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Abstract:  An alternative method for generating 
higher dimensional wavelet-like basis functions 
is proposed in this paper.  One method that has 
been used was to derive the two-dimensional
wavelet-like basis from the two-dimensional
traditional finite element basis.  However, in this 
paper, products of one-dimensional wavelet-like 
functions are used as two-dimensional wavelet-
like basis functions.  The generation of linear 
wavelet-like functions is discussed in detail and 
the use of linear and higher order wavelet-like 
functions is also investigated.  The advantages 
and disadvantages of this technique for deriving 
wavelet-like basis functions will be discussed.

Keywords:  Wavelets, Iterative Techniques, 
Finite Element Methods 

I. INTRODUCTION 

Wavelets and wavelet analysis have recently 
become increasingly important in the 
computational sciences.  Wavelets have many
applications in areas such as signal analysis, 
image compression, and the numerical solution 
of partial differential equations and integral 
equations.  Only rather recently, however, have 
wavelets begun being used in computational
electromagnetics.  The multiresolution time
domain technique (MRTD), developed by Katehi 
et. al, has attracted abundant interest in the use of 
wavelets as basis functions [1].  Gordon has used 
wavelet-like basis functions in the numerical
solution of elliptic partial differential equations 

[2].  The wavelet-like functions have also been 
used as the basis for a finite element time-
domain algorithm [3].  Although the wavelet-like 
functions are not true wavelets, they do exhibit 
some of the benefits that have caused wavelets to 
receive attention.  One advantage that will be 
discussed in detail in this paper is that wavelet-
like basis functions have good stability and 
convergence properties.

II. GENERATION OF BASIS FUNCTIONS 

The method for generating the wavelet-like 
basis was first discussed by Jaffard in [4]. 
Consider the generation of linear wavelet-like 
functions for which the domain, , is the line 
segment 0 1x .  Assume that the problem
under consideration has Dirichlet boundary 
conditions so that the value of the solution is 
specified at both endpoints of the problem
domain.  This eliminates the necessity of nodes 
at the endpoints of the domain.  To begin the 
multiresolution analysis (MRA) for the 
generation of the linear wavelet-like basis 
functions, an initial discretization is chosen such 
that there is a single node placed at the midpoint
of the domain (Fig. 1).  This corresponds to 
beginning with two segments in the initial 
discretization; one segment from0 0x .5 , and 
another segment from0.5 1x .  This particular 
discretization is not a requirement; a very simple
or extremely complex segmentation may be used 
as the initial discretization of the problem
domain.
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Beginning mesh with a single node

Fig. 1.  Initial discretization with a single node in the mesh.

This beginning discretization is chosen for ease 
of illustration of the MRA.  The traditional linear 
basis function associated with the node 
at is normalized (Fig. 2).0.5x
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Fig. 2.  Wavelet-like function from the first level of the
MRA.

The first level of the MRA has now been 
completed and this function is considered to be 
the first wavelet-like basis function.  To begin 
the second level of the MRA, each of the two 
segments from the first level is divided into two 
equal segments.  After doing this, there are now 
four segments in the domain:  one segment from

, another segment from
, another from 0.5 , and 

another from .  The node at 
 is not a new node, and the function 

associated with it is discarded.  The nodes 
located at and at are new nodes 
(Fig. 3).  Therefore, these two nodes need to be 
considered in the analysis.  Next, the traditional 
basis functions that are associated with the two 
nodes are orthogonalized against the wavelet-like 
function from the first level; then, the resulting 

functions will be orthonormalized against each 
other.
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Single Node at the Beginning
Nodes Added at the Second Level

Fig. 3.  Initial discretization with added nodes from second 
level of the MRA. 

After the orthonormalization, the two functions 
can be added to the wavelet-like basis.  Now the 
second level of the MRA is complete and there 
are three wavelet-like functions in the basis.  The 
wavelet-like function associated with the node at 

0.25x  is shown in Fig. 4. 
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Fig. 4.  Wavelet-like function added at the second level of 
the MRA. 

The process of subdividing the segments and 
orthogonalizing traditional basis functions 
against previous wavelet-like basis functions and 
then orthonormalizing the resulting functions can 
be continued until the desired level of
discretization is reached.  Figures 5, 6, and 7 
show the progression of the subdivision of the 
line segment from the third level to the fifth level 
of the analysis.  Also, the linear wavelet-like 
basis function associated with the node at 

0.375x , which was added during the third 
level of the MRA, is shown in Fig. 8. 
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Nodes After Second Level
Nodes Added at the Third Level

Fig. 5.  Second Level discretization with added nodes from
the third level.
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Nodes After Third Level
Nodes Added at the Fourth Level

Fig. 6.  Third level discretization with added nodes from
the fourth level.
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Fig. 7.  Fourth level discretization with added nodes from
the fifth level.
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Fig. 8.  Wavelet-like function added at the third level of 
the MRA. 

This concludes the discussion of the generation 
of one-dimensional linear wavelet-like functions. 
Now there will be a brief discussion of the 
generation of higher dimensional and higher 
order wavelet-like functions. 

