case of a two dimensional problem with TMz

polarization the EFIE equation is the following:

ηβ

4

∫
C

Jz(ρ′)H
(2)
0 (β|ρm − ρ′|)dc′ = Ei

z(ρm) (10)

where ρm is any observation point on the scatterer,
ρ′ is any source point on the scatterer and C is the
contour of the scatterer.

After the mapping on the elemental interval [0, 1]
(described in the previous section) is performed, we
perform a classical collocation point procedure: we
evaluate equation (10) at a particular point ρ̄m of
the contour; hence equation (10) can be rewritten
as

k

1∫
0

f(x)g(x)dx = h (11)

where k =
ηβ

4
, f(x) = H

(2)
0 (β|ρm −ρ′|) and g(x) =

Jz(ρ′).
Then the wavelet expansion in the space domain

is performed. It has to be noticed that in equation

(11) there is the product between two functions, in
particular one of them is known (f(x)) while the
other is our unknown. As explained in [8] it is
possible to obtain the wavelet expansion of a the
product between two functions y(x) = f(x)g(x) as
the product between a constant diagonal matrix F
and a vector g, where g is the wavelet expansion of
the function g(x) and F is a diagonal matrix whose
entries are the samples at n = 2m equally spaced
points of the values of f(x) in the interval. This
approximation is as much accurate as the number
of samples is high, hence as the resolution of the
chosen basis increases. In case the two functions
are know the above described procedure is useless,
since the expansion of y(x) can be performed di-
rectly. But in the cases when one of the two func-
tions is unknown then the procedure is fundamen-
tal, since it allows to keep g as the unknown vector
and anyway perform the wavelet expansion. Hence
equation (11) can be expressed in the wavelet do-
main as

k

1∫
0

b(x)Fgdx = b(x)h (12)

where F is the diagonal matrix with the samples
of the Hankel function, g is the vector of unknown
coefficients and h is the expansion of constant h
on the interval [0, 1] i.e. considered as a constant
function on the whole interval. By left multiplying
equation (12) by b(x)T we obtain

kb(x)T

1∫
0

b(x)dxFg = b(x)T b(x)h (13)

and taking into account the definition of the inte-
gral operator and the orthogonality properties of
the chosen basis we obtain

kTFg = h (14)

In this way equation (14) establishes a relation
between the primitive of the product f(x)g(x) and
the constant function h(x) = constant. This is
actually something different from what we want,
hence the two vectors b0 and b1 (introduced in sec-
tion II) must be employed. Hence we can write that

b1kTFg − b0kTFg = h (15)

Equation (15) is characterized by known matri-
ces T and F and known vectors b0 and b1 and by
the unknown vector of coefficients g. Once the res-
olution of the wavelet basis is chosen the number of
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basis functions is consequently fixed, hence equa-
tion (15) must be written for a number of n points
on the interval itself. This leads to a sparse linear
square system whose unknowns are the coefficients
g and which can be solved in low CPU time.

IV. Numerical Results

The numerical results presented here are relative
to the scattering of a square conductive object illu-
minated by a polarized TMz field. The geometry
of the system and the input signal are reported in
figures 1 and 2.

Fig. 1. Geometry of the system
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Fig. 2. Input signal

The diagonal of the scatterer is of 0.2m and the
frequency content of the input signal is of the order
of GHz. FFT has been used in order to obtain the
behavior in the time domain. Figures 3 - 5 show the

calculated current density on the surface scatterer
for a number of 64, 128 and 256 wavelet functions
for a frequency of 1 GHz.
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Fig. 3. Current density on the scatterer calculated by the
use of 64 wavelets

It is evident that together with the increase of the
resolution from 64 to 256, the accuracy of the re-
sults becomingh higher. Nevertheless even at lower
resolutions the obtained current (at a very lo CPU
time cost) is consistent witht the problem.
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Fig. 4. Current density on the scatterer calculated by the
use of 128 wavelets

Figure 6 shows the comparison between the cal-
culations performed by the proposed method with
a resolution of 256 wavelets and a standard MoM
(with collocation point) technique with 500 points
on the whole perimeter. It can be seen the very
good agreement between the two different methods.
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Fig. 5. Current density on the scatterer calculated by the
use of 256
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Fig. 6. Current density on the scatterer calculated by the
use wavelets and MoM

As for the CPU time the method proposed is
of the order of 2-4 times faster than the standard
MoM, due to the high numerical efficiency of the
wavelet expansion and integration, as described in
the previous sections: the construction of the inte-
gral operator matrix and the border vectors is done
only once and can be seen as a pre processing activ-
ity, while the integration is performed by a simple
matrix - vector product, without the need of any
quadrature formula. Furthermore the well known
numerical properties of the wavelet functions (well
addressed in the literature) allow the choice of bases
of small dimensions in order to obtain accurate re-
sults.

Since the calculation of the current density is not

the only important result from an engineering poin
of view, a comparison with results obtained by the
use of a FEM code of the total field are also re-
ported. In figures 7 and 8 the electric field in point
P ≡ (−0.2, 0) and P ≡ (0,−0.2) are reported,
evaluated by the FEM code and by the proposed
method, by using a wavelet basis of 256 functions.
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Fig. 7. Electric field evaluated at point P ≡ (−0.2, 0)

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
−9

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time (s)

el
ec

tr
ic

 fi
el

d 
(V

/m
)

fem solution
wavelet solution

Fig. 8. Electric field evaluated at point P ≡ (0,−0.2)

Figure 9 reports the comparison between two so-
lutions obtained by the proposed method at dif-
ferent resolutions, in particular with 64 and 256
wavelets, and shows the robustness of the method
in terms of calculated fields
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Fig. 9. Comparison at different resolutions of Electric field
evaluated at point P ≡ (0,−0.2)

V. Conclusion

The method proposed here performs the analysis
of scattering problems by the use of a MoM tech-
nique numerically implemented by wavelet expan-
sion. In particular the use of the integral operator
in the wavelet domain makes it possible to obtain
the unknown current without the use of quadra-
ture formulae, and the high interpolating proper-
ties of the chosen wavelet basis gives results with
low CPU time. The good quality of the results is
demostrated by comparisons with standard MoM
and FEM computations.
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