There are two methods that have been used to 
generate higher dimensional wavelet-like 
functions.  One possibility is to generate them
from their higher dimensional traditional finite 
element counterparts.  For example, a piecewise 
linear two-dimensional wavelet-like basis can be 
generated from the traditional two-dimensional
tetrahedral basis.  However, this is not how 
higher dimensional wavelets are typically 
created.  Instead, they are generally formed from
products of one-dimensional wavelets [5].  In 
two dimensions, this yields

, ( , ) ( ) ( )m n m nx y x y  (1) 

Hutchcraft and Gordon have shown that this 
technique can also be employed using products 
of wavelet-like functions [6].

Just as higher dimensional wavelet-like 
functions can be generated using their traditional 
counterparts, so can higher order wavelet-like 
functions. These functions have been used by 
Hutchcraft and Gordon in the numerical solution 
of a one-dimensional problem in [7] in which the 
traditional piecewise cubic basis functions are 
used to generate piecewise cubic wavelet-like 
basis functions.    Implementing both of these 
concepts, higher order, higher-dimensional
wavelet-like functions can be generated by 
forming products of one-dimensional higher 
order wavelet-like functions.

III. EXAMPLES OF ONE AND TWO-
DIMENSIONAL BASIS FUNCTIONS 

Consider a rectangular region as the domain
for a two-dimensional problem.  To obtain a two-
dimensional wavelet-like basis, one-dimensional
wavelet-like functions need to be generated in 
both the x- and y-directions by the method
outlined previously.  For the two-dimensional
wavelet-like basis, all products of a wavelet-like 
function in the x-direction with a wavelet-like 
function in the y-direction will be considered a 
two-dimensional wavelet-like basis function; 
thus, the total number of wavelet-like functions
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generated by this procedure will be the total 
number of wavelet-like functions in the x-
direction multiplied by the total number of
wavelet-like functions in the y-direction.

To aid in the visualization of these functions, 
Figs. 9-16 show several one- and two-
dimensional linear and cubic wavelet-like 
functions.  First, Figs. 9 and 10 illustrate one-
dimensional cubic wavelet-like functions.  In 
Fig. 10, the more slowly varying of the two 
functions is from the first level of the MRA.  It 
has a single piecewise cubic representation over 
the entire domain.  The other function in Fig. 10 
is from the second level in the MRA.  It is also 
piecewise cubic, but it has two different 
representations; one representation for the 
segment and another representation for 
the segment from .
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Fig. 9. Third order wavelet-like basis functions from the 1st

and 2nd levels.

As discussed previously, two-dimensional
wavelet-like functions are obtained by forming
products of one-dimensional wavelet-like 
functions.  Figure 11 shows a two-dimensional
linear wavelet-like function.  The linear wavelet-
like function B6(x,y), which could also be written 
as B2(x)B3(y) to denote that it is derived from the 
product of the 2nd basis function in the x-
direction and the 3rd basis function in the y-
direction, is formed from a function from the 
second level of the MRA in the x-direction and a 

function from the second level of the MRA in the 
y-direction.
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Fig. 10.  Third order wavelet-like basis functions from the
2nd and 3rd levels.

B2(x)B3(y)

Fig. 11. Linear wavelet-like basis function obtained from a 
2nd level x and 2nd level y function.

Plots of several two-dimensional cubic wavelet-
like basis functions are shown in Figs. 12, 13, 14, 
and 15.  B1(x,y) is a cubic wavelet-like basis 
function that is generated from the first level in 
both the x- and y-directions (Fig. 12). As can be 
seen from the figure, this function is nonzero 
over most of the domain.  It is also a piecewise 
cubic polynomial in the x-direction and a 
piecewise cubic polynomial in the y-direction. 
B5(x,y) and B10(x,y) are both generated from the 
first level of the MRA in the y-direction and the 
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second level of the MRA in the x-direction (Figs. 
13 and 14).  In the x-direction, each of these two 
functions has two different piecewise cubic 
representations; on the other hand, both of these 
functions have a single representation in the y-
direction.  Specifically, in the x-direction, there 
is one piecewise cubic representation for the 
segment , and another piecewise 
cubic representation for the segment

.  B15(x,y) is a basis function that is 
obtained from a second level x-directed function 
and a second level y-directed function (Fig. 15). 
This function has two different piecewise cubic 
representations in both the x- and y-directions. 

0 2x .0

2.0 4.0x

B1(x,y)

Fig. 12.  Cubic wavelet-like basis function obtained from a 
1st  level x and 1st level y function.

B5(x,y)

Fig. 13. Cubic wavelet-like basis function obtained from a 
2nd level x and 1st level y function.

B10(x,y)

Fig. 14. Cubic wavelet-like basis function obtained from a 
2nd level x and 1st level y function.

B15(x,y)

Fig. 15. Cubic wavelet-like basis function obtained from a 
2nd level x and 2nd level y function.

With wavelet analysis, as levels in the MRA 
are added, the wavelets become more localized. 
As can be seen from these figures, the wavelet-
like basis functions also possess this property; 
they have a large magnitude in a smaller portion 
of the domain as the level in the MRA for either 
(or both) the x- or y-directions increases.  B1(x,y)
has a rather large magnitude over the entire 
domain.  Again, B5(x,y) and B10(x,y) are from
the second level in the x-direction and the first 
level in the y-direction; notice that these two 
functions have a large value only in half of the 
region.  B15(x,y) is a function from the second 
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level in both the x- and y-directions and its value 
is large only in one-quarter of the domain.

IV. EXAMPLE PROBLEM 

As an example of the use of the wavelet-like 
basis functions, consider the following 
differential equation

, , , ,a x y u x y b x y u x y g x y,

y

 (2) 

in which the domain is the rectangular region 
from to  and from  to 

.  Laplace’s equation can be obtained by 
choosing the following: a x

0.0x 4.0x 0.0y
3.0y

( , ) 1.0 ,
, and .  An illustration 

of the problem domain along with the boundary 
conditions is shown in Fig. 16.

( , ) 0.0b x y ( , ) 0.0g x y

Fig. 16.  Problem domain.

Solutions were obtained using the traditional 
two-dimensional basis functions, two-
dimensional basis functions that were products of 
linear wavelet-like basis functions, and two-
dimensional basis functions that were products of 
cubic wavelet-like basis functions.  A 
comparison of the analytic solution and the 
numerical solution, which was found using 961 
linear wavelet-like basis functions, is made along 
the line  (Fig. 17).  The numerical
solution in this case corresponds to 31 wavelet-
like functions in each direction (31*31=961 total 
basis functions).  To illustrate the accuracy when 
the linear wavelet-like basis is used, the curves 
for the numerical solution and the analytic 
solution lie on top of each other.  To illustrate 
that an accurate solution is also obtained when 
the cubic wavelet-like basis functions is used, the 
analytic solution and the numerical solution, 

which was obtained with 55 cubic wavelet-like 
basis functions, are compared along the line 
y=1.5 (Fig. 18).  Again, these two curves are 
indistinguishable on the graph.  The numerical
solution obtained with only 25 cubic wavelet-like 
basis functions is plotted in figure 19.  For this 
graph, five cubic wavelet-like functions in each 
direction were used as the two-dimensional
basis.  As expected, very few cubic basis 
functions are necessary to obtain an accurate 
solution.  From these figures, it is seen that the 
solutions obtained are accurate when either cubic 
or linear wavelet-like basis functions are used.

1.5x

Although the ability of any basis function to 
accurately model an arbitrary function is quite 
important, the wavelet-like basis also has other 
advantages.  Previously, wavelet-like functions 
have been shown to have extremely good 
convergence and stability properties. After 
diagonal preconditioning, the condition number
of the system matrix was calculated.  Figure 20 
illustrates how the condition number varies as 
the number of basis functions is increased. 
Because the condition number of the system
matrix is much smaller for the wavelet-like bases 
in comparison with the rapidly rising condition 
number when the traditional basis is used, the 
condition numbers when the linear and cubic 
wavelet-like basis functions are used are shown 
separate in Fig. 21.  The benefits of this low 
condition number are especially evident when 
looking at the number of steps required for 
convergence of the conjugate gradient method.
In Fig. 22, the number of steps required for 
convergence of the conjugate gradient method is 
plotted as the number of basis functions is 
increased.  With approximately 225 basis 
functions, the traditional basis requires 78 steps 
for convergence; this is in contrast to only 34 for 
225 linear wavelet-like basis functions and only 
18 for 253 cubic wavelet-like basis functions. 

u(x,3.0) = sin( x/4)

u(0.0,y)=0.0               u(4.0,y)=0.0

u(x,0.0)=0.0
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Fig. 17. Numerical (with 961 linear 2D wavelet-like basis)
and analytic solutions along the line x = 1.5. 
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Fig. 18. Numerical and analytic solution along the line
y=1.5.

U(x,y)

Fig.19.   Numerical solution when 25 cubic wavelet-like
functions are used. 
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Fig. 20. Condition number comparison of wavelet-like and 
traditional basis.
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Fig. 22. Steps required for convergence. 
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V. CONCLUSION 

 It has been shown that one-dimensional 
wavelet-like basis functions can be multiplied to 
obtain two-dimensional basis functions that give 
accurate results when they are used to obtain 
numerical solutions.  The stability of the 
condition number and the rapid convergence 
when the conjugate gradient method is used have 
also been shown to be two advantages of using 
either linear or higher order wavelet-like rather 
than traditional basis functions.  As is the case 
with higher order traditional basis functions, 
fewer cubic wavelet-like basis functions are 
required for high accuracy.  One disadvantage of 
this method is that the mesh would resemble 
more of a finite difference mesh rather than the 
triangular patches that are typically associated 
with the finite element method; however, non-
uniform spacing is still rather easily 
accomplished with the wavelet-like method. 
